xref: /linux/arch/mips/kernel/time.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * Copyright 2001 MontaVista Software Inc.
3  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4  * Copyright (c) 2003, 2004  Maciej W. Rozycki
5  *
6  * Common time service routines for MIPS machines. See
7  * Documentation/mips/time.README.
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  */
14 #include <linux/config.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/param.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/smp.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 
28 #include <asm/bootinfo.h>
29 #include <asm/cache.h>
30 #include <asm/compiler.h>
31 #include <asm/cpu.h>
32 #include <asm/cpu-features.h>
33 #include <asm/div64.h>
34 #include <asm/sections.h>
35 #include <asm/time.h>
36 
37 /*
38  * The integer part of the number of usecs per jiffy is taken from tick,
39  * but the fractional part is not recorded, so we calculate it using the
40  * initial value of HZ.  This aids systems where tick isn't really an
41  * integer (e.g. for HZ = 128).
42  */
43 #define USECS_PER_JIFFY		TICK_SIZE
44 #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))
45 
46 #define TICK_SIZE	(tick_nsec / 1000)
47 
48 /*
49  * forward reference
50  */
51 extern volatile unsigned long wall_jiffies;
52 
53 DEFINE_SPINLOCK(rtc_lock);
54 
55 /*
56  * By default we provide the null RTC ops
57  */
58 static unsigned long null_rtc_get_time(void)
59 {
60 	return mktime(2000, 1, 1, 0, 0, 0);
61 }
62 
63 static int null_rtc_set_time(unsigned long sec)
64 {
65 	return 0;
66 }
67 
68 unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
69 int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
70 int (*rtc_set_mmss)(unsigned long);
71 
72 
73 /* usecs per counter cycle, shifted to left by 32 bits */
74 static unsigned int sll32_usecs_per_cycle;
75 
76 /* how many counter cycles in a jiffy */
77 static unsigned long cycles_per_jiffy __read_mostly;
78 
79 /* Cycle counter value at the previous timer interrupt.. */
80 static unsigned int timerhi, timerlo;
81 
82 /* expirelo is the count value for next CPU timer interrupt */
83 static unsigned int expirelo;
84 
85 
86 /*
87  * Null timer ack for systems not needing one (e.g. i8254).
88  */
89 static void null_timer_ack(void) { /* nothing */ }
90 
91 /*
92  * Null high precision timer functions for systems lacking one.
93  */
94 static unsigned int null_hpt_read(void)
95 {
96 	return 0;
97 }
98 
99 static void null_hpt_init(unsigned int count)
100 {
101 	/* nothing */
102 }
103 
104 
105 /*
106  * Timer ack for an R4k-compatible timer of a known frequency.
107  */
108 static void c0_timer_ack(void)
109 {
110 	unsigned int count;
111 
112 #ifndef CONFIG_SOC_PNX8550	/* pnx8550 resets to zero */
113 	/* Ack this timer interrupt and set the next one.  */
114 	expirelo += cycles_per_jiffy;
115 #endif
116 	write_c0_compare(expirelo);
117 
118 	/* Check to see if we have missed any timer interrupts.  */
119 	count = read_c0_count();
120 	if ((count - expirelo) < 0x7fffffff) {
121 		/* missed_timer_count++; */
122 		expirelo = count + cycles_per_jiffy;
123 		write_c0_compare(expirelo);
124 	}
125 }
126 
127 /*
128  * High precision timer functions for a R4k-compatible timer.
129  */
130 static unsigned int c0_hpt_read(void)
131 {
132 	return read_c0_count();
133 }
134 
135 /* For use solely as a high precision timer.  */
136 static void c0_hpt_init(unsigned int count)
137 {
138 	write_c0_count(read_c0_count() - count);
139 }
140 
141 /* For use both as a high precision timer and an interrupt source.  */
142 static void c0_hpt_timer_init(unsigned int count)
143 {
144 	count = read_c0_count() - count;
145 	expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
146 	write_c0_count(expirelo - cycles_per_jiffy);
147 	write_c0_compare(expirelo);
148 	write_c0_count(count);
149 }
150 
151 int (*mips_timer_state)(void);
152 void (*mips_timer_ack)(void);
153 unsigned int (*mips_hpt_read)(void);
154 void (*mips_hpt_init)(unsigned int);
155 
156 
157 /*
158  * This version of gettimeofday has microsecond resolution and better than
159  * microsecond precision on fast machines with cycle counter.
160  */
161 void do_gettimeofday(struct timeval *tv)
162 {
163 	unsigned long seq;
164 	unsigned long lost;
165 	unsigned long usec, sec;
166 	unsigned long max_ntp_tick;
167 
168 	do {
169 		seq = read_seqbegin(&xtime_lock);
170 
171 		usec = do_gettimeoffset();
172 
173 		lost = jiffies - wall_jiffies;
174 
175 		/*
176 		 * If time_adjust is negative then NTP is slowing the clock
177 		 * so make sure not to go into next possible interval.
178 		 * Better to lose some accuracy than have time go backwards..
179 		 */
180 		if (unlikely(time_adjust < 0)) {
181 			max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
182 			usec = min(usec, max_ntp_tick);
183 
184 			if (lost)
185 				usec += lost * max_ntp_tick;
186 		} else if (unlikely(lost))
187 			usec += lost * (USEC_PER_SEC / HZ);
188 
189 		sec = xtime.tv_sec;
190 		usec += (xtime.tv_nsec / 1000);
191 
192 	} while (read_seqretry(&xtime_lock, seq));
193 
194 	while (usec >= 1000000) {
195 		usec -= 1000000;
196 		sec++;
197 	}
198 
199 	tv->tv_sec = sec;
200 	tv->tv_usec = usec;
201 }
202 
203 EXPORT_SYMBOL(do_gettimeofday);
204 
205 int do_settimeofday(struct timespec *tv)
206 {
207 	time_t wtm_sec, sec = tv->tv_sec;
208 	long wtm_nsec, nsec = tv->tv_nsec;
209 
210 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
211 		return -EINVAL;
212 
213 	write_seqlock_irq(&xtime_lock);
214 
215 	/*
216 	 * This is revolting.  We need to set "xtime" correctly.  However,
217 	 * the value in this location is the value at the most recent update
218 	 * of wall time.  Discover what correction gettimeofday() would have
219 	 * made, and then undo it!
220 	 */
221 	nsec -= do_gettimeoffset() * NSEC_PER_USEC;
222 	nsec -= (jiffies - wall_jiffies) * tick_nsec;
223 
224 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
225 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
226 
227 	set_normalized_timespec(&xtime, sec, nsec);
228 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
229 
230 	ntp_clear();
231 	write_sequnlock_irq(&xtime_lock);
232 	clock_was_set();
233 	return 0;
234 }
235 
236 EXPORT_SYMBOL(do_settimeofday);
237 
238 /*
239  * Gettimeoffset routines.  These routines returns the time duration
240  * since last timer interrupt in usecs.
241  *
242  * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
243  * Otherwise use calibrate_gettimeoffset()
244  *
245  * If the CPU does not have the counter register, you can either supply
246  * your own gettimeoffset() routine, or use null_gettimeoffset(), which
247  * gives the same resolution as HZ.
248  */
249 
250 static unsigned long null_gettimeoffset(void)
251 {
252 	return 0;
253 }
254 
255 
256 /* The function pointer to one of the gettimeoffset funcs.  */
257 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
258 
259 
260 static unsigned long fixed_rate_gettimeoffset(void)
261 {
262 	u32 count;
263 	unsigned long res;
264 
265 	/* Get last timer tick in absolute kernel time */
266 	count = mips_hpt_read();
267 
268 	/* .. relative to previous jiffy (32 bits is enough) */
269 	count -= timerlo;
270 
271 	__asm__("multu	%1,%2"
272 		: "=h" (res)
273 		: "r" (count), "r" (sll32_usecs_per_cycle)
274 		: "lo", GCC_REG_ACCUM);
275 
276 	/*
277 	 * Due to possible jiffies inconsistencies, we need to check
278 	 * the result so that we'll get a timer that is monotonic.
279 	 */
280 	if (res >= USECS_PER_JIFFY)
281 		res = USECS_PER_JIFFY - 1;
282 
283 	return res;
284 }
285 
286 
287 /*
288  * Cached "1/(clocks per usec) * 2^32" value.
289  * It has to be recalculated once each jiffy.
290  */
291 static unsigned long cached_quotient;
292 
293 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
294 static unsigned long last_jiffies;
295 
296 /*
297  * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
298  */
299 static unsigned long calibrate_div32_gettimeoffset(void)
300 {
301 	u32 count;
302 	unsigned long res, tmp;
303 	unsigned long quotient;
304 
305 	tmp = jiffies;
306 
307 	quotient = cached_quotient;
308 
309 	if (last_jiffies != tmp) {
310 		last_jiffies = tmp;
311 		if (last_jiffies != 0) {
312 			unsigned long r0;
313 			do_div64_32(r0, timerhi, timerlo, tmp);
314 			do_div64_32(quotient, USECS_PER_JIFFY,
315 				    USECS_PER_JIFFY_FRAC, r0);
316 			cached_quotient = quotient;
317 		}
318 	}
319 
320 	/* Get last timer tick in absolute kernel time */
321 	count = mips_hpt_read();
322 
323 	/* .. relative to previous jiffy (32 bits is enough) */
324 	count -= timerlo;
325 
326 	__asm__("multu  %1,%2"
327 		: "=h" (res)
328 		: "r" (count), "r" (quotient)
329 		: "lo", GCC_REG_ACCUM);
330 
331 	/*
332 	 * Due to possible jiffies inconsistencies, we need to check
333 	 * the result so that we'll get a timer that is monotonic.
334 	 */
335 	if (res >= USECS_PER_JIFFY)
336 		res = USECS_PER_JIFFY - 1;
337 
338 	return res;
339 }
340 
341 static unsigned long calibrate_div64_gettimeoffset(void)
342 {
343 	u32 count;
344 	unsigned long res, tmp;
345 	unsigned long quotient;
346 
347 	tmp = jiffies;
348 
349 	quotient = cached_quotient;
350 
351 	if (last_jiffies != tmp) {
352 		last_jiffies = tmp;
353 		if (last_jiffies) {
354 			unsigned long r0;
355 			__asm__(".set	push\n\t"
356 				".set	mips3\n\t"
357 				"lwu	%0,%3\n\t"
358 				"dsll32	%1,%2,0\n\t"
359 				"or	%1,%1,%0\n\t"
360 				"ddivu	$0,%1,%4\n\t"
361 				"mflo	%1\n\t"
362 				"dsll32	%0,%5,0\n\t"
363 				"or	%0,%0,%6\n\t"
364 				"ddivu	$0,%0,%1\n\t"
365 				"mflo	%0\n\t"
366 				".set	pop"
367 				: "=&r" (quotient), "=&r" (r0)
368 				: "r" (timerhi), "m" (timerlo),
369 				  "r" (tmp), "r" (USECS_PER_JIFFY),
370 				  "r" (USECS_PER_JIFFY_FRAC)
371 				: "hi", "lo", GCC_REG_ACCUM);
372 			cached_quotient = quotient;
373 		}
374 	}
375 
376 	/* Get last timer tick in absolute kernel time */
377 	count = mips_hpt_read();
378 
379 	/* .. relative to previous jiffy (32 bits is enough) */
380 	count -= timerlo;
381 
382 	__asm__("multu	%1,%2"
383 		: "=h" (res)
384 		: "r" (count), "r" (quotient)
385 		: "lo", GCC_REG_ACCUM);
386 
387 	/*
388 	 * Due to possible jiffies inconsistencies, we need to check
389 	 * the result so that we'll get a timer that is monotonic.
390 	 */
391 	if (res >= USECS_PER_JIFFY)
392 		res = USECS_PER_JIFFY - 1;
393 
394 	return res;
395 }
396 
397 
398 /* last time when xtime and rtc are sync'ed up */
399 static long last_rtc_update;
400 
401 /*
402  * local_timer_interrupt() does profiling and process accounting
403  * on a per-CPU basis.
404  *
405  * In UP mode, it is invoked from the (global) timer_interrupt.
406  *
407  * In SMP mode, it might invoked by per-CPU timer interrupt, or
408  * a broadcasted inter-processor interrupt which itself is triggered
409  * by the global timer interrupt.
410  */
411 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
412 {
413 	if (current->pid)
414 		profile_tick(CPU_PROFILING, regs);
415 	update_process_times(user_mode(regs));
416 }
417 
418 /*
419  * High-level timer interrupt service routines.  This function
420  * is set as irqaction->handler and is invoked through do_IRQ.
421  */
422 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
423 {
424 	unsigned long j;
425 	unsigned int count;
426 
427 	write_seqlock(&xtime_lock);
428 
429 	count = mips_hpt_read();
430 	mips_timer_ack();
431 
432 	/* Update timerhi/timerlo for intra-jiffy calibration. */
433 	timerhi += count < timerlo;			/* Wrap around */
434 	timerlo = count;
435 
436 	/*
437 	 * call the generic timer interrupt handling
438 	 */
439 	do_timer(regs);
440 
441 	/*
442 	 * If we have an externally synchronized Linux clock, then update
443 	 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
444 	 * called as close as possible to 500 ms before the new second starts.
445 	 */
446 	if (ntp_synced() &&
447 	    xtime.tv_sec > last_rtc_update + 660 &&
448 	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
449 	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
450 		if (rtc_set_mmss(xtime.tv_sec) == 0) {
451 			last_rtc_update = xtime.tv_sec;
452 		} else {
453 			/* do it again in 60 s */
454 			last_rtc_update = xtime.tv_sec - 600;
455 		}
456 	}
457 
458 	/*
459 	 * If jiffies has overflown in this timer_interrupt, we must
460 	 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
461 	 * quotient calc still valid. -arca
462 	 *
463 	 * The first timer interrupt comes late as interrupts are
464 	 * enabled long after timers are initialized.  Therefore the
465 	 * high precision timer is fast, leading to wrong gettimeoffset()
466 	 * calculations.  We deal with it by setting it based on the
467 	 * number of its ticks between the second and the third interrupt.
468 	 * That is still somewhat imprecise, but it's a good estimate.
469 	 * --macro
470 	 */
471 	j = jiffies;
472 	if (j < 4) {
473 		static unsigned int prev_count;
474 		static int hpt_initialized;
475 
476 		switch (j) {
477 		case 0:
478 			timerhi = timerlo = 0;
479 			mips_hpt_init(count);
480 			break;
481 		case 2:
482 			prev_count = count;
483 			break;
484 		case 3:
485 			if (!hpt_initialized) {
486 				unsigned int c3 = 3 * (count - prev_count);
487 
488 				timerhi = 0;
489 				timerlo = c3;
490 				mips_hpt_init(count - c3);
491 				hpt_initialized = 1;
492 			}
493 			break;
494 		default:
495 			break;
496 		}
497 	}
498 
499 	write_sequnlock(&xtime_lock);
500 
501 	/*
502 	 * In UP mode, we call local_timer_interrupt() to do profiling
503 	 * and process accouting.
504 	 *
505 	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
506 	 * low-level local timer interrupt handler.
507 	 */
508 	local_timer_interrupt(irq, dev_id, regs);
509 
510 	return IRQ_HANDLED;
511 }
512 
513 int null_perf_irq(struct pt_regs *regs)
514 {
515 	return 0;
516 }
517 
518 int (*perf_irq)(struct pt_regs *regs) = null_perf_irq;
519 
520 EXPORT_SYMBOL(null_perf_irq);
521 EXPORT_SYMBOL(perf_irq);
522 
523 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
524 {
525 	int r2 = cpu_has_mips_r2;
526 
527 	irq_enter();
528 	kstat_this_cpu.irqs[irq]++;
529 
530 	/*
531 	 * Suckage alert:
532 	 * Before R2 of the architecture there was no way to see if a
533 	 * performance counter interrupt was pending, so we have to run the
534 	 * performance counter interrupt handler anyway.
535 	 */
536 	if (!r2 || (read_c0_cause() & (1 << 26)))
537 		if (perf_irq(regs))
538 			goto out;
539 
540 	/* we keep interrupt disabled all the time */
541 	if (!r2 || (read_c0_cause() & (1 << 30)))
542 		timer_interrupt(irq, NULL, regs);
543 
544 out:
545 	irq_exit();
546 }
547 
548 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
549 {
550 	irq_enter();
551 	if (smp_processor_id() != 0)
552 		kstat_this_cpu.irqs[irq]++;
553 
554 	/* we keep interrupt disabled all the time */
555 	local_timer_interrupt(irq, NULL, regs);
556 
557 	irq_exit();
558 }
559 
560 /*
561  * time_init() - it does the following things.
562  *
563  * 1) board_time_init() -
564  * 	a) (optional) set up RTC routines,
565  *      b) (optional) calibrate and set the mips_hpt_frequency
566  *	    (only needed if you intended to use fixed_rate_gettimeoffset
567  *	     or use cpu counter as timer interrupt source)
568  * 2) setup xtime based on rtc_get_time().
569  * 3) choose a appropriate gettimeoffset routine.
570  * 4) calculate a couple of cached variables for later usage
571  * 5) board_timer_setup() -
572  *	a) (optional) over-write any choices made above by time_init().
573  *	b) machine specific code should setup the timer irqaction.
574  *	c) enable the timer interrupt
575  */
576 
577 void (*board_time_init)(void);
578 void (*board_timer_setup)(struct irqaction *irq);
579 
580 unsigned int mips_hpt_frequency;
581 
582 static struct irqaction timer_irqaction = {
583 	.handler = timer_interrupt,
584 	.flags = SA_INTERRUPT,
585 	.name = "timer",
586 };
587 
588 static unsigned int __init calibrate_hpt(void)
589 {
590 	u64 frequency;
591 	u32 hpt_start, hpt_end, hpt_count, hz;
592 
593 	const int loops = HZ / 10;
594 	int log_2_loops = 0;
595 	int i;
596 
597 	/*
598 	 * We want to calibrate for 0.1s, but to avoid a 64-bit
599 	 * division we round the number of loops up to the nearest
600 	 * power of 2.
601 	 */
602 	while (loops > 1 << log_2_loops)
603 		log_2_loops++;
604 	i = 1 << log_2_loops;
605 
606 	/*
607 	 * Wait for a rising edge of the timer interrupt.
608 	 */
609 	while (mips_timer_state());
610 	while (!mips_timer_state());
611 
612 	/*
613 	 * Now see how many high precision timer ticks happen
614 	 * during the calculated number of periods between timer
615 	 * interrupts.
616 	 */
617 	hpt_start = mips_hpt_read();
618 	do {
619 		while (mips_timer_state());
620 		while (!mips_timer_state());
621 	} while (--i);
622 	hpt_end = mips_hpt_read();
623 
624 	hpt_count = hpt_end - hpt_start;
625 	hz = HZ;
626 	frequency = (u64)hpt_count * (u64)hz;
627 
628 	return frequency >> log_2_loops;
629 }
630 
631 void __init time_init(void)
632 {
633 	if (board_time_init)
634 		board_time_init();
635 
636 	if (!rtc_set_mmss)
637 		rtc_set_mmss = rtc_set_time;
638 
639 	xtime.tv_sec = rtc_get_time();
640 	xtime.tv_nsec = 0;
641 
642 	set_normalized_timespec(&wall_to_monotonic,
643 	                        -xtime.tv_sec, -xtime.tv_nsec);
644 
645 	/* Choose appropriate high precision timer routines.  */
646 	if (!cpu_has_counter && !mips_hpt_read) {
647 		/* No high precision timer -- sorry.  */
648 		mips_hpt_read = null_hpt_read;
649 		mips_hpt_init = null_hpt_init;
650 	} else if (!mips_hpt_frequency && !mips_timer_state) {
651 		/* A high precision timer of unknown frequency.  */
652 		if (!mips_hpt_read) {
653 			/* No external high precision timer -- use R4k.  */
654 			mips_hpt_read = c0_hpt_read;
655 			mips_hpt_init = c0_hpt_init;
656 		}
657 
658 		if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
659 		    (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
660 		    (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
661 			/*
662 			 * We need to calibrate the counter but we don't have
663 			 * 64-bit division.
664 			 */
665 			do_gettimeoffset = calibrate_div32_gettimeoffset;
666 		else
667 			/*
668 			 * We need to calibrate the counter but we *do* have
669 			 * 64-bit division.
670 			 */
671 			do_gettimeoffset = calibrate_div64_gettimeoffset;
672 	} else {
673 		/* We know counter frequency.  Or we can get it.  */
674 		if (!mips_hpt_read) {
675 			/* No external high precision timer -- use R4k.  */
676 			mips_hpt_read = c0_hpt_read;
677 
678 			if (mips_timer_state)
679 				mips_hpt_init = c0_hpt_init;
680 			else {
681 				/* No external timer interrupt -- use R4k.  */
682 				mips_hpt_init = c0_hpt_timer_init;
683 				mips_timer_ack = c0_timer_ack;
684 			}
685 		}
686 		if (!mips_hpt_frequency)
687 			mips_hpt_frequency = calibrate_hpt();
688 
689 		do_gettimeoffset = fixed_rate_gettimeoffset;
690 
691 		/* Calculate cache parameters.  */
692 		cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
693 
694 		/* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq  */
695 		do_div64_32(sll32_usecs_per_cycle,
696 			    1000000, mips_hpt_frequency / 2,
697 			    mips_hpt_frequency);
698 
699 		/* Report the high precision timer rate for a reference.  */
700 		printk("Using %u.%03u MHz high precision timer.\n",
701 		       ((mips_hpt_frequency + 500) / 1000) / 1000,
702 		       ((mips_hpt_frequency + 500) / 1000) % 1000);
703 	}
704 
705 	if (!mips_timer_ack)
706 		/* No timer interrupt ack (e.g. i8254).  */
707 		mips_timer_ack = null_timer_ack;
708 
709 	/* This sets up the high precision timer for the first interrupt.  */
710 	mips_hpt_init(mips_hpt_read());
711 
712 	/*
713 	 * Call board specific timer interrupt setup.
714 	 *
715 	 * this pointer must be setup in machine setup routine.
716 	 *
717 	 * Even if a machine chooses to use a low-level timer interrupt,
718 	 * it still needs to setup the timer_irqaction.
719 	 * In that case, it might be better to set timer_irqaction.handler
720 	 * to be NULL function so that we are sure the high-level code
721 	 * is not invoked accidentally.
722 	 */
723 	board_timer_setup(&timer_irqaction);
724 }
725 
726 #define FEBRUARY		2
727 #define STARTOFTIME		1970
728 #define SECDAY			86400L
729 #define SECYR			(SECDAY * 365)
730 #define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
731 #define days_in_year(y)		(leapyear(y) ? 366 : 365)
732 #define days_in_month(m)	(month_days[(m) - 1])
733 
734 static int month_days[12] = {
735 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
736 };
737 
738 void to_tm(unsigned long tim, struct rtc_time *tm)
739 {
740 	long hms, day, gday;
741 	int i;
742 
743 	gday = day = tim / SECDAY;
744 	hms = tim % SECDAY;
745 
746 	/* Hours, minutes, seconds are easy */
747 	tm->tm_hour = hms / 3600;
748 	tm->tm_min = (hms % 3600) / 60;
749 	tm->tm_sec = (hms % 3600) % 60;
750 
751 	/* Number of years in days */
752 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
753 		day -= days_in_year(i);
754 	tm->tm_year = i;
755 
756 	/* Number of months in days left */
757 	if (leapyear(tm->tm_year))
758 		days_in_month(FEBRUARY) = 29;
759 	for (i = 1; day >= days_in_month(i); i++)
760 		day -= days_in_month(i);
761 	days_in_month(FEBRUARY) = 28;
762 	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */
763 
764 	/* Days are what is left over (+1) from all that. */
765 	tm->tm_mday = day + 1;
766 
767 	/*
768 	 * Determine the day of week
769 	 */
770 	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
771 }
772 
773 EXPORT_SYMBOL(rtc_lock);
774 EXPORT_SYMBOL(to_tm);
775 EXPORT_SYMBOL(rtc_set_time);
776 EXPORT_SYMBOL(rtc_get_time);
777 
778 unsigned long long sched_clock(void)
779 {
780 	return (unsigned long long)jiffies*(1000000000/HZ);
781 }
782