1 /* 2 * Copyright 2001 MontaVista Software Inc. 3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net 4 * Copyright (c) 2003, 2004 Maciej W. Rozycki 5 * 6 * Common time service routines for MIPS machines. See 7 * Documentation/mips/time.README. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 */ 14 #include <linux/config.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/sched.h> 19 #include <linux/param.h> 20 #include <linux/time.h> 21 #include <linux/timex.h> 22 #include <linux/smp.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/spinlock.h> 25 #include <linux/interrupt.h> 26 #include <linux/module.h> 27 28 #include <asm/bootinfo.h> 29 #include <asm/cache.h> 30 #include <asm/compiler.h> 31 #include <asm/cpu.h> 32 #include <asm/cpu-features.h> 33 #include <asm/div64.h> 34 #include <asm/sections.h> 35 #include <asm/time.h> 36 37 /* 38 * The integer part of the number of usecs per jiffy is taken from tick, 39 * but the fractional part is not recorded, so we calculate it using the 40 * initial value of HZ. This aids systems where tick isn't really an 41 * integer (e.g. for HZ = 128). 42 */ 43 #define USECS_PER_JIFFY TICK_SIZE 44 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ)) 45 46 #define TICK_SIZE (tick_nsec / 1000) 47 48 /* 49 * forward reference 50 */ 51 extern volatile unsigned long wall_jiffies; 52 53 DEFINE_SPINLOCK(rtc_lock); 54 55 /* 56 * By default we provide the null RTC ops 57 */ 58 static unsigned long null_rtc_get_time(void) 59 { 60 return mktime(2000, 1, 1, 0, 0, 0); 61 } 62 63 static int null_rtc_set_time(unsigned long sec) 64 { 65 return 0; 66 } 67 68 unsigned long (*rtc_get_time)(void) = null_rtc_get_time; 69 int (*rtc_set_time)(unsigned long) = null_rtc_set_time; 70 int (*rtc_set_mmss)(unsigned long); 71 72 73 /* usecs per counter cycle, shifted to left by 32 bits */ 74 static unsigned int sll32_usecs_per_cycle; 75 76 /* how many counter cycles in a jiffy */ 77 static unsigned long cycles_per_jiffy __read_mostly; 78 79 /* Cycle counter value at the previous timer interrupt.. */ 80 static unsigned int timerhi, timerlo; 81 82 /* expirelo is the count value for next CPU timer interrupt */ 83 static unsigned int expirelo; 84 85 86 /* 87 * Null timer ack for systems not needing one (e.g. i8254). 88 */ 89 static void null_timer_ack(void) { /* nothing */ } 90 91 /* 92 * Null high precision timer functions for systems lacking one. 93 */ 94 static unsigned int null_hpt_read(void) 95 { 96 return 0; 97 } 98 99 static void null_hpt_init(unsigned int count) 100 { 101 /* nothing */ 102 } 103 104 105 /* 106 * Timer ack for an R4k-compatible timer of a known frequency. 107 */ 108 static void c0_timer_ack(void) 109 { 110 unsigned int count; 111 112 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */ 113 /* Ack this timer interrupt and set the next one. */ 114 expirelo += cycles_per_jiffy; 115 #endif 116 write_c0_compare(expirelo); 117 118 /* Check to see if we have missed any timer interrupts. */ 119 count = read_c0_count(); 120 if ((count - expirelo) < 0x7fffffff) { 121 /* missed_timer_count++; */ 122 expirelo = count + cycles_per_jiffy; 123 write_c0_compare(expirelo); 124 } 125 } 126 127 /* 128 * High precision timer functions for a R4k-compatible timer. 129 */ 130 static unsigned int c0_hpt_read(void) 131 { 132 return read_c0_count(); 133 } 134 135 /* For use solely as a high precision timer. */ 136 static void c0_hpt_init(unsigned int count) 137 { 138 write_c0_count(read_c0_count() - count); 139 } 140 141 /* For use both as a high precision timer and an interrupt source. */ 142 static void c0_hpt_timer_init(unsigned int count) 143 { 144 count = read_c0_count() - count; 145 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; 146 write_c0_count(expirelo - cycles_per_jiffy); 147 write_c0_compare(expirelo); 148 write_c0_count(count); 149 } 150 151 int (*mips_timer_state)(void); 152 void (*mips_timer_ack)(void); 153 unsigned int (*mips_hpt_read)(void); 154 void (*mips_hpt_init)(unsigned int); 155 156 157 /* 158 * This version of gettimeofday has microsecond resolution and better than 159 * microsecond precision on fast machines with cycle counter. 160 */ 161 void do_gettimeofday(struct timeval *tv) 162 { 163 unsigned long seq; 164 unsigned long lost; 165 unsigned long usec, sec; 166 unsigned long max_ntp_tick; 167 168 do { 169 seq = read_seqbegin(&xtime_lock); 170 171 usec = do_gettimeoffset(); 172 173 lost = jiffies - wall_jiffies; 174 175 /* 176 * If time_adjust is negative then NTP is slowing the clock 177 * so make sure not to go into next possible interval. 178 * Better to lose some accuracy than have time go backwards.. 179 */ 180 if (unlikely(time_adjust < 0)) { 181 max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj; 182 usec = min(usec, max_ntp_tick); 183 184 if (lost) 185 usec += lost * max_ntp_tick; 186 } else if (unlikely(lost)) 187 usec += lost * (USEC_PER_SEC / HZ); 188 189 sec = xtime.tv_sec; 190 usec += (xtime.tv_nsec / 1000); 191 192 } while (read_seqretry(&xtime_lock, seq)); 193 194 while (usec >= 1000000) { 195 usec -= 1000000; 196 sec++; 197 } 198 199 tv->tv_sec = sec; 200 tv->tv_usec = usec; 201 } 202 203 EXPORT_SYMBOL(do_gettimeofday); 204 205 int do_settimeofday(struct timespec *tv) 206 { 207 time_t wtm_sec, sec = tv->tv_sec; 208 long wtm_nsec, nsec = tv->tv_nsec; 209 210 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 211 return -EINVAL; 212 213 write_seqlock_irq(&xtime_lock); 214 215 /* 216 * This is revolting. We need to set "xtime" correctly. However, 217 * the value in this location is the value at the most recent update 218 * of wall time. Discover what correction gettimeofday() would have 219 * made, and then undo it! 220 */ 221 nsec -= do_gettimeoffset() * NSEC_PER_USEC; 222 nsec -= (jiffies - wall_jiffies) * tick_nsec; 223 224 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); 225 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); 226 227 set_normalized_timespec(&xtime, sec, nsec); 228 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 229 230 ntp_clear(); 231 write_sequnlock_irq(&xtime_lock); 232 clock_was_set(); 233 return 0; 234 } 235 236 EXPORT_SYMBOL(do_settimeofday); 237 238 /* 239 * Gettimeoffset routines. These routines returns the time duration 240 * since last timer interrupt in usecs. 241 * 242 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset. 243 * Otherwise use calibrate_gettimeoffset() 244 * 245 * If the CPU does not have the counter register, you can either supply 246 * your own gettimeoffset() routine, or use null_gettimeoffset(), which 247 * gives the same resolution as HZ. 248 */ 249 250 static unsigned long null_gettimeoffset(void) 251 { 252 return 0; 253 } 254 255 256 /* The function pointer to one of the gettimeoffset funcs. */ 257 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset; 258 259 260 static unsigned long fixed_rate_gettimeoffset(void) 261 { 262 u32 count; 263 unsigned long res; 264 265 /* Get last timer tick in absolute kernel time */ 266 count = mips_hpt_read(); 267 268 /* .. relative to previous jiffy (32 bits is enough) */ 269 count -= timerlo; 270 271 __asm__("multu %1,%2" 272 : "=h" (res) 273 : "r" (count), "r" (sll32_usecs_per_cycle) 274 : "lo", GCC_REG_ACCUM); 275 276 /* 277 * Due to possible jiffies inconsistencies, we need to check 278 * the result so that we'll get a timer that is monotonic. 279 */ 280 if (res >= USECS_PER_JIFFY) 281 res = USECS_PER_JIFFY - 1; 282 283 return res; 284 } 285 286 287 /* 288 * Cached "1/(clocks per usec) * 2^32" value. 289 * It has to be recalculated once each jiffy. 290 */ 291 static unsigned long cached_quotient; 292 293 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */ 294 static unsigned long last_jiffies; 295 296 /* 297 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej. 298 */ 299 static unsigned long calibrate_div32_gettimeoffset(void) 300 { 301 u32 count; 302 unsigned long res, tmp; 303 unsigned long quotient; 304 305 tmp = jiffies; 306 307 quotient = cached_quotient; 308 309 if (last_jiffies != tmp) { 310 last_jiffies = tmp; 311 if (last_jiffies != 0) { 312 unsigned long r0; 313 do_div64_32(r0, timerhi, timerlo, tmp); 314 do_div64_32(quotient, USECS_PER_JIFFY, 315 USECS_PER_JIFFY_FRAC, r0); 316 cached_quotient = quotient; 317 } 318 } 319 320 /* Get last timer tick in absolute kernel time */ 321 count = mips_hpt_read(); 322 323 /* .. relative to previous jiffy (32 bits is enough) */ 324 count -= timerlo; 325 326 __asm__("multu %1,%2" 327 : "=h" (res) 328 : "r" (count), "r" (quotient) 329 : "lo", GCC_REG_ACCUM); 330 331 /* 332 * Due to possible jiffies inconsistencies, we need to check 333 * the result so that we'll get a timer that is monotonic. 334 */ 335 if (res >= USECS_PER_JIFFY) 336 res = USECS_PER_JIFFY - 1; 337 338 return res; 339 } 340 341 static unsigned long calibrate_div64_gettimeoffset(void) 342 { 343 u32 count; 344 unsigned long res, tmp; 345 unsigned long quotient; 346 347 tmp = jiffies; 348 349 quotient = cached_quotient; 350 351 if (last_jiffies != tmp) { 352 last_jiffies = tmp; 353 if (last_jiffies) { 354 unsigned long r0; 355 __asm__(".set push\n\t" 356 ".set mips3\n\t" 357 "lwu %0,%3\n\t" 358 "dsll32 %1,%2,0\n\t" 359 "or %1,%1,%0\n\t" 360 "ddivu $0,%1,%4\n\t" 361 "mflo %1\n\t" 362 "dsll32 %0,%5,0\n\t" 363 "or %0,%0,%6\n\t" 364 "ddivu $0,%0,%1\n\t" 365 "mflo %0\n\t" 366 ".set pop" 367 : "=&r" (quotient), "=&r" (r0) 368 : "r" (timerhi), "m" (timerlo), 369 "r" (tmp), "r" (USECS_PER_JIFFY), 370 "r" (USECS_PER_JIFFY_FRAC) 371 : "hi", "lo", GCC_REG_ACCUM); 372 cached_quotient = quotient; 373 } 374 } 375 376 /* Get last timer tick in absolute kernel time */ 377 count = mips_hpt_read(); 378 379 /* .. relative to previous jiffy (32 bits is enough) */ 380 count -= timerlo; 381 382 __asm__("multu %1,%2" 383 : "=h" (res) 384 : "r" (count), "r" (quotient) 385 : "lo", GCC_REG_ACCUM); 386 387 /* 388 * Due to possible jiffies inconsistencies, we need to check 389 * the result so that we'll get a timer that is monotonic. 390 */ 391 if (res >= USECS_PER_JIFFY) 392 res = USECS_PER_JIFFY - 1; 393 394 return res; 395 } 396 397 398 /* last time when xtime and rtc are sync'ed up */ 399 static long last_rtc_update; 400 401 /* 402 * local_timer_interrupt() does profiling and process accounting 403 * on a per-CPU basis. 404 * 405 * In UP mode, it is invoked from the (global) timer_interrupt. 406 * 407 * In SMP mode, it might invoked by per-CPU timer interrupt, or 408 * a broadcasted inter-processor interrupt which itself is triggered 409 * by the global timer interrupt. 410 */ 411 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) 412 { 413 if (current->pid) 414 profile_tick(CPU_PROFILING, regs); 415 update_process_times(user_mode(regs)); 416 } 417 418 /* 419 * High-level timer interrupt service routines. This function 420 * is set as irqaction->handler and is invoked through do_IRQ. 421 */ 422 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) 423 { 424 unsigned long j; 425 unsigned int count; 426 427 write_seqlock(&xtime_lock); 428 429 count = mips_hpt_read(); 430 mips_timer_ack(); 431 432 /* Update timerhi/timerlo for intra-jiffy calibration. */ 433 timerhi += count < timerlo; /* Wrap around */ 434 timerlo = count; 435 436 /* 437 * call the generic timer interrupt handling 438 */ 439 do_timer(regs); 440 441 /* 442 * If we have an externally synchronized Linux clock, then update 443 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be 444 * called as close as possible to 500 ms before the new second starts. 445 */ 446 if (ntp_synced() && 447 xtime.tv_sec > last_rtc_update + 660 && 448 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && 449 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { 450 if (rtc_set_mmss(xtime.tv_sec) == 0) { 451 last_rtc_update = xtime.tv_sec; 452 } else { 453 /* do it again in 60 s */ 454 last_rtc_update = xtime.tv_sec - 600; 455 } 456 } 457 458 /* 459 * If jiffies has overflown in this timer_interrupt, we must 460 * update the timer[hi]/[lo] to make fast gettimeoffset funcs 461 * quotient calc still valid. -arca 462 * 463 * The first timer interrupt comes late as interrupts are 464 * enabled long after timers are initialized. Therefore the 465 * high precision timer is fast, leading to wrong gettimeoffset() 466 * calculations. We deal with it by setting it based on the 467 * number of its ticks between the second and the third interrupt. 468 * That is still somewhat imprecise, but it's a good estimate. 469 * --macro 470 */ 471 j = jiffies; 472 if (j < 4) { 473 static unsigned int prev_count; 474 static int hpt_initialized; 475 476 switch (j) { 477 case 0: 478 timerhi = timerlo = 0; 479 mips_hpt_init(count); 480 break; 481 case 2: 482 prev_count = count; 483 break; 484 case 3: 485 if (!hpt_initialized) { 486 unsigned int c3 = 3 * (count - prev_count); 487 488 timerhi = 0; 489 timerlo = c3; 490 mips_hpt_init(count - c3); 491 hpt_initialized = 1; 492 } 493 break; 494 default: 495 break; 496 } 497 } 498 499 write_sequnlock(&xtime_lock); 500 501 /* 502 * In UP mode, we call local_timer_interrupt() to do profiling 503 * and process accouting. 504 * 505 * In SMP mode, local_timer_interrupt() is invoked by appropriate 506 * low-level local timer interrupt handler. 507 */ 508 local_timer_interrupt(irq, dev_id, regs); 509 510 return IRQ_HANDLED; 511 } 512 513 int null_perf_irq(struct pt_regs *regs) 514 { 515 return 0; 516 } 517 518 int (*perf_irq)(struct pt_regs *regs) = null_perf_irq; 519 520 EXPORT_SYMBOL(null_perf_irq); 521 EXPORT_SYMBOL(perf_irq); 522 523 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs) 524 { 525 int r2 = cpu_has_mips_r2; 526 527 irq_enter(); 528 kstat_this_cpu.irqs[irq]++; 529 530 /* 531 * Suckage alert: 532 * Before R2 of the architecture there was no way to see if a 533 * performance counter interrupt was pending, so we have to run the 534 * performance counter interrupt handler anyway. 535 */ 536 if (!r2 || (read_c0_cause() & (1 << 26))) 537 if (perf_irq(regs)) 538 goto out; 539 540 /* we keep interrupt disabled all the time */ 541 if (!r2 || (read_c0_cause() & (1 << 30))) 542 timer_interrupt(irq, NULL, regs); 543 544 out: 545 irq_exit(); 546 } 547 548 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs) 549 { 550 irq_enter(); 551 if (smp_processor_id() != 0) 552 kstat_this_cpu.irqs[irq]++; 553 554 /* we keep interrupt disabled all the time */ 555 local_timer_interrupt(irq, NULL, regs); 556 557 irq_exit(); 558 } 559 560 /* 561 * time_init() - it does the following things. 562 * 563 * 1) board_time_init() - 564 * a) (optional) set up RTC routines, 565 * b) (optional) calibrate and set the mips_hpt_frequency 566 * (only needed if you intended to use fixed_rate_gettimeoffset 567 * or use cpu counter as timer interrupt source) 568 * 2) setup xtime based on rtc_get_time(). 569 * 3) choose a appropriate gettimeoffset routine. 570 * 4) calculate a couple of cached variables for later usage 571 * 5) board_timer_setup() - 572 * a) (optional) over-write any choices made above by time_init(). 573 * b) machine specific code should setup the timer irqaction. 574 * c) enable the timer interrupt 575 */ 576 577 void (*board_time_init)(void); 578 void (*board_timer_setup)(struct irqaction *irq); 579 580 unsigned int mips_hpt_frequency; 581 582 static struct irqaction timer_irqaction = { 583 .handler = timer_interrupt, 584 .flags = SA_INTERRUPT, 585 .name = "timer", 586 }; 587 588 static unsigned int __init calibrate_hpt(void) 589 { 590 u64 frequency; 591 u32 hpt_start, hpt_end, hpt_count, hz; 592 593 const int loops = HZ / 10; 594 int log_2_loops = 0; 595 int i; 596 597 /* 598 * We want to calibrate for 0.1s, but to avoid a 64-bit 599 * division we round the number of loops up to the nearest 600 * power of 2. 601 */ 602 while (loops > 1 << log_2_loops) 603 log_2_loops++; 604 i = 1 << log_2_loops; 605 606 /* 607 * Wait for a rising edge of the timer interrupt. 608 */ 609 while (mips_timer_state()); 610 while (!mips_timer_state()); 611 612 /* 613 * Now see how many high precision timer ticks happen 614 * during the calculated number of periods between timer 615 * interrupts. 616 */ 617 hpt_start = mips_hpt_read(); 618 do { 619 while (mips_timer_state()); 620 while (!mips_timer_state()); 621 } while (--i); 622 hpt_end = mips_hpt_read(); 623 624 hpt_count = hpt_end - hpt_start; 625 hz = HZ; 626 frequency = (u64)hpt_count * (u64)hz; 627 628 return frequency >> log_2_loops; 629 } 630 631 void __init time_init(void) 632 { 633 if (board_time_init) 634 board_time_init(); 635 636 if (!rtc_set_mmss) 637 rtc_set_mmss = rtc_set_time; 638 639 xtime.tv_sec = rtc_get_time(); 640 xtime.tv_nsec = 0; 641 642 set_normalized_timespec(&wall_to_monotonic, 643 -xtime.tv_sec, -xtime.tv_nsec); 644 645 /* Choose appropriate high precision timer routines. */ 646 if (!cpu_has_counter && !mips_hpt_read) { 647 /* No high precision timer -- sorry. */ 648 mips_hpt_read = null_hpt_read; 649 mips_hpt_init = null_hpt_init; 650 } else if (!mips_hpt_frequency && !mips_timer_state) { 651 /* A high precision timer of unknown frequency. */ 652 if (!mips_hpt_read) { 653 /* No external high precision timer -- use R4k. */ 654 mips_hpt_read = c0_hpt_read; 655 mips_hpt_init = c0_hpt_init; 656 } 657 658 if (cpu_has_mips32r1 || cpu_has_mips32r2 || 659 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) || 660 (current_cpu_data.isa_level == MIPS_CPU_ISA_II)) 661 /* 662 * We need to calibrate the counter but we don't have 663 * 64-bit division. 664 */ 665 do_gettimeoffset = calibrate_div32_gettimeoffset; 666 else 667 /* 668 * We need to calibrate the counter but we *do* have 669 * 64-bit division. 670 */ 671 do_gettimeoffset = calibrate_div64_gettimeoffset; 672 } else { 673 /* We know counter frequency. Or we can get it. */ 674 if (!mips_hpt_read) { 675 /* No external high precision timer -- use R4k. */ 676 mips_hpt_read = c0_hpt_read; 677 678 if (mips_timer_state) 679 mips_hpt_init = c0_hpt_init; 680 else { 681 /* No external timer interrupt -- use R4k. */ 682 mips_hpt_init = c0_hpt_timer_init; 683 mips_timer_ack = c0_timer_ack; 684 } 685 } 686 if (!mips_hpt_frequency) 687 mips_hpt_frequency = calibrate_hpt(); 688 689 do_gettimeoffset = fixed_rate_gettimeoffset; 690 691 /* Calculate cache parameters. */ 692 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ; 693 694 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */ 695 do_div64_32(sll32_usecs_per_cycle, 696 1000000, mips_hpt_frequency / 2, 697 mips_hpt_frequency); 698 699 /* Report the high precision timer rate for a reference. */ 700 printk("Using %u.%03u MHz high precision timer.\n", 701 ((mips_hpt_frequency + 500) / 1000) / 1000, 702 ((mips_hpt_frequency + 500) / 1000) % 1000); 703 } 704 705 if (!mips_timer_ack) 706 /* No timer interrupt ack (e.g. i8254). */ 707 mips_timer_ack = null_timer_ack; 708 709 /* This sets up the high precision timer for the first interrupt. */ 710 mips_hpt_init(mips_hpt_read()); 711 712 /* 713 * Call board specific timer interrupt setup. 714 * 715 * this pointer must be setup in machine setup routine. 716 * 717 * Even if a machine chooses to use a low-level timer interrupt, 718 * it still needs to setup the timer_irqaction. 719 * In that case, it might be better to set timer_irqaction.handler 720 * to be NULL function so that we are sure the high-level code 721 * is not invoked accidentally. 722 */ 723 board_timer_setup(&timer_irqaction); 724 } 725 726 #define FEBRUARY 2 727 #define STARTOFTIME 1970 728 #define SECDAY 86400L 729 #define SECYR (SECDAY * 365) 730 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400)) 731 #define days_in_year(y) (leapyear(y) ? 366 : 365) 732 #define days_in_month(m) (month_days[(m) - 1]) 733 734 static int month_days[12] = { 735 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 736 }; 737 738 void to_tm(unsigned long tim, struct rtc_time *tm) 739 { 740 long hms, day, gday; 741 int i; 742 743 gday = day = tim / SECDAY; 744 hms = tim % SECDAY; 745 746 /* Hours, minutes, seconds are easy */ 747 tm->tm_hour = hms / 3600; 748 tm->tm_min = (hms % 3600) / 60; 749 tm->tm_sec = (hms % 3600) % 60; 750 751 /* Number of years in days */ 752 for (i = STARTOFTIME; day >= days_in_year(i); i++) 753 day -= days_in_year(i); 754 tm->tm_year = i; 755 756 /* Number of months in days left */ 757 if (leapyear(tm->tm_year)) 758 days_in_month(FEBRUARY) = 29; 759 for (i = 1; day >= days_in_month(i); i++) 760 day -= days_in_month(i); 761 days_in_month(FEBRUARY) = 28; 762 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */ 763 764 /* Days are what is left over (+1) from all that. */ 765 tm->tm_mday = day + 1; 766 767 /* 768 * Determine the day of week 769 */ 770 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */ 771 } 772 773 EXPORT_SYMBOL(rtc_lock); 774 EXPORT_SYMBOL(to_tm); 775 EXPORT_SYMBOL(rtc_set_time); 776 EXPORT_SYMBOL(rtc_get_time); 777 778 unsigned long long sched_clock(void) 779 { 780 return (unsigned long long)jiffies*(1000000000/HZ); 781 } 782