xref: /linux/arch/mips/kernel/time.c (revision c80544dc0b87bb65038355e7aafdc30be16b26ab)
1 /*
2  * Copyright 2001 MontaVista Software Inc.
3  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4  * Copyright (c) 2003, 2004  Maciej W. Rozycki
5  *
6  * Common time service routines for MIPS machines. See
7  * Documentation/mips/time.README.
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  */
14 #include <linux/clockchips.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/param.h>
20 #include <linux/profile.h>
21 #include <linux/time.h>
22 #include <linux/timex.h>
23 #include <linux/smp.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/kallsyms.h>
29 
30 #include <asm/bootinfo.h>
31 #include <asm/cache.h>
32 #include <asm/compiler.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu-features.h>
35 #include <asm/div64.h>
36 #include <asm/sections.h>
37 #include <asm/smtc_ipi.h>
38 #include <asm/time.h>
39 
40 #include <irq.h>
41 
42 /*
43  * The integer part of the number of usecs per jiffy is taken from tick,
44  * but the fractional part is not recorded, so we calculate it using the
45  * initial value of HZ.  This aids systems where tick isn't really an
46  * integer (e.g. for HZ = 128).
47  */
48 #define USECS_PER_JIFFY		TICK_SIZE
49 #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))
50 
51 #define TICK_SIZE	(tick_nsec / 1000)
52 
53 /*
54  * forward reference
55  */
56 DEFINE_SPINLOCK(rtc_lock);
57 EXPORT_SYMBOL(rtc_lock);
58 
59 int __weak rtc_mips_set_time(unsigned long sec)
60 {
61 	return 0;
62 }
63 EXPORT_SYMBOL(rtc_mips_set_time);
64 
65 int __weak rtc_mips_set_mmss(unsigned long nowtime)
66 {
67 	return rtc_mips_set_time(nowtime);
68 }
69 
70 int update_persistent_clock(struct timespec now)
71 {
72 	return rtc_mips_set_mmss(now.tv_sec);
73 }
74 
75 /* how many counter cycles in a jiffy */
76 static unsigned long cycles_per_jiffy __read_mostly;
77 
78 /*
79  * Null timer ack for systems not needing one (e.g. i8254).
80  */
81 static void null_timer_ack(void) { /* nothing */ }
82 
83 /*
84  * Null high precision timer functions for systems lacking one.
85  */
86 static cycle_t null_hpt_read(void)
87 {
88 	return 0;
89 }
90 
91 /*
92  * Timer ack for an R4k-compatible timer of a known frequency.
93  */
94 static void c0_timer_ack(void)
95 {
96 	write_c0_compare(read_c0_compare());
97 }
98 
99 /*
100  * High precision timer functions for a R4k-compatible timer.
101  */
102 static cycle_t c0_hpt_read(void)
103 {
104 	return read_c0_count();
105 }
106 
107 int (*mips_timer_state)(void);
108 void (*mips_timer_ack)(void);
109 
110 /*
111  * local_timer_interrupt() does profiling and process accounting
112  * on a per-CPU basis.
113  *
114  * In UP mode, it is invoked from the (global) timer_interrupt.
115  *
116  * In SMP mode, it might invoked by per-CPU timer interrupt, or
117  * a broadcasted inter-processor interrupt which itself is triggered
118  * by the global timer interrupt.
119  */
120 void local_timer_interrupt(int irq, void *dev_id)
121 {
122 	profile_tick(CPU_PROFILING);
123 	update_process_times(user_mode(get_irq_regs()));
124 }
125 
126 int null_perf_irq(void)
127 {
128 	return 0;
129 }
130 
131 EXPORT_SYMBOL(null_perf_irq);
132 
133 int (*perf_irq)(void) = null_perf_irq;
134 
135 EXPORT_SYMBOL(perf_irq);
136 
137 /*
138  * Timer interrupt
139  */
140 int cp0_compare_irq;
141 
142 /*
143  * Performance counter IRQ or -1 if shared with timer
144  */
145 int cp0_perfcount_irq;
146 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
147 
148 /*
149  * Possibly handle a performance counter interrupt.
150  * Return true if the timer interrupt should not be checked
151  */
152 static inline int handle_perf_irq(int r2)
153 {
154 	/*
155 	 * The performance counter overflow interrupt may be shared with the
156 	 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
157 	 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
158 	 * and we can't reliably determine if a counter interrupt has also
159 	 * happened (!r2) then don't check for a timer interrupt.
160 	 */
161 	return (cp0_perfcount_irq < 0) &&
162 		perf_irq() == IRQ_HANDLED &&
163 		!r2;
164 }
165 
166 /*
167  * time_init() - it does the following things.
168  *
169  * 1) plat_time_init() -
170  * 	a) (optional) set up RTC routines,
171  *      b) (optional) calibrate and set the mips_hpt_frequency
172  *	    (only needed if you intended to use cpu counter as timer interrupt
173  *	     source)
174  * 2) calculate a couple of cached variables for later usage
175  * 3) plat_timer_setup() -
176  *	a) (optional) over-write any choices made above by time_init().
177  *	b) machine specific code should setup the timer irqaction.
178  *	c) enable the timer interrupt
179  */
180 
181 unsigned int mips_hpt_frequency;
182 
183 static unsigned int __init calibrate_hpt(void)
184 {
185 	cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
186 
187 	const int loops = HZ / 10;
188 	int log_2_loops = 0;
189 	int i;
190 
191 	/*
192 	 * We want to calibrate for 0.1s, but to avoid a 64-bit
193 	 * division we round the number of loops up to the nearest
194 	 * power of 2.
195 	 */
196 	while (loops > 1 << log_2_loops)
197 		log_2_loops++;
198 	i = 1 << log_2_loops;
199 
200 	/*
201 	 * Wait for a rising edge of the timer interrupt.
202 	 */
203 	while (mips_timer_state());
204 	while (!mips_timer_state());
205 
206 	/*
207 	 * Now see how many high precision timer ticks happen
208 	 * during the calculated number of periods between timer
209 	 * interrupts.
210 	 */
211 	hpt_start = clocksource_mips.read();
212 	do {
213 		while (mips_timer_state());
214 		while (!mips_timer_state());
215 	} while (--i);
216 	hpt_end = clocksource_mips.read();
217 
218 	hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
219 	hz = HZ;
220 	frequency = hpt_count * hz;
221 
222 	return frequency >> log_2_loops;
223 }
224 
225 struct clocksource clocksource_mips = {
226 	.name		= "MIPS",
227 	.mask		= CLOCKSOURCE_MASK(32),
228 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
229 };
230 
231 static int mips_next_event(unsigned long delta,
232                            struct clock_event_device *evt)
233 {
234 	unsigned int cnt;
235 	int res;
236 
237 #ifdef CONFIG_MIPS_MT_SMTC
238 	{
239 	unsigned long flags, vpflags;
240 	local_irq_save(flags);
241 	vpflags = dvpe();
242 #endif
243 	cnt = read_c0_count();
244 	cnt += delta;
245 	write_c0_compare(cnt);
246 	res = ((long)(read_c0_count() - cnt ) > 0) ? -ETIME : 0;
247 #ifdef CONFIG_MIPS_MT_SMTC
248 	evpe(vpflags);
249 	local_irq_restore(flags);
250 	}
251 #endif
252 	return res;
253 }
254 
255 static void mips_set_mode(enum clock_event_mode mode,
256                           struct clock_event_device *evt)
257 {
258 	/* Nothing to do ...  */
259 }
260 
261 static DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
262 static int cp0_timer_irq_installed;
263 
264 static irqreturn_t timer_interrupt(int irq, void *dev_id)
265 {
266 	const int r2 = cpu_has_mips_r2;
267 	struct clock_event_device *cd;
268 	int cpu = smp_processor_id();
269 
270 	/*
271 	 * Suckage alert:
272 	 * Before R2 of the architecture there was no way to see if a
273 	 * performance counter interrupt was pending, so we have to run
274 	 * the performance counter interrupt handler anyway.
275 	 */
276 	if (handle_perf_irq(r2))
277 		goto out;
278 
279 	/*
280 	 * The same applies to performance counter interrupts.  But with the
281 	 * above we now know that the reason we got here must be a timer
282 	 * interrupt.  Being the paranoiacs we are we check anyway.
283 	 */
284 	if (!r2 || (read_c0_cause() & (1 << 30))) {
285 		c0_timer_ack();
286 #ifdef CONFIG_MIPS_MT_SMTC
287 		if (cpu_data[cpu].vpe_id)
288 			goto out;
289 		cpu = 0;
290 #endif
291 		cd = &per_cpu(mips_clockevent_device, cpu);
292 		cd->event_handler(cd);
293 	}
294 
295 out:
296 	return IRQ_HANDLED;
297 }
298 
299 static struct irqaction timer_irqaction = {
300 	.handler = timer_interrupt,
301 #ifdef CONFIG_MIPS_MT_SMTC
302 	.flags = IRQF_DISABLED,
303 #else
304 	.flags = IRQF_DISABLED | IRQF_PERCPU,
305 #endif
306 	.name = "timer",
307 };
308 
309 static void __init init_mips_clocksource(void)
310 {
311 	u64 temp;
312 	u32 shift;
313 
314 	if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
315 		return;
316 
317 	/* Calclate a somewhat reasonable rating value */
318 	clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
319 	/* Find a shift value */
320 	for (shift = 32; shift > 0; shift--) {
321 		temp = (u64) NSEC_PER_SEC << shift;
322 		do_div(temp, mips_hpt_frequency);
323 		if ((temp >> 32) == 0)
324 			break;
325 	}
326 	clocksource_mips.shift = shift;
327 	clocksource_mips.mult = (u32)temp;
328 
329 	clocksource_register(&clocksource_mips);
330 }
331 
332 void __init __weak plat_time_init(void)
333 {
334 }
335 
336 void __init __weak plat_timer_setup(struct irqaction *irq)
337 {
338 }
339 
340 #ifdef CONFIG_MIPS_MT_SMTC
341 DEFINE_PER_CPU(struct clock_event_device, smtc_dummy_clockevent_device);
342 
343 static void smtc_set_mode(enum clock_event_mode mode,
344                           struct clock_event_device *evt)
345 {
346 }
347 
348 int dummycnt[NR_CPUS];
349 
350 static void mips_broadcast(cpumask_t mask)
351 {
352 	unsigned int cpu;
353 
354 	for_each_cpu_mask(cpu, mask)
355 		smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
356 }
357 
358 static void setup_smtc_dummy_clockevent_device(void)
359 {
360 	//uint64_t mips_freq = mips_hpt_^frequency;
361 	unsigned int cpu = smp_processor_id();
362 	struct clock_event_device *cd;
363 
364 	cd = &per_cpu(smtc_dummy_clockevent_device, cpu);
365 
366 	cd->name		= "SMTC";
367 	cd->features		= CLOCK_EVT_FEAT_DUMMY;
368 
369 	/* Calculate the min / max delta */
370 	cd->mult	= 0; //div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
371 	cd->shift		= 0; //32;
372 	cd->max_delta_ns	= 0; //clockevent_delta2ns(0x7fffffff, cd);
373 	cd->min_delta_ns	= 0; //clockevent_delta2ns(0x30, cd);
374 
375 	cd->rating		= 200;
376 	cd->irq			= 17; //-1;
377 //	if (cpu)
378 //		cd->cpumask	= CPU_MASK_ALL; // cpumask_of_cpu(cpu);
379 //	else
380 		cd->cpumask	= cpumask_of_cpu(cpu);
381 
382 	cd->set_mode		= smtc_set_mode;
383 
384 	cd->broadcast		= mips_broadcast;
385 
386 	clockevents_register_device(cd);
387 }
388 #endif
389 
390 static void mips_event_handler(struct clock_event_device *dev)
391 {
392 }
393 
394 /*
395  * FIXME: This doesn't hold for the relocated E9000 compare interrupt.
396  */
397 static int c0_compare_int_pending(void)
398 {
399 	return (read_c0_cause() >> cp0_compare_irq) & 0x100;
400 }
401 
402 static int c0_compare_int_usable(void)
403 {
404 	const unsigned int delta = 0x300000;
405 	unsigned int cnt;
406 
407 	/*
408 	 * IP7 already pending?  Try to clear it by acking the timer.
409 	 */
410 	if (c0_compare_int_pending()) {
411 		write_c0_compare(read_c0_compare());
412 		irq_disable_hazard();
413 		if (c0_compare_int_pending())
414 			return 0;
415 	}
416 
417 	cnt = read_c0_count();
418 	cnt += delta;
419 	write_c0_compare(cnt);
420 
421 	while ((long)(read_c0_count() - cnt) <= 0)
422 		;	/* Wait for expiry  */
423 
424 	if (!c0_compare_int_pending())
425 		return 0;
426 
427 	write_c0_compare(read_c0_compare());
428 	irq_disable_hazard();
429 	if (c0_compare_int_pending())
430 		return 0;
431 
432 	/*
433 	 * Feels like a real count / compare timer.
434 	 */
435 	return 1;
436 }
437 
438 void __cpuinit mips_clockevent_init(void)
439 {
440 	uint64_t mips_freq = mips_hpt_frequency;
441 	unsigned int cpu = smp_processor_id();
442 	struct clock_event_device *cd;
443 	unsigned int irq = MIPS_CPU_IRQ_BASE + 7;
444 
445 	if (!cpu_has_counter)
446 		return;
447 
448 #ifdef CONFIG_MIPS_MT_SMTC
449 	setup_smtc_dummy_clockevent_device();
450 
451 	/*
452 	 * On SMTC we only register VPE0's compare interrupt as clockevent
453 	 * device.
454 	 */
455 	if (cpu)
456 		return;
457 #endif
458 
459 	if (!c0_compare_int_usable())
460 		return;
461 
462 	cd = &per_cpu(mips_clockevent_device, cpu);
463 
464 	cd->name		= "MIPS";
465 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
466 
467 	/* Calculate the min / max delta */
468 	cd->mult	= div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
469 	cd->shift		= 32;
470 	cd->max_delta_ns	= clockevent_delta2ns(0x7fffffff, cd);
471 	cd->min_delta_ns	= clockevent_delta2ns(0x300, cd);
472 
473 	cd->rating		= 300;
474 	cd->irq			= irq;
475 #ifdef CONFIG_MIPS_MT_SMTC
476 	cd->cpumask		= CPU_MASK_ALL;
477 #else
478 	cd->cpumask		= cpumask_of_cpu(cpu);
479 #endif
480 	cd->set_next_event	= mips_next_event;
481 	cd->set_mode		= mips_set_mode;
482 	cd->event_handler	= mips_event_handler;
483 
484 	clockevents_register_device(cd);
485 
486 	if (!cp0_timer_irq_installed) {
487 #ifdef CONFIG_MIPS_MT_SMTC
488 #define CPUCTR_IMASKBIT (0x100 << cp0_compare_irq)
489 		setup_irq_smtc(irq, &timer_irqaction, CPUCTR_IMASKBIT);
490 #else
491 		setup_irq(irq, &timer_irqaction);
492 #endif /* CONFIG_MIPS_MT_SMTC */
493 		cp0_timer_irq_installed = 1;
494 	}
495 }
496 
497 void __init time_init(void)
498 {
499 	plat_time_init();
500 
501 	/* Choose appropriate high precision timer routines.  */
502 	if (!cpu_has_counter && !clocksource_mips.read)
503 		/* No high precision timer -- sorry.  */
504 		clocksource_mips.read = null_hpt_read;
505 	else if (!mips_hpt_frequency && !mips_timer_state) {
506 		/* A high precision timer of unknown frequency.  */
507 		if (!clocksource_mips.read)
508 			/* No external high precision timer -- use R4k.  */
509 			clocksource_mips.read = c0_hpt_read;
510 	} else {
511 		/* We know counter frequency.  Or we can get it.  */
512 		if (!clocksource_mips.read) {
513 			/* No external high precision timer -- use R4k.  */
514 			clocksource_mips.read = c0_hpt_read;
515 
516 			if (!mips_timer_state) {
517 				/* No external timer interrupt -- use R4k.  */
518 				mips_timer_ack = c0_timer_ack;
519 				/* Calculate cache parameters.  */
520 				cycles_per_jiffy =
521 					(mips_hpt_frequency + HZ / 2) / HZ;
522 			}
523 		}
524 		if (!mips_hpt_frequency)
525 			mips_hpt_frequency = calibrate_hpt();
526 
527 		/* Report the high precision timer rate for a reference.  */
528 		printk("Using %u.%03u MHz high precision timer.\n",
529 		       ((mips_hpt_frequency + 500) / 1000) / 1000,
530 		       ((mips_hpt_frequency + 500) / 1000) % 1000);
531 
532 #ifdef CONFIG_IRQ_CPU
533 		setup_irq(MIPS_CPU_IRQ_BASE + 7, &timer_irqaction);
534 #endif
535 	}
536 
537 	if (!mips_timer_ack)
538 		/* No timer interrupt ack (e.g. i8254).  */
539 		mips_timer_ack = null_timer_ack;
540 
541 	/*
542 	 * Call board specific timer interrupt setup.
543 	 *
544 	 * this pointer must be setup in machine setup routine.
545 	 *
546 	 * Even if a machine chooses to use a low-level timer interrupt,
547 	 * it still needs to setup the timer_irqaction.
548 	 * In that case, it might be better to set timer_irqaction.handler
549 	 * to be NULL function so that we are sure the high-level code
550 	 * is not invoked accidentally.
551 	 */
552 	plat_timer_setup(&timer_irqaction);
553 
554 	init_mips_clocksource();
555 	mips_clockevent_init();
556 }
557