xref: /linux/arch/mips/kernel/time.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * Copyright 2001 MontaVista Software Inc.
3  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4  * Copyright (c) 2003, 2004  Maciej W. Rozycki
5  *
6  * Common time service routines for MIPS machines. See
7  * Documentation/mips/time.README.
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  */
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 
27 #include <asm/bootinfo.h>
28 #include <asm/cache.h>
29 #include <asm/compiler.h>
30 #include <asm/cpu.h>
31 #include <asm/cpu-features.h>
32 #include <asm/div64.h>
33 #include <asm/sections.h>
34 #include <asm/time.h>
35 
36 /*
37  * The integer part of the number of usecs per jiffy is taken from tick,
38  * but the fractional part is not recorded, so we calculate it using the
39  * initial value of HZ.  This aids systems where tick isn't really an
40  * integer (e.g. for HZ = 128).
41  */
42 #define USECS_PER_JIFFY		TICK_SIZE
43 #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))
44 
45 #define TICK_SIZE	(tick_nsec / 1000)
46 
47 /*
48  * forward reference
49  */
50 DEFINE_SPINLOCK(rtc_lock);
51 
52 /*
53  * By default we provide the null RTC ops
54  */
55 static unsigned long null_rtc_get_time(void)
56 {
57 	return mktime(2000, 1, 1, 0, 0, 0);
58 }
59 
60 static int null_rtc_set_time(unsigned long sec)
61 {
62 	return 0;
63 }
64 
65 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
66 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
67 int (*rtc_mips_set_mmss)(unsigned long);
68 
69 
70 /* how many counter cycles in a jiffy */
71 static unsigned long cycles_per_jiffy __read_mostly;
72 
73 /* expirelo is the count value for next CPU timer interrupt */
74 static unsigned int expirelo;
75 
76 
77 /*
78  * Null timer ack for systems not needing one (e.g. i8254).
79  */
80 static void null_timer_ack(void) { /* nothing */ }
81 
82 /*
83  * Null high precision timer functions for systems lacking one.
84  */
85 static cycle_t null_hpt_read(void)
86 {
87 	return 0;
88 }
89 
90 /*
91  * Timer ack for an R4k-compatible timer of a known frequency.
92  */
93 static void c0_timer_ack(void)
94 {
95 	unsigned int count;
96 
97 	/* Ack this timer interrupt and set the next one.  */
98 	expirelo += cycles_per_jiffy;
99 	write_c0_compare(expirelo);
100 
101 	/* Check to see if we have missed any timer interrupts.  */
102 	while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
103 		/* missed_timer_count++; */
104 		expirelo = count + cycles_per_jiffy;
105 		write_c0_compare(expirelo);
106 	}
107 }
108 
109 /*
110  * High precision timer functions for a R4k-compatible timer.
111  */
112 static cycle_t c0_hpt_read(void)
113 {
114 	return read_c0_count();
115 }
116 
117 /* For use both as a high precision timer and an interrupt source.  */
118 static void __init c0_hpt_timer_init(void)
119 {
120 	expirelo = read_c0_count() + cycles_per_jiffy;
121 	write_c0_compare(expirelo);
122 }
123 
124 int (*mips_timer_state)(void);
125 void (*mips_timer_ack)(void);
126 
127 /* last time when xtime and rtc are sync'ed up */
128 static long last_rtc_update;
129 
130 /*
131  * local_timer_interrupt() does profiling and process accounting
132  * on a per-CPU basis.
133  *
134  * In UP mode, it is invoked from the (global) timer_interrupt.
135  *
136  * In SMP mode, it might invoked by per-CPU timer interrupt, or
137  * a broadcasted inter-processor interrupt which itself is triggered
138  * by the global timer interrupt.
139  */
140 void local_timer_interrupt(int irq, void *dev_id)
141 {
142 	profile_tick(CPU_PROFILING);
143 	update_process_times(user_mode(get_irq_regs()));
144 }
145 
146 /*
147  * High-level timer interrupt service routines.  This function
148  * is set as irqaction->handler and is invoked through do_IRQ.
149  */
150 irqreturn_t timer_interrupt(int irq, void *dev_id)
151 {
152 	write_seqlock(&xtime_lock);
153 
154 	mips_timer_ack();
155 
156 	/*
157 	 * call the generic timer interrupt handling
158 	 */
159 	do_timer(1);
160 
161 	/*
162 	 * If we have an externally synchronized Linux clock, then update
163 	 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
164 	 * called as close as possible to 500 ms before the new second starts.
165 	 */
166 	if (ntp_synced() &&
167 	    xtime.tv_sec > last_rtc_update + 660 &&
168 	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
169 	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
170 		if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
171 			last_rtc_update = xtime.tv_sec;
172 		} else {
173 			/* do it again in 60 s */
174 			last_rtc_update = xtime.tv_sec - 600;
175 		}
176 	}
177 
178 	write_sequnlock(&xtime_lock);
179 
180 	/*
181 	 * In UP mode, we call local_timer_interrupt() to do profiling
182 	 * and process accouting.
183 	 *
184 	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
185 	 * low-level local timer interrupt handler.
186 	 */
187 	local_timer_interrupt(irq, dev_id);
188 
189 	return IRQ_HANDLED;
190 }
191 
192 int null_perf_irq(void)
193 {
194 	return 0;
195 }
196 
197 int (*perf_irq)(void) = null_perf_irq;
198 
199 EXPORT_SYMBOL(null_perf_irq);
200 EXPORT_SYMBOL(perf_irq);
201 
202 asmlinkage void ll_timer_interrupt(int irq)
203 {
204 	int r2 = cpu_has_mips_r2;
205 
206 	irq_enter();
207 	kstat_this_cpu.irqs[irq]++;
208 
209 	/*
210 	 * Suckage alert:
211 	 * Before R2 of the architecture there was no way to see if a
212 	 * performance counter interrupt was pending, so we have to run the
213 	 * performance counter interrupt handler anyway.
214 	 */
215 	if (!r2 || (read_c0_cause() & (1 << 26)))
216 		if (perf_irq())
217 			goto out;
218 
219 	/* we keep interrupt disabled all the time */
220 	if (!r2 || (read_c0_cause() & (1 << 30)))
221 		timer_interrupt(irq, NULL);
222 
223 out:
224 	irq_exit();
225 }
226 
227 asmlinkage void ll_local_timer_interrupt(int irq)
228 {
229 	irq_enter();
230 	if (smp_processor_id() != 0)
231 		kstat_this_cpu.irqs[irq]++;
232 
233 	/* we keep interrupt disabled all the time */
234 	local_timer_interrupt(irq, NULL);
235 
236 	irq_exit();
237 }
238 
239 /*
240  * time_init() - it does the following things.
241  *
242  * 1) board_time_init() -
243  * 	a) (optional) set up RTC routines,
244  *      b) (optional) calibrate and set the mips_hpt_frequency
245  *	    (only needed if you intended to use cpu counter as timer interrupt
246  *	     source)
247  * 2) setup xtime based on rtc_mips_get_time().
248  * 3) calculate a couple of cached variables for later usage
249  * 4) plat_timer_setup() -
250  *	a) (optional) over-write any choices made above by time_init().
251  *	b) machine specific code should setup the timer irqaction.
252  *	c) enable the timer interrupt
253  */
254 
255 void (*board_time_init)(void);
256 
257 unsigned int mips_hpt_frequency;
258 
259 static struct irqaction timer_irqaction = {
260 	.handler = timer_interrupt,
261 	.flags = IRQF_DISABLED,
262 	.name = "timer",
263 };
264 
265 static unsigned int __init calibrate_hpt(void)
266 {
267 	cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
268 
269 	const int loops = HZ / 10;
270 	int log_2_loops = 0;
271 	int i;
272 
273 	/*
274 	 * We want to calibrate for 0.1s, but to avoid a 64-bit
275 	 * division we round the number of loops up to the nearest
276 	 * power of 2.
277 	 */
278 	while (loops > 1 << log_2_loops)
279 		log_2_loops++;
280 	i = 1 << log_2_loops;
281 
282 	/*
283 	 * Wait for a rising edge of the timer interrupt.
284 	 */
285 	while (mips_timer_state());
286 	while (!mips_timer_state());
287 
288 	/*
289 	 * Now see how many high precision timer ticks happen
290 	 * during the calculated number of periods between timer
291 	 * interrupts.
292 	 */
293 	hpt_start = clocksource_mips.read();
294 	do {
295 		while (mips_timer_state());
296 		while (!mips_timer_state());
297 	} while (--i);
298 	hpt_end = clocksource_mips.read();
299 
300 	hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
301 	hz = HZ;
302 	frequency = hpt_count * hz;
303 
304 	return frequency >> log_2_loops;
305 }
306 
307 struct clocksource clocksource_mips = {
308 	.name		= "MIPS",
309 	.mask		= 0xffffffff,
310 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
311 };
312 
313 static void __init init_mips_clocksource(void)
314 {
315 	u64 temp;
316 	u32 shift;
317 
318 	if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
319 		return;
320 
321 	/* Calclate a somewhat reasonable rating value */
322 	clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
323 	/* Find a shift value */
324 	for (shift = 32; shift > 0; shift--) {
325 		temp = (u64) NSEC_PER_SEC << shift;
326 		do_div(temp, mips_hpt_frequency);
327 		if ((temp >> 32) == 0)
328 			break;
329 	}
330 	clocksource_mips.shift = shift;
331 	clocksource_mips.mult = (u32)temp;
332 
333 	clocksource_register(&clocksource_mips);
334 }
335 
336 void __init time_init(void)
337 {
338 	if (board_time_init)
339 		board_time_init();
340 
341 	if (!rtc_mips_set_mmss)
342 		rtc_mips_set_mmss = rtc_mips_set_time;
343 
344 	xtime.tv_sec = rtc_mips_get_time();
345 	xtime.tv_nsec = 0;
346 
347 	set_normalized_timespec(&wall_to_monotonic,
348 	                        -xtime.tv_sec, -xtime.tv_nsec);
349 
350 	/* Choose appropriate high precision timer routines.  */
351 	if (!cpu_has_counter && !clocksource_mips.read)
352 		/* No high precision timer -- sorry.  */
353 		clocksource_mips.read = null_hpt_read;
354 	else if (!mips_hpt_frequency && !mips_timer_state) {
355 		/* A high precision timer of unknown frequency.  */
356 		if (!clocksource_mips.read)
357 			/* No external high precision timer -- use R4k.  */
358 			clocksource_mips.read = c0_hpt_read;
359 	} else {
360 		/* We know counter frequency.  Or we can get it.  */
361 		if (!clocksource_mips.read) {
362 			/* No external high precision timer -- use R4k.  */
363 			clocksource_mips.read = c0_hpt_read;
364 
365 			if (!mips_timer_state) {
366 				/* No external timer interrupt -- use R4k.  */
367 				mips_timer_ack = c0_timer_ack;
368 				/* Calculate cache parameters.  */
369 				cycles_per_jiffy =
370 					(mips_hpt_frequency + HZ / 2) / HZ;
371 				/*
372 				 * This sets up the high precision
373 				 * timer for the first interrupt.
374 				 */
375 				c0_hpt_timer_init();
376 			}
377 		}
378 		if (!mips_hpt_frequency)
379 			mips_hpt_frequency = calibrate_hpt();
380 
381 		/* Report the high precision timer rate for a reference.  */
382 		printk("Using %u.%03u MHz high precision timer.\n",
383 		       ((mips_hpt_frequency + 500) / 1000) / 1000,
384 		       ((mips_hpt_frequency + 500) / 1000) % 1000);
385 	}
386 
387 	if (!mips_timer_ack)
388 		/* No timer interrupt ack (e.g. i8254).  */
389 		mips_timer_ack = null_timer_ack;
390 
391 	/*
392 	 * Call board specific timer interrupt setup.
393 	 *
394 	 * this pointer must be setup in machine setup routine.
395 	 *
396 	 * Even if a machine chooses to use a low-level timer interrupt,
397 	 * it still needs to setup the timer_irqaction.
398 	 * In that case, it might be better to set timer_irqaction.handler
399 	 * to be NULL function so that we are sure the high-level code
400 	 * is not invoked accidentally.
401 	 */
402 	plat_timer_setup(&timer_irqaction);
403 
404 	init_mips_clocksource();
405 }
406 
407 #define FEBRUARY		2
408 #define STARTOFTIME		1970
409 #define SECDAY			86400L
410 #define SECYR			(SECDAY * 365)
411 #define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
412 #define days_in_year(y)		(leapyear(y) ? 366 : 365)
413 #define days_in_month(m)	(month_days[(m) - 1])
414 
415 static int month_days[12] = {
416 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
417 };
418 
419 void to_tm(unsigned long tim, struct rtc_time *tm)
420 {
421 	long hms, day, gday;
422 	int i;
423 
424 	gday = day = tim / SECDAY;
425 	hms = tim % SECDAY;
426 
427 	/* Hours, minutes, seconds are easy */
428 	tm->tm_hour = hms / 3600;
429 	tm->tm_min = (hms % 3600) / 60;
430 	tm->tm_sec = (hms % 3600) % 60;
431 
432 	/* Number of years in days */
433 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
434 		day -= days_in_year(i);
435 	tm->tm_year = i;
436 
437 	/* Number of months in days left */
438 	if (leapyear(tm->tm_year))
439 		days_in_month(FEBRUARY) = 29;
440 	for (i = 1; day >= days_in_month(i); i++)
441 		day -= days_in_month(i);
442 	days_in_month(FEBRUARY) = 28;
443 	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */
444 
445 	/* Days are what is left over (+1) from all that. */
446 	tm->tm_mday = day + 1;
447 
448 	/*
449 	 * Determine the day of week
450 	 */
451 	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
452 }
453 
454 EXPORT_SYMBOL(rtc_lock);
455 EXPORT_SYMBOL(to_tm);
456 EXPORT_SYMBOL(rtc_mips_set_time);
457 EXPORT_SYMBOL(rtc_mips_get_time);
458