xref: /linux/arch/mips/kernel/time.c (revision bf74b964775009071cf12f9d59d4dd5e388fbe0b)
1 /*
2  * Copyright 2001 MontaVista Software Inc.
3  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4  * Copyright (c) 2003, 2004  Maciej W. Rozycki
5  *
6  * Common time service routines for MIPS machines. See
7  * Documentation/mips/time.README.
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  */
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 
27 #include <asm/bootinfo.h>
28 #include <asm/cache.h>
29 #include <asm/compiler.h>
30 #include <asm/cpu.h>
31 #include <asm/cpu-features.h>
32 #include <asm/div64.h>
33 #include <asm/sections.h>
34 #include <asm/time.h>
35 
36 /*
37  * The integer part of the number of usecs per jiffy is taken from tick,
38  * but the fractional part is not recorded, so we calculate it using the
39  * initial value of HZ.  This aids systems where tick isn't really an
40  * integer (e.g. for HZ = 128).
41  */
42 #define USECS_PER_JIFFY		TICK_SIZE
43 #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))
44 
45 #define TICK_SIZE	(tick_nsec / 1000)
46 
47 /*
48  * forward reference
49  */
50 DEFINE_SPINLOCK(rtc_lock);
51 
52 /*
53  * By default we provide the null RTC ops
54  */
55 static unsigned long null_rtc_get_time(void)
56 {
57 	return mktime(2000, 1, 1, 0, 0, 0);
58 }
59 
60 static int null_rtc_set_time(unsigned long sec)
61 {
62 	return 0;
63 }
64 
65 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
66 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
67 int (*rtc_mips_set_mmss)(unsigned long);
68 
69 
70 /* how many counter cycles in a jiffy */
71 static unsigned long cycles_per_jiffy __read_mostly;
72 
73 /* expirelo is the count value for next CPU timer interrupt */
74 static unsigned int expirelo;
75 
76 
77 /*
78  * Null timer ack for systems not needing one (e.g. i8254).
79  */
80 static void null_timer_ack(void) { /* nothing */ }
81 
82 /*
83  * Null high precision timer functions for systems lacking one.
84  */
85 static cycle_t null_hpt_read(void)
86 {
87 	return 0;
88 }
89 
90 /*
91  * Timer ack for an R4k-compatible timer of a known frequency.
92  */
93 static void c0_timer_ack(void)
94 {
95 	unsigned int count;
96 
97 	/* Ack this timer interrupt and set the next one.  */
98 	expirelo += cycles_per_jiffy;
99 	write_c0_compare(expirelo);
100 
101 	/* Check to see if we have missed any timer interrupts.  */
102 	while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
103 		/* missed_timer_count++; */
104 		expirelo = count + cycles_per_jiffy;
105 		write_c0_compare(expirelo);
106 	}
107 }
108 
109 /*
110  * High precision timer functions for a R4k-compatible timer.
111  */
112 static cycle_t c0_hpt_read(void)
113 {
114 	return read_c0_count();
115 }
116 
117 /* For use both as a high precision timer and an interrupt source.  */
118 static void __init c0_hpt_timer_init(void)
119 {
120 	expirelo = read_c0_count() + cycles_per_jiffy;
121 	write_c0_compare(expirelo);
122 }
123 
124 int (*mips_timer_state)(void);
125 void (*mips_timer_ack)(void);
126 
127 /* last time when xtime and rtc are sync'ed up */
128 static long last_rtc_update;
129 
130 /*
131  * local_timer_interrupt() does profiling and process accounting
132  * on a per-CPU basis.
133  *
134  * In UP mode, it is invoked from the (global) timer_interrupt.
135  *
136  * In SMP mode, it might invoked by per-CPU timer interrupt, or
137  * a broadcasted inter-processor interrupt which itself is triggered
138  * by the global timer interrupt.
139  */
140 void local_timer_interrupt(int irq, void *dev_id)
141 {
142 	profile_tick(CPU_PROFILING);
143 	update_process_times(user_mode(get_irq_regs()));
144 }
145 
146 /*
147  * High-level timer interrupt service routines.  This function
148  * is set as irqaction->handler and is invoked through do_IRQ.
149  */
150 irqreturn_t timer_interrupt(int irq, void *dev_id)
151 {
152 	write_seqlock(&xtime_lock);
153 
154 	mips_timer_ack();
155 
156 	/*
157 	 * call the generic timer interrupt handling
158 	 */
159 	do_timer(1);
160 
161 	/*
162 	 * If we have an externally synchronized Linux clock, then update
163 	 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
164 	 * called as close as possible to 500 ms before the new second starts.
165 	 */
166 	if (ntp_synced() &&
167 	    xtime.tv_sec > last_rtc_update + 660 &&
168 	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
169 	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
170 		if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
171 			last_rtc_update = xtime.tv_sec;
172 		} else {
173 			/* do it again in 60 s */
174 			last_rtc_update = xtime.tv_sec - 600;
175 		}
176 	}
177 
178 	write_sequnlock(&xtime_lock);
179 
180 	/*
181 	 * In UP mode, we call local_timer_interrupt() to do profiling
182 	 * and process accouting.
183 	 *
184 	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
185 	 * low-level local timer interrupt handler.
186 	 */
187 	local_timer_interrupt(irq, dev_id);
188 
189 	return IRQ_HANDLED;
190 }
191 
192 int null_perf_irq(void)
193 {
194 	return 0;
195 }
196 
197 int (*perf_irq)(void) = null_perf_irq;
198 
199 EXPORT_SYMBOL(null_perf_irq);
200 EXPORT_SYMBOL(perf_irq);
201 
202 /*
203  * Timer interrupt
204  */
205 int cp0_compare_irq;
206 
207 /*
208  * Performance counter IRQ or -1 if shared with timer
209  */
210 int cp0_perfcount_irq;
211 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
212 
213 /*
214  * Possibly handle a performance counter interrupt.
215  * Return true if the timer interrupt should not be checked
216  */
217 static inline int handle_perf_irq (int r2)
218 {
219 	/*
220 	 * The performance counter overflow interrupt may be shared with the
221 	 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
222 	 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
223 	 * and we can't reliably determine if a counter interrupt has also
224 	 * happened (!r2) then don't check for a timer interrupt.
225 	 */
226 	return (cp0_perfcount_irq < 0) &&
227 		perf_irq() == IRQ_HANDLED &&
228 		!r2;
229 }
230 
231 asmlinkage void ll_timer_interrupt(int irq)
232 {
233 	int r2 = cpu_has_mips_r2;
234 
235 	irq_enter();
236 	kstat_this_cpu.irqs[irq]++;
237 
238 	if (handle_perf_irq(r2))
239 		goto out;
240 
241 	if (r2 && ((read_c0_cause() & (1 << 30)) == 0))
242 		goto out;
243 
244 	timer_interrupt(irq, NULL);
245 
246 out:
247 	irq_exit();
248 }
249 
250 asmlinkage void ll_local_timer_interrupt(int irq)
251 {
252 	irq_enter();
253 	if (smp_processor_id() != 0)
254 		kstat_this_cpu.irqs[irq]++;
255 
256 	/* we keep interrupt disabled all the time */
257 	local_timer_interrupt(irq, NULL);
258 
259 	irq_exit();
260 }
261 
262 /*
263  * time_init() - it does the following things.
264  *
265  * 1) board_time_init() -
266  * 	a) (optional) set up RTC routines,
267  *      b) (optional) calibrate and set the mips_hpt_frequency
268  *	    (only needed if you intended to use cpu counter as timer interrupt
269  *	     source)
270  * 2) setup xtime based on rtc_mips_get_time().
271  * 3) calculate a couple of cached variables for later usage
272  * 4) plat_timer_setup() -
273  *	a) (optional) over-write any choices made above by time_init().
274  *	b) machine specific code should setup the timer irqaction.
275  *	c) enable the timer interrupt
276  */
277 
278 void (*board_time_init)(void);
279 
280 unsigned int mips_hpt_frequency;
281 
282 static struct irqaction timer_irqaction = {
283 	.handler = timer_interrupt,
284 	.flags = IRQF_DISABLED | IRQF_PERCPU,
285 	.name = "timer",
286 };
287 
288 static unsigned int __init calibrate_hpt(void)
289 {
290 	cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
291 
292 	const int loops = HZ / 10;
293 	int log_2_loops = 0;
294 	int i;
295 
296 	/*
297 	 * We want to calibrate for 0.1s, but to avoid a 64-bit
298 	 * division we round the number of loops up to the nearest
299 	 * power of 2.
300 	 */
301 	while (loops > 1 << log_2_loops)
302 		log_2_loops++;
303 	i = 1 << log_2_loops;
304 
305 	/*
306 	 * Wait for a rising edge of the timer interrupt.
307 	 */
308 	while (mips_timer_state());
309 	while (!mips_timer_state());
310 
311 	/*
312 	 * Now see how many high precision timer ticks happen
313 	 * during the calculated number of periods between timer
314 	 * interrupts.
315 	 */
316 	hpt_start = clocksource_mips.read();
317 	do {
318 		while (mips_timer_state());
319 		while (!mips_timer_state());
320 	} while (--i);
321 	hpt_end = clocksource_mips.read();
322 
323 	hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
324 	hz = HZ;
325 	frequency = hpt_count * hz;
326 
327 	return frequency >> log_2_loops;
328 }
329 
330 struct clocksource clocksource_mips = {
331 	.name		= "MIPS",
332 	.mask		= CLOCKSOURCE_MASK(32),
333 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
334 };
335 
336 static void __init init_mips_clocksource(void)
337 {
338 	u64 temp;
339 	u32 shift;
340 
341 	if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
342 		return;
343 
344 	/* Calclate a somewhat reasonable rating value */
345 	clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
346 	/* Find a shift value */
347 	for (shift = 32; shift > 0; shift--) {
348 		temp = (u64) NSEC_PER_SEC << shift;
349 		do_div(temp, mips_hpt_frequency);
350 		if ((temp >> 32) == 0)
351 			break;
352 	}
353 	clocksource_mips.shift = shift;
354 	clocksource_mips.mult = (u32)temp;
355 
356 	clocksource_register(&clocksource_mips);
357 }
358 
359 void __init time_init(void)
360 {
361 	if (board_time_init)
362 		board_time_init();
363 
364 	if (!rtc_mips_set_mmss)
365 		rtc_mips_set_mmss = rtc_mips_set_time;
366 
367 	xtime.tv_sec = rtc_mips_get_time();
368 	xtime.tv_nsec = 0;
369 
370 	set_normalized_timespec(&wall_to_monotonic,
371 	                        -xtime.tv_sec, -xtime.tv_nsec);
372 
373 	/* Choose appropriate high precision timer routines.  */
374 	if (!cpu_has_counter && !clocksource_mips.read)
375 		/* No high precision timer -- sorry.  */
376 		clocksource_mips.read = null_hpt_read;
377 	else if (!mips_hpt_frequency && !mips_timer_state) {
378 		/* A high precision timer of unknown frequency.  */
379 		if (!clocksource_mips.read)
380 			/* No external high precision timer -- use R4k.  */
381 			clocksource_mips.read = c0_hpt_read;
382 	} else {
383 		/* We know counter frequency.  Or we can get it.  */
384 		if (!clocksource_mips.read) {
385 			/* No external high precision timer -- use R4k.  */
386 			clocksource_mips.read = c0_hpt_read;
387 
388 			if (!mips_timer_state) {
389 				/* No external timer interrupt -- use R4k.  */
390 				mips_timer_ack = c0_timer_ack;
391 				/* Calculate cache parameters.  */
392 				cycles_per_jiffy =
393 					(mips_hpt_frequency + HZ / 2) / HZ;
394 				/*
395 				 * This sets up the high precision
396 				 * timer for the first interrupt.
397 				 */
398 				c0_hpt_timer_init();
399 			}
400 		}
401 		if (!mips_hpt_frequency)
402 			mips_hpt_frequency = calibrate_hpt();
403 
404 		/* Report the high precision timer rate for a reference.  */
405 		printk("Using %u.%03u MHz high precision timer.\n",
406 		       ((mips_hpt_frequency + 500) / 1000) / 1000,
407 		       ((mips_hpt_frequency + 500) / 1000) % 1000);
408 	}
409 
410 	if (!mips_timer_ack)
411 		/* No timer interrupt ack (e.g. i8254).  */
412 		mips_timer_ack = null_timer_ack;
413 
414 	/*
415 	 * Call board specific timer interrupt setup.
416 	 *
417 	 * this pointer must be setup in machine setup routine.
418 	 *
419 	 * Even if a machine chooses to use a low-level timer interrupt,
420 	 * it still needs to setup the timer_irqaction.
421 	 * In that case, it might be better to set timer_irqaction.handler
422 	 * to be NULL function so that we are sure the high-level code
423 	 * is not invoked accidentally.
424 	 */
425 	plat_timer_setup(&timer_irqaction);
426 
427 	init_mips_clocksource();
428 }
429 
430 #define FEBRUARY		2
431 #define STARTOFTIME		1970
432 #define SECDAY			86400L
433 #define SECYR			(SECDAY * 365)
434 #define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
435 #define days_in_year(y)		(leapyear(y) ? 366 : 365)
436 #define days_in_month(m)	(month_days[(m) - 1])
437 
438 static int month_days[12] = {
439 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
440 };
441 
442 void to_tm(unsigned long tim, struct rtc_time *tm)
443 {
444 	long hms, day, gday;
445 	int i;
446 
447 	gday = day = tim / SECDAY;
448 	hms = tim % SECDAY;
449 
450 	/* Hours, minutes, seconds are easy */
451 	tm->tm_hour = hms / 3600;
452 	tm->tm_min = (hms % 3600) / 60;
453 	tm->tm_sec = (hms % 3600) % 60;
454 
455 	/* Number of years in days */
456 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
457 		day -= days_in_year(i);
458 	tm->tm_year = i;
459 
460 	/* Number of months in days left */
461 	if (leapyear(tm->tm_year))
462 		days_in_month(FEBRUARY) = 29;
463 	for (i = 1; day >= days_in_month(i); i++)
464 		day -= days_in_month(i);
465 	days_in_month(FEBRUARY) = 28;
466 	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */
467 
468 	/* Days are what is left over (+1) from all that. */
469 	tm->tm_mday = day + 1;
470 
471 	/*
472 	 * Determine the day of week
473 	 */
474 	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
475 }
476 
477 EXPORT_SYMBOL(rtc_lock);
478 EXPORT_SYMBOL(to_tm);
479 EXPORT_SYMBOL(rtc_mips_set_time);
480 EXPORT_SYMBOL(rtc_mips_get_time);
481