1 /* 2 * Copyright 2001 MontaVista Software Inc. 3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net 4 * Copyright (c) 2003, 2004 Maciej W. Rozycki 5 * 6 * Common time service routines for MIPS machines. See 7 * Documentation/mips/time.README. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 */ 14 #include <linux/types.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/sched.h> 18 #include <linux/param.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/smp.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/spinlock.h> 24 #include <linux/interrupt.h> 25 #include <linux/module.h> 26 27 #include <asm/bootinfo.h> 28 #include <asm/cache.h> 29 #include <asm/compiler.h> 30 #include <asm/cpu.h> 31 #include <asm/cpu-features.h> 32 #include <asm/div64.h> 33 #include <asm/sections.h> 34 #include <asm/time.h> 35 36 /* 37 * The integer part of the number of usecs per jiffy is taken from tick, 38 * but the fractional part is not recorded, so we calculate it using the 39 * initial value of HZ. This aids systems where tick isn't really an 40 * integer (e.g. for HZ = 128). 41 */ 42 #define USECS_PER_JIFFY TICK_SIZE 43 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ)) 44 45 #define TICK_SIZE (tick_nsec / 1000) 46 47 /* 48 * forward reference 49 */ 50 DEFINE_SPINLOCK(rtc_lock); 51 52 /* 53 * By default we provide the null RTC ops 54 */ 55 static unsigned long null_rtc_get_time(void) 56 { 57 return mktime(2000, 1, 1, 0, 0, 0); 58 } 59 60 static int null_rtc_set_time(unsigned long sec) 61 { 62 return 0; 63 } 64 65 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time; 66 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time; 67 int (*rtc_mips_set_mmss)(unsigned long); 68 69 70 /* how many counter cycles in a jiffy */ 71 static unsigned long cycles_per_jiffy __read_mostly; 72 73 /* expirelo is the count value for next CPU timer interrupt */ 74 static unsigned int expirelo; 75 76 77 /* 78 * Null timer ack for systems not needing one (e.g. i8254). 79 */ 80 static void null_timer_ack(void) { /* nothing */ } 81 82 /* 83 * Null high precision timer functions for systems lacking one. 84 */ 85 static cycle_t null_hpt_read(void) 86 { 87 return 0; 88 } 89 90 /* 91 * Timer ack for an R4k-compatible timer of a known frequency. 92 */ 93 static void c0_timer_ack(void) 94 { 95 unsigned int count; 96 97 /* Ack this timer interrupt and set the next one. */ 98 expirelo += cycles_per_jiffy; 99 write_c0_compare(expirelo); 100 101 /* Check to see if we have missed any timer interrupts. */ 102 while (((count = read_c0_count()) - expirelo) < 0x7fffffff) { 103 /* missed_timer_count++; */ 104 expirelo = count + cycles_per_jiffy; 105 write_c0_compare(expirelo); 106 } 107 } 108 109 /* 110 * High precision timer functions for a R4k-compatible timer. 111 */ 112 static cycle_t c0_hpt_read(void) 113 { 114 return read_c0_count(); 115 } 116 117 /* For use both as a high precision timer and an interrupt source. */ 118 static void __init c0_hpt_timer_init(void) 119 { 120 expirelo = read_c0_count() + cycles_per_jiffy; 121 write_c0_compare(expirelo); 122 } 123 124 int (*mips_timer_state)(void); 125 void (*mips_timer_ack)(void); 126 127 /* last time when xtime and rtc are sync'ed up */ 128 static long last_rtc_update; 129 130 /* 131 * local_timer_interrupt() does profiling and process accounting 132 * on a per-CPU basis. 133 * 134 * In UP mode, it is invoked from the (global) timer_interrupt. 135 * 136 * In SMP mode, it might invoked by per-CPU timer interrupt, or 137 * a broadcasted inter-processor interrupt which itself is triggered 138 * by the global timer interrupt. 139 */ 140 void local_timer_interrupt(int irq, void *dev_id) 141 { 142 profile_tick(CPU_PROFILING); 143 update_process_times(user_mode(get_irq_regs())); 144 } 145 146 /* 147 * High-level timer interrupt service routines. This function 148 * is set as irqaction->handler and is invoked through do_IRQ. 149 */ 150 irqreturn_t timer_interrupt(int irq, void *dev_id) 151 { 152 write_seqlock(&xtime_lock); 153 154 mips_timer_ack(); 155 156 /* 157 * call the generic timer interrupt handling 158 */ 159 do_timer(1); 160 161 /* 162 * If we have an externally synchronized Linux clock, then update 163 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be 164 * called as close as possible to 500 ms before the new second starts. 165 */ 166 if (ntp_synced() && 167 xtime.tv_sec > last_rtc_update + 660 && 168 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && 169 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { 170 if (rtc_mips_set_mmss(xtime.tv_sec) == 0) { 171 last_rtc_update = xtime.tv_sec; 172 } else { 173 /* do it again in 60 s */ 174 last_rtc_update = xtime.tv_sec - 600; 175 } 176 } 177 178 write_sequnlock(&xtime_lock); 179 180 /* 181 * In UP mode, we call local_timer_interrupt() to do profiling 182 * and process accouting. 183 * 184 * In SMP mode, local_timer_interrupt() is invoked by appropriate 185 * low-level local timer interrupt handler. 186 */ 187 local_timer_interrupt(irq, dev_id); 188 189 return IRQ_HANDLED; 190 } 191 192 int null_perf_irq(void) 193 { 194 return 0; 195 } 196 197 int (*perf_irq)(void) = null_perf_irq; 198 199 EXPORT_SYMBOL(null_perf_irq); 200 EXPORT_SYMBOL(perf_irq); 201 202 /* 203 * Timer interrupt 204 */ 205 int cp0_compare_irq; 206 207 /* 208 * Performance counter IRQ or -1 if shared with timer 209 */ 210 int cp0_perfcount_irq; 211 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 212 213 /* 214 * Possibly handle a performance counter interrupt. 215 * Return true if the timer interrupt should not be checked 216 */ 217 static inline int handle_perf_irq (int r2) 218 { 219 /* 220 * The performance counter overflow interrupt may be shared with the 221 * timer interrupt (cp0_perfcount_irq < 0). If it is and a 222 * performance counter has overflowed (perf_irq() == IRQ_HANDLED) 223 * and we can't reliably determine if a counter interrupt has also 224 * happened (!r2) then don't check for a timer interrupt. 225 */ 226 return (cp0_perfcount_irq < 0) && 227 perf_irq() == IRQ_HANDLED && 228 !r2; 229 } 230 231 asmlinkage void ll_timer_interrupt(int irq) 232 { 233 int r2 = cpu_has_mips_r2; 234 235 irq_enter(); 236 kstat_this_cpu.irqs[irq]++; 237 238 if (handle_perf_irq(r2)) 239 goto out; 240 241 if (r2 && ((read_c0_cause() & (1 << 30)) == 0)) 242 goto out; 243 244 timer_interrupt(irq, NULL); 245 246 out: 247 irq_exit(); 248 } 249 250 asmlinkage void ll_local_timer_interrupt(int irq) 251 { 252 irq_enter(); 253 if (smp_processor_id() != 0) 254 kstat_this_cpu.irqs[irq]++; 255 256 /* we keep interrupt disabled all the time */ 257 local_timer_interrupt(irq, NULL); 258 259 irq_exit(); 260 } 261 262 /* 263 * time_init() - it does the following things. 264 * 265 * 1) board_time_init() - 266 * a) (optional) set up RTC routines, 267 * b) (optional) calibrate and set the mips_hpt_frequency 268 * (only needed if you intended to use cpu counter as timer interrupt 269 * source) 270 * 2) setup xtime based on rtc_mips_get_time(). 271 * 3) calculate a couple of cached variables for later usage 272 * 4) plat_timer_setup() - 273 * a) (optional) over-write any choices made above by time_init(). 274 * b) machine specific code should setup the timer irqaction. 275 * c) enable the timer interrupt 276 */ 277 278 void (*board_time_init)(void); 279 280 unsigned int mips_hpt_frequency; 281 282 static struct irqaction timer_irqaction = { 283 .handler = timer_interrupt, 284 .flags = IRQF_DISABLED | IRQF_PERCPU, 285 .name = "timer", 286 }; 287 288 static unsigned int __init calibrate_hpt(void) 289 { 290 cycle_t frequency, hpt_start, hpt_end, hpt_count, hz; 291 292 const int loops = HZ / 10; 293 int log_2_loops = 0; 294 int i; 295 296 /* 297 * We want to calibrate for 0.1s, but to avoid a 64-bit 298 * division we round the number of loops up to the nearest 299 * power of 2. 300 */ 301 while (loops > 1 << log_2_loops) 302 log_2_loops++; 303 i = 1 << log_2_loops; 304 305 /* 306 * Wait for a rising edge of the timer interrupt. 307 */ 308 while (mips_timer_state()); 309 while (!mips_timer_state()); 310 311 /* 312 * Now see how many high precision timer ticks happen 313 * during the calculated number of periods between timer 314 * interrupts. 315 */ 316 hpt_start = clocksource_mips.read(); 317 do { 318 while (mips_timer_state()); 319 while (!mips_timer_state()); 320 } while (--i); 321 hpt_end = clocksource_mips.read(); 322 323 hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask; 324 hz = HZ; 325 frequency = hpt_count * hz; 326 327 return frequency >> log_2_loops; 328 } 329 330 struct clocksource clocksource_mips = { 331 .name = "MIPS", 332 .mask = CLOCKSOURCE_MASK(32), 333 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 334 }; 335 336 static void __init init_mips_clocksource(void) 337 { 338 u64 temp; 339 u32 shift; 340 341 if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read) 342 return; 343 344 /* Calclate a somewhat reasonable rating value */ 345 clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000; 346 /* Find a shift value */ 347 for (shift = 32; shift > 0; shift--) { 348 temp = (u64) NSEC_PER_SEC << shift; 349 do_div(temp, mips_hpt_frequency); 350 if ((temp >> 32) == 0) 351 break; 352 } 353 clocksource_mips.shift = shift; 354 clocksource_mips.mult = (u32)temp; 355 356 clocksource_register(&clocksource_mips); 357 } 358 359 void __init time_init(void) 360 { 361 if (board_time_init) 362 board_time_init(); 363 364 if (!rtc_mips_set_mmss) 365 rtc_mips_set_mmss = rtc_mips_set_time; 366 367 xtime.tv_sec = rtc_mips_get_time(); 368 xtime.tv_nsec = 0; 369 370 set_normalized_timespec(&wall_to_monotonic, 371 -xtime.tv_sec, -xtime.tv_nsec); 372 373 /* Choose appropriate high precision timer routines. */ 374 if (!cpu_has_counter && !clocksource_mips.read) 375 /* No high precision timer -- sorry. */ 376 clocksource_mips.read = null_hpt_read; 377 else if (!mips_hpt_frequency && !mips_timer_state) { 378 /* A high precision timer of unknown frequency. */ 379 if (!clocksource_mips.read) 380 /* No external high precision timer -- use R4k. */ 381 clocksource_mips.read = c0_hpt_read; 382 } else { 383 /* We know counter frequency. Or we can get it. */ 384 if (!clocksource_mips.read) { 385 /* No external high precision timer -- use R4k. */ 386 clocksource_mips.read = c0_hpt_read; 387 388 if (!mips_timer_state) { 389 /* No external timer interrupt -- use R4k. */ 390 mips_timer_ack = c0_timer_ack; 391 /* Calculate cache parameters. */ 392 cycles_per_jiffy = 393 (mips_hpt_frequency + HZ / 2) / HZ; 394 /* 395 * This sets up the high precision 396 * timer for the first interrupt. 397 */ 398 c0_hpt_timer_init(); 399 } 400 } 401 if (!mips_hpt_frequency) 402 mips_hpt_frequency = calibrate_hpt(); 403 404 /* Report the high precision timer rate for a reference. */ 405 printk("Using %u.%03u MHz high precision timer.\n", 406 ((mips_hpt_frequency + 500) / 1000) / 1000, 407 ((mips_hpt_frequency + 500) / 1000) % 1000); 408 } 409 410 if (!mips_timer_ack) 411 /* No timer interrupt ack (e.g. i8254). */ 412 mips_timer_ack = null_timer_ack; 413 414 /* 415 * Call board specific timer interrupt setup. 416 * 417 * this pointer must be setup in machine setup routine. 418 * 419 * Even if a machine chooses to use a low-level timer interrupt, 420 * it still needs to setup the timer_irqaction. 421 * In that case, it might be better to set timer_irqaction.handler 422 * to be NULL function so that we are sure the high-level code 423 * is not invoked accidentally. 424 */ 425 plat_timer_setup(&timer_irqaction); 426 427 init_mips_clocksource(); 428 } 429 430 #define FEBRUARY 2 431 #define STARTOFTIME 1970 432 #define SECDAY 86400L 433 #define SECYR (SECDAY * 365) 434 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400)) 435 #define days_in_year(y) (leapyear(y) ? 366 : 365) 436 #define days_in_month(m) (month_days[(m) - 1]) 437 438 static int month_days[12] = { 439 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 440 }; 441 442 void to_tm(unsigned long tim, struct rtc_time *tm) 443 { 444 long hms, day, gday; 445 int i; 446 447 gday = day = tim / SECDAY; 448 hms = tim % SECDAY; 449 450 /* Hours, minutes, seconds are easy */ 451 tm->tm_hour = hms / 3600; 452 tm->tm_min = (hms % 3600) / 60; 453 tm->tm_sec = (hms % 3600) % 60; 454 455 /* Number of years in days */ 456 for (i = STARTOFTIME; day >= days_in_year(i); i++) 457 day -= days_in_year(i); 458 tm->tm_year = i; 459 460 /* Number of months in days left */ 461 if (leapyear(tm->tm_year)) 462 days_in_month(FEBRUARY) = 29; 463 for (i = 1; day >= days_in_month(i); i++) 464 day -= days_in_month(i); 465 days_in_month(FEBRUARY) = 28; 466 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */ 467 468 /* Days are what is left over (+1) from all that. */ 469 tm->tm_mday = day + 1; 470 471 /* 472 * Determine the day of week 473 */ 474 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */ 475 } 476 477 EXPORT_SYMBOL(rtc_lock); 478 EXPORT_SYMBOL(to_tm); 479 EXPORT_SYMBOL(rtc_mips_set_time); 480 EXPORT_SYMBOL(rtc_mips_get_time); 481