xref: /linux/arch/mips/kernel/time.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  * Copyright 2001 MontaVista Software Inc.
3  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4  * Copyright (c) 2003, 2004  Maciej W. Rozycki
5  *
6  * Common time service routines for MIPS machines. See
7  * Documentation/mips/time.README.
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  */
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 
27 #include <asm/bootinfo.h>
28 #include <asm/cache.h>
29 #include <asm/compiler.h>
30 #include <asm/cpu.h>
31 #include <asm/cpu-features.h>
32 #include <asm/div64.h>
33 #include <asm/sections.h>
34 #include <asm/time.h>
35 
36 /*
37  * The integer part of the number of usecs per jiffy is taken from tick,
38  * but the fractional part is not recorded, so we calculate it using the
39  * initial value of HZ.  This aids systems where tick isn't really an
40  * integer (e.g. for HZ = 128).
41  */
42 #define USECS_PER_JIFFY		TICK_SIZE
43 #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))
44 
45 #define TICK_SIZE	(tick_nsec / 1000)
46 
47 /*
48  * forward reference
49  */
50 DEFINE_SPINLOCK(rtc_lock);
51 
52 /*
53  * By default we provide the null RTC ops
54  */
55 static unsigned long null_rtc_get_time(void)
56 {
57 	return mktime(2000, 1, 1, 0, 0, 0);
58 }
59 
60 static int null_rtc_set_time(unsigned long sec)
61 {
62 	return 0;
63 }
64 
65 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
66 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
67 int (*rtc_mips_set_mmss)(unsigned long);
68 
69 
70 /* how many counter cycles in a jiffy */
71 static unsigned long cycles_per_jiffy __read_mostly;
72 
73 /* expirelo is the count value for next CPU timer interrupt */
74 static unsigned int expirelo;
75 
76 
77 /*
78  * Null timer ack for systems not needing one (e.g. i8254).
79  */
80 static void null_timer_ack(void) { /* nothing */ }
81 
82 /*
83  * Null high precision timer functions for systems lacking one.
84  */
85 static cycle_t null_hpt_read(void)
86 {
87 	return 0;
88 }
89 
90 /*
91  * Timer ack for an R4k-compatible timer of a known frequency.
92  */
93 static void c0_timer_ack(void)
94 {
95 	unsigned int count;
96 
97 #ifndef CONFIG_SOC_PNX8550	/* pnx8550 resets to zero */
98 	/* Ack this timer interrupt and set the next one.  */
99 	expirelo += cycles_per_jiffy;
100 #endif
101 	write_c0_compare(expirelo);
102 
103 	/* Check to see if we have missed any timer interrupts.  */
104 	while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
105 		/* missed_timer_count++; */
106 		expirelo = count + cycles_per_jiffy;
107 		write_c0_compare(expirelo);
108 	}
109 }
110 
111 /*
112  * High precision timer functions for a R4k-compatible timer.
113  */
114 static cycle_t c0_hpt_read(void)
115 {
116 	return read_c0_count();
117 }
118 
119 /* For use both as a high precision timer and an interrupt source.  */
120 static void __init c0_hpt_timer_init(void)
121 {
122 	expirelo = read_c0_count() + cycles_per_jiffy;
123 	write_c0_compare(expirelo);
124 }
125 
126 int (*mips_timer_state)(void);
127 void (*mips_timer_ack)(void);
128 
129 /* last time when xtime and rtc are sync'ed up */
130 static long last_rtc_update;
131 
132 /*
133  * local_timer_interrupt() does profiling and process accounting
134  * on a per-CPU basis.
135  *
136  * In UP mode, it is invoked from the (global) timer_interrupt.
137  *
138  * In SMP mode, it might invoked by per-CPU timer interrupt, or
139  * a broadcasted inter-processor interrupt which itself is triggered
140  * by the global timer interrupt.
141  */
142 void local_timer_interrupt(int irq, void *dev_id)
143 {
144 	profile_tick(CPU_PROFILING);
145 	update_process_times(user_mode(get_irq_regs()));
146 }
147 
148 /*
149  * High-level timer interrupt service routines.  This function
150  * is set as irqaction->handler and is invoked through do_IRQ.
151  */
152 irqreturn_t timer_interrupt(int irq, void *dev_id)
153 {
154 	write_seqlock(&xtime_lock);
155 
156 	mips_timer_ack();
157 
158 	/*
159 	 * call the generic timer interrupt handling
160 	 */
161 	do_timer(1);
162 
163 	/*
164 	 * If we have an externally synchronized Linux clock, then update
165 	 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
166 	 * called as close as possible to 500 ms before the new second starts.
167 	 */
168 	if (ntp_synced() &&
169 	    xtime.tv_sec > last_rtc_update + 660 &&
170 	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
171 	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
172 		if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
173 			last_rtc_update = xtime.tv_sec;
174 		} else {
175 			/* do it again in 60 s */
176 			last_rtc_update = xtime.tv_sec - 600;
177 		}
178 	}
179 
180 	write_sequnlock(&xtime_lock);
181 
182 	/*
183 	 * In UP mode, we call local_timer_interrupt() to do profiling
184 	 * and process accouting.
185 	 *
186 	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
187 	 * low-level local timer interrupt handler.
188 	 */
189 	local_timer_interrupt(irq, dev_id);
190 
191 	return IRQ_HANDLED;
192 }
193 
194 int null_perf_irq(void)
195 {
196 	return 0;
197 }
198 
199 int (*perf_irq)(void) = null_perf_irq;
200 
201 EXPORT_SYMBOL(null_perf_irq);
202 EXPORT_SYMBOL(perf_irq);
203 
204 asmlinkage void ll_timer_interrupt(int irq)
205 {
206 	int r2 = cpu_has_mips_r2;
207 
208 	irq_enter();
209 	kstat_this_cpu.irqs[irq]++;
210 
211 	/*
212 	 * Suckage alert:
213 	 * Before R2 of the architecture there was no way to see if a
214 	 * performance counter interrupt was pending, so we have to run the
215 	 * performance counter interrupt handler anyway.
216 	 */
217 	if (!r2 || (read_c0_cause() & (1 << 26)))
218 		if (perf_irq())
219 			goto out;
220 
221 	/* we keep interrupt disabled all the time */
222 	if (!r2 || (read_c0_cause() & (1 << 30)))
223 		timer_interrupt(irq, NULL);
224 
225 out:
226 	irq_exit();
227 }
228 
229 asmlinkage void ll_local_timer_interrupt(int irq)
230 {
231 	irq_enter();
232 	if (smp_processor_id() != 0)
233 		kstat_this_cpu.irqs[irq]++;
234 
235 	/* we keep interrupt disabled all the time */
236 	local_timer_interrupt(irq, NULL);
237 
238 	irq_exit();
239 }
240 
241 /*
242  * time_init() - it does the following things.
243  *
244  * 1) board_time_init() -
245  * 	a) (optional) set up RTC routines,
246  *      b) (optional) calibrate and set the mips_hpt_frequency
247  *	    (only needed if you intended to use cpu counter as timer interrupt
248  *	     source)
249  * 2) setup xtime based on rtc_mips_get_time().
250  * 3) calculate a couple of cached variables for later usage
251  * 4) plat_timer_setup() -
252  *	a) (optional) over-write any choices made above by time_init().
253  *	b) machine specific code should setup the timer irqaction.
254  *	c) enable the timer interrupt
255  */
256 
257 void (*board_time_init)(void);
258 
259 unsigned int mips_hpt_frequency;
260 
261 static struct irqaction timer_irqaction = {
262 	.handler = timer_interrupt,
263 	.flags = IRQF_DISABLED,
264 	.name = "timer",
265 };
266 
267 static unsigned int __init calibrate_hpt(void)
268 {
269 	cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
270 
271 	const int loops = HZ / 10;
272 	int log_2_loops = 0;
273 	int i;
274 
275 	/*
276 	 * We want to calibrate for 0.1s, but to avoid a 64-bit
277 	 * division we round the number of loops up to the nearest
278 	 * power of 2.
279 	 */
280 	while (loops > 1 << log_2_loops)
281 		log_2_loops++;
282 	i = 1 << log_2_loops;
283 
284 	/*
285 	 * Wait for a rising edge of the timer interrupt.
286 	 */
287 	while (mips_timer_state());
288 	while (!mips_timer_state());
289 
290 	/*
291 	 * Now see how many high precision timer ticks happen
292 	 * during the calculated number of periods between timer
293 	 * interrupts.
294 	 */
295 	hpt_start = clocksource_mips.read();
296 	do {
297 		while (mips_timer_state());
298 		while (!mips_timer_state());
299 	} while (--i);
300 	hpt_end = clocksource_mips.read();
301 
302 	hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
303 	hz = HZ;
304 	frequency = hpt_count * hz;
305 
306 	return frequency >> log_2_loops;
307 }
308 
309 struct clocksource clocksource_mips = {
310 	.name		= "MIPS",
311 	.mask		= 0xffffffff,
312 	.is_continuous	= 1,
313 };
314 
315 static void __init init_mips_clocksource(void)
316 {
317 	u64 temp;
318 	u32 shift;
319 
320 	if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
321 		return;
322 
323 	/* Calclate a somewhat reasonable rating value */
324 	clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
325 	/* Find a shift value */
326 	for (shift = 32; shift > 0; shift--) {
327 		temp = (u64) NSEC_PER_SEC << shift;
328 		do_div(temp, mips_hpt_frequency);
329 		if ((temp >> 32) == 0)
330 			break;
331 	}
332 	clocksource_mips.shift = shift;
333 	clocksource_mips.mult = (u32)temp;
334 
335 	clocksource_register(&clocksource_mips);
336 }
337 
338 void __init time_init(void)
339 {
340 	if (board_time_init)
341 		board_time_init();
342 
343 	if (!rtc_mips_set_mmss)
344 		rtc_mips_set_mmss = rtc_mips_set_time;
345 
346 	xtime.tv_sec = rtc_mips_get_time();
347 	xtime.tv_nsec = 0;
348 
349 	set_normalized_timespec(&wall_to_monotonic,
350 	                        -xtime.tv_sec, -xtime.tv_nsec);
351 
352 	/* Choose appropriate high precision timer routines.  */
353 	if (!cpu_has_counter && !clocksource_mips.read)
354 		/* No high precision timer -- sorry.  */
355 		clocksource_mips.read = null_hpt_read;
356 	else if (!mips_hpt_frequency && !mips_timer_state) {
357 		/* A high precision timer of unknown frequency.  */
358 		if (!clocksource_mips.read)
359 			/* No external high precision timer -- use R4k.  */
360 			clocksource_mips.read = c0_hpt_read;
361 	} else {
362 		/* We know counter frequency.  Or we can get it.  */
363 		if (!clocksource_mips.read) {
364 			/* No external high precision timer -- use R4k.  */
365 			clocksource_mips.read = c0_hpt_read;
366 
367 			if (!mips_timer_state) {
368 				/* No external timer interrupt -- use R4k.  */
369 				mips_timer_ack = c0_timer_ack;
370 				/* Calculate cache parameters.  */
371 				cycles_per_jiffy =
372 					(mips_hpt_frequency + HZ / 2) / HZ;
373 				/*
374 				 * This sets up the high precision
375 				 * timer for the first interrupt.
376 				 */
377 				c0_hpt_timer_init();
378 			}
379 		}
380 		if (!mips_hpt_frequency)
381 			mips_hpt_frequency = calibrate_hpt();
382 
383 		/* Report the high precision timer rate for a reference.  */
384 		printk("Using %u.%03u MHz high precision timer.\n",
385 		       ((mips_hpt_frequency + 500) / 1000) / 1000,
386 		       ((mips_hpt_frequency + 500) / 1000) % 1000);
387 	}
388 
389 	if (!mips_timer_ack)
390 		/* No timer interrupt ack (e.g. i8254).  */
391 		mips_timer_ack = null_timer_ack;
392 
393 	/*
394 	 * Call board specific timer interrupt setup.
395 	 *
396 	 * this pointer must be setup in machine setup routine.
397 	 *
398 	 * Even if a machine chooses to use a low-level timer interrupt,
399 	 * it still needs to setup the timer_irqaction.
400 	 * In that case, it might be better to set timer_irqaction.handler
401 	 * to be NULL function so that we are sure the high-level code
402 	 * is not invoked accidentally.
403 	 */
404 	plat_timer_setup(&timer_irqaction);
405 
406 	init_mips_clocksource();
407 }
408 
409 #define FEBRUARY		2
410 #define STARTOFTIME		1970
411 #define SECDAY			86400L
412 #define SECYR			(SECDAY * 365)
413 #define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
414 #define days_in_year(y)		(leapyear(y) ? 366 : 365)
415 #define days_in_month(m)	(month_days[(m) - 1])
416 
417 static int month_days[12] = {
418 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
419 };
420 
421 void to_tm(unsigned long tim, struct rtc_time *tm)
422 {
423 	long hms, day, gday;
424 	int i;
425 
426 	gday = day = tim / SECDAY;
427 	hms = tim % SECDAY;
428 
429 	/* Hours, minutes, seconds are easy */
430 	tm->tm_hour = hms / 3600;
431 	tm->tm_min = (hms % 3600) / 60;
432 	tm->tm_sec = (hms % 3600) % 60;
433 
434 	/* Number of years in days */
435 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
436 		day -= days_in_year(i);
437 	tm->tm_year = i;
438 
439 	/* Number of months in days left */
440 	if (leapyear(tm->tm_year))
441 		days_in_month(FEBRUARY) = 29;
442 	for (i = 1; day >= days_in_month(i); i++)
443 		day -= days_in_month(i);
444 	days_in_month(FEBRUARY) = 28;
445 	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */
446 
447 	/* Days are what is left over (+1) from all that. */
448 	tm->tm_mday = day + 1;
449 
450 	/*
451 	 * Determine the day of week
452 	 */
453 	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
454 }
455 
456 EXPORT_SYMBOL(rtc_lock);
457 EXPORT_SYMBOL(to_tm);
458 EXPORT_SYMBOL(rtc_mips_set_time);
459 EXPORT_SYMBOL(rtc_mips_get_time);
460 
461 unsigned long long sched_clock(void)
462 {
463 	return (unsigned long long)jiffies*(1000000000/HZ);
464 }
465