1 /* 2 * Copyright 2001 MontaVista Software Inc. 3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net 4 * Copyright (c) 2003, 2004 Maciej W. Rozycki 5 * 6 * Common time service routines for MIPS machines. See 7 * Documentation/mips/time.README. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 */ 14 #include <linux/types.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/sched.h> 18 #include <linux/param.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/smp.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/spinlock.h> 24 #include <linux/interrupt.h> 25 #include <linux/module.h> 26 27 #include <asm/bootinfo.h> 28 #include <asm/cache.h> 29 #include <asm/compiler.h> 30 #include <asm/cpu.h> 31 #include <asm/cpu-features.h> 32 #include <asm/div64.h> 33 #include <asm/sections.h> 34 #include <asm/time.h> 35 36 /* 37 * The integer part of the number of usecs per jiffy is taken from tick, 38 * but the fractional part is not recorded, so we calculate it using the 39 * initial value of HZ. This aids systems where tick isn't really an 40 * integer (e.g. for HZ = 128). 41 */ 42 #define USECS_PER_JIFFY TICK_SIZE 43 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ)) 44 45 #define TICK_SIZE (tick_nsec / 1000) 46 47 /* 48 * forward reference 49 */ 50 DEFINE_SPINLOCK(rtc_lock); 51 52 /* 53 * By default we provide the null RTC ops 54 */ 55 static unsigned long null_rtc_get_time(void) 56 { 57 return mktime(2000, 1, 1, 0, 0, 0); 58 } 59 60 static int null_rtc_set_time(unsigned long sec) 61 { 62 return 0; 63 } 64 65 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time; 66 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time; 67 int (*rtc_mips_set_mmss)(unsigned long); 68 69 70 /* how many counter cycles in a jiffy */ 71 static unsigned long cycles_per_jiffy __read_mostly; 72 73 /* expirelo is the count value for next CPU timer interrupt */ 74 static unsigned int expirelo; 75 76 77 /* 78 * Null timer ack for systems not needing one (e.g. i8254). 79 */ 80 static void null_timer_ack(void) { /* nothing */ } 81 82 /* 83 * Null high precision timer functions for systems lacking one. 84 */ 85 static cycle_t null_hpt_read(void) 86 { 87 return 0; 88 } 89 90 /* 91 * Timer ack for an R4k-compatible timer of a known frequency. 92 */ 93 static void c0_timer_ack(void) 94 { 95 unsigned int count; 96 97 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */ 98 /* Ack this timer interrupt and set the next one. */ 99 expirelo += cycles_per_jiffy; 100 #endif 101 write_c0_compare(expirelo); 102 103 /* Check to see if we have missed any timer interrupts. */ 104 while (((count = read_c0_count()) - expirelo) < 0x7fffffff) { 105 /* missed_timer_count++; */ 106 expirelo = count + cycles_per_jiffy; 107 write_c0_compare(expirelo); 108 } 109 } 110 111 /* 112 * High precision timer functions for a R4k-compatible timer. 113 */ 114 static cycle_t c0_hpt_read(void) 115 { 116 return read_c0_count(); 117 } 118 119 /* For use both as a high precision timer and an interrupt source. */ 120 static void __init c0_hpt_timer_init(void) 121 { 122 expirelo = read_c0_count() + cycles_per_jiffy; 123 write_c0_compare(expirelo); 124 } 125 126 int (*mips_timer_state)(void); 127 void (*mips_timer_ack)(void); 128 129 /* last time when xtime and rtc are sync'ed up */ 130 static long last_rtc_update; 131 132 /* 133 * local_timer_interrupt() does profiling and process accounting 134 * on a per-CPU basis. 135 * 136 * In UP mode, it is invoked from the (global) timer_interrupt. 137 * 138 * In SMP mode, it might invoked by per-CPU timer interrupt, or 139 * a broadcasted inter-processor interrupt which itself is triggered 140 * by the global timer interrupt. 141 */ 142 void local_timer_interrupt(int irq, void *dev_id) 143 { 144 profile_tick(CPU_PROFILING); 145 update_process_times(user_mode(get_irq_regs())); 146 } 147 148 /* 149 * High-level timer interrupt service routines. This function 150 * is set as irqaction->handler and is invoked through do_IRQ. 151 */ 152 irqreturn_t timer_interrupt(int irq, void *dev_id) 153 { 154 write_seqlock(&xtime_lock); 155 156 mips_timer_ack(); 157 158 /* 159 * call the generic timer interrupt handling 160 */ 161 do_timer(1); 162 163 /* 164 * If we have an externally synchronized Linux clock, then update 165 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be 166 * called as close as possible to 500 ms before the new second starts. 167 */ 168 if (ntp_synced() && 169 xtime.tv_sec > last_rtc_update + 660 && 170 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && 171 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { 172 if (rtc_mips_set_mmss(xtime.tv_sec) == 0) { 173 last_rtc_update = xtime.tv_sec; 174 } else { 175 /* do it again in 60 s */ 176 last_rtc_update = xtime.tv_sec - 600; 177 } 178 } 179 180 write_sequnlock(&xtime_lock); 181 182 /* 183 * In UP mode, we call local_timer_interrupt() to do profiling 184 * and process accouting. 185 * 186 * In SMP mode, local_timer_interrupt() is invoked by appropriate 187 * low-level local timer interrupt handler. 188 */ 189 local_timer_interrupt(irq, dev_id); 190 191 return IRQ_HANDLED; 192 } 193 194 int null_perf_irq(void) 195 { 196 return 0; 197 } 198 199 int (*perf_irq)(void) = null_perf_irq; 200 201 EXPORT_SYMBOL(null_perf_irq); 202 EXPORT_SYMBOL(perf_irq); 203 204 asmlinkage void ll_timer_interrupt(int irq) 205 { 206 int r2 = cpu_has_mips_r2; 207 208 irq_enter(); 209 kstat_this_cpu.irqs[irq]++; 210 211 /* 212 * Suckage alert: 213 * Before R2 of the architecture there was no way to see if a 214 * performance counter interrupt was pending, so we have to run the 215 * performance counter interrupt handler anyway. 216 */ 217 if (!r2 || (read_c0_cause() & (1 << 26))) 218 if (perf_irq()) 219 goto out; 220 221 /* we keep interrupt disabled all the time */ 222 if (!r2 || (read_c0_cause() & (1 << 30))) 223 timer_interrupt(irq, NULL); 224 225 out: 226 irq_exit(); 227 } 228 229 asmlinkage void ll_local_timer_interrupt(int irq) 230 { 231 irq_enter(); 232 if (smp_processor_id() != 0) 233 kstat_this_cpu.irqs[irq]++; 234 235 /* we keep interrupt disabled all the time */ 236 local_timer_interrupt(irq, NULL); 237 238 irq_exit(); 239 } 240 241 /* 242 * time_init() - it does the following things. 243 * 244 * 1) board_time_init() - 245 * a) (optional) set up RTC routines, 246 * b) (optional) calibrate and set the mips_hpt_frequency 247 * (only needed if you intended to use cpu counter as timer interrupt 248 * source) 249 * 2) setup xtime based on rtc_mips_get_time(). 250 * 3) calculate a couple of cached variables for later usage 251 * 4) plat_timer_setup() - 252 * a) (optional) over-write any choices made above by time_init(). 253 * b) machine specific code should setup the timer irqaction. 254 * c) enable the timer interrupt 255 */ 256 257 void (*board_time_init)(void); 258 259 unsigned int mips_hpt_frequency; 260 261 static struct irqaction timer_irqaction = { 262 .handler = timer_interrupt, 263 .flags = IRQF_DISABLED, 264 .name = "timer", 265 }; 266 267 static unsigned int __init calibrate_hpt(void) 268 { 269 cycle_t frequency, hpt_start, hpt_end, hpt_count, hz; 270 271 const int loops = HZ / 10; 272 int log_2_loops = 0; 273 int i; 274 275 /* 276 * We want to calibrate for 0.1s, but to avoid a 64-bit 277 * division we round the number of loops up to the nearest 278 * power of 2. 279 */ 280 while (loops > 1 << log_2_loops) 281 log_2_loops++; 282 i = 1 << log_2_loops; 283 284 /* 285 * Wait for a rising edge of the timer interrupt. 286 */ 287 while (mips_timer_state()); 288 while (!mips_timer_state()); 289 290 /* 291 * Now see how many high precision timer ticks happen 292 * during the calculated number of periods between timer 293 * interrupts. 294 */ 295 hpt_start = clocksource_mips.read(); 296 do { 297 while (mips_timer_state()); 298 while (!mips_timer_state()); 299 } while (--i); 300 hpt_end = clocksource_mips.read(); 301 302 hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask; 303 hz = HZ; 304 frequency = hpt_count * hz; 305 306 return frequency >> log_2_loops; 307 } 308 309 struct clocksource clocksource_mips = { 310 .name = "MIPS", 311 .mask = 0xffffffff, 312 .is_continuous = 1, 313 }; 314 315 static void __init init_mips_clocksource(void) 316 { 317 u64 temp; 318 u32 shift; 319 320 if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read) 321 return; 322 323 /* Calclate a somewhat reasonable rating value */ 324 clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000; 325 /* Find a shift value */ 326 for (shift = 32; shift > 0; shift--) { 327 temp = (u64) NSEC_PER_SEC << shift; 328 do_div(temp, mips_hpt_frequency); 329 if ((temp >> 32) == 0) 330 break; 331 } 332 clocksource_mips.shift = shift; 333 clocksource_mips.mult = (u32)temp; 334 335 clocksource_register(&clocksource_mips); 336 } 337 338 void __init time_init(void) 339 { 340 if (board_time_init) 341 board_time_init(); 342 343 if (!rtc_mips_set_mmss) 344 rtc_mips_set_mmss = rtc_mips_set_time; 345 346 xtime.tv_sec = rtc_mips_get_time(); 347 xtime.tv_nsec = 0; 348 349 set_normalized_timespec(&wall_to_monotonic, 350 -xtime.tv_sec, -xtime.tv_nsec); 351 352 /* Choose appropriate high precision timer routines. */ 353 if (!cpu_has_counter && !clocksource_mips.read) 354 /* No high precision timer -- sorry. */ 355 clocksource_mips.read = null_hpt_read; 356 else if (!mips_hpt_frequency && !mips_timer_state) { 357 /* A high precision timer of unknown frequency. */ 358 if (!clocksource_mips.read) 359 /* No external high precision timer -- use R4k. */ 360 clocksource_mips.read = c0_hpt_read; 361 } else { 362 /* We know counter frequency. Or we can get it. */ 363 if (!clocksource_mips.read) { 364 /* No external high precision timer -- use R4k. */ 365 clocksource_mips.read = c0_hpt_read; 366 367 if (!mips_timer_state) { 368 /* No external timer interrupt -- use R4k. */ 369 mips_timer_ack = c0_timer_ack; 370 /* Calculate cache parameters. */ 371 cycles_per_jiffy = 372 (mips_hpt_frequency + HZ / 2) / HZ; 373 /* 374 * This sets up the high precision 375 * timer for the first interrupt. 376 */ 377 c0_hpt_timer_init(); 378 } 379 } 380 if (!mips_hpt_frequency) 381 mips_hpt_frequency = calibrate_hpt(); 382 383 /* Report the high precision timer rate for a reference. */ 384 printk("Using %u.%03u MHz high precision timer.\n", 385 ((mips_hpt_frequency + 500) / 1000) / 1000, 386 ((mips_hpt_frequency + 500) / 1000) % 1000); 387 } 388 389 if (!mips_timer_ack) 390 /* No timer interrupt ack (e.g. i8254). */ 391 mips_timer_ack = null_timer_ack; 392 393 /* 394 * Call board specific timer interrupt setup. 395 * 396 * this pointer must be setup in machine setup routine. 397 * 398 * Even if a machine chooses to use a low-level timer interrupt, 399 * it still needs to setup the timer_irqaction. 400 * In that case, it might be better to set timer_irqaction.handler 401 * to be NULL function so that we are sure the high-level code 402 * is not invoked accidentally. 403 */ 404 plat_timer_setup(&timer_irqaction); 405 406 init_mips_clocksource(); 407 } 408 409 #define FEBRUARY 2 410 #define STARTOFTIME 1970 411 #define SECDAY 86400L 412 #define SECYR (SECDAY * 365) 413 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400)) 414 #define days_in_year(y) (leapyear(y) ? 366 : 365) 415 #define days_in_month(m) (month_days[(m) - 1]) 416 417 static int month_days[12] = { 418 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 419 }; 420 421 void to_tm(unsigned long tim, struct rtc_time *tm) 422 { 423 long hms, day, gday; 424 int i; 425 426 gday = day = tim / SECDAY; 427 hms = tim % SECDAY; 428 429 /* Hours, minutes, seconds are easy */ 430 tm->tm_hour = hms / 3600; 431 tm->tm_min = (hms % 3600) / 60; 432 tm->tm_sec = (hms % 3600) % 60; 433 434 /* Number of years in days */ 435 for (i = STARTOFTIME; day >= days_in_year(i); i++) 436 day -= days_in_year(i); 437 tm->tm_year = i; 438 439 /* Number of months in days left */ 440 if (leapyear(tm->tm_year)) 441 days_in_month(FEBRUARY) = 29; 442 for (i = 1; day >= days_in_month(i); i++) 443 day -= days_in_month(i); 444 days_in_month(FEBRUARY) = 28; 445 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */ 446 447 /* Days are what is left over (+1) from all that. */ 448 tm->tm_mday = day + 1; 449 450 /* 451 * Determine the day of week 452 */ 453 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */ 454 } 455 456 EXPORT_SYMBOL(rtc_lock); 457 EXPORT_SYMBOL(to_tm); 458 EXPORT_SYMBOL(rtc_mips_set_time); 459 EXPORT_SYMBOL(rtc_mips_get_time); 460 461 unsigned long long sched_clock(void) 462 { 463 return (unsigned long long)jiffies*(1000000000/HZ); 464 } 465