1 /* 2 * Copyright 2001 MontaVista Software Inc. 3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net 4 * Copyright (c) 2003, 2004 Maciej W. Rozycki 5 * 6 * Common time service routines for MIPS machines. See 7 * Documentation/mips/time.README. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 */ 14 #include <linux/types.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/sched.h> 18 #include <linux/param.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/smp.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/spinlock.h> 24 #include <linux/interrupt.h> 25 #include <linux/module.h> 26 27 #include <asm/bootinfo.h> 28 #include <asm/compiler.h> 29 #include <asm/cpu.h> 30 #include <asm/cpu-features.h> 31 #include <asm/div64.h> 32 #include <asm/sections.h> 33 #include <asm/time.h> 34 35 /* 36 * The integer part of the number of usecs per jiffy is taken from tick, 37 * but the fractional part is not recorded, so we calculate it using the 38 * initial value of HZ. This aids systems where tick isn't really an 39 * integer (e.g. for HZ = 128). 40 */ 41 #define USECS_PER_JIFFY TICK_SIZE 42 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ)) 43 44 #define TICK_SIZE (tick_nsec / 1000) 45 46 u64 jiffies_64 = INITIAL_JIFFIES; 47 48 EXPORT_SYMBOL(jiffies_64); 49 50 /* 51 * forward reference 52 */ 53 extern volatile unsigned long wall_jiffies; 54 55 DEFINE_SPINLOCK(rtc_lock); 56 57 /* 58 * By default we provide the null RTC ops 59 */ 60 static unsigned long null_rtc_get_time(void) 61 { 62 return mktime(2000, 1, 1, 0, 0, 0); 63 } 64 65 static int null_rtc_set_time(unsigned long sec) 66 { 67 return 0; 68 } 69 70 unsigned long (*rtc_get_time)(void) = null_rtc_get_time; 71 int (*rtc_set_time)(unsigned long) = null_rtc_set_time; 72 int (*rtc_set_mmss)(unsigned long); 73 74 75 /* usecs per counter cycle, shifted to left by 32 bits */ 76 static unsigned int sll32_usecs_per_cycle; 77 78 /* how many counter cycles in a jiffy */ 79 static unsigned long cycles_per_jiffy; 80 81 /* Cycle counter value at the previous timer interrupt.. */ 82 static unsigned int timerhi, timerlo; 83 84 /* expirelo is the count value for next CPU timer interrupt */ 85 static unsigned int expirelo; 86 87 88 /* 89 * Null timer ack for systems not needing one (e.g. i8254). 90 */ 91 static void null_timer_ack(void) { /* nothing */ } 92 93 /* 94 * Null high precision timer functions for systems lacking one. 95 */ 96 static unsigned int null_hpt_read(void) 97 { 98 return 0; 99 } 100 101 static void null_hpt_init(unsigned int count) { /* nothing */ } 102 103 104 /* 105 * Timer ack for an R4k-compatible timer of a known frequency. 106 */ 107 static void c0_timer_ack(void) 108 { 109 unsigned int count; 110 111 /* Ack this timer interrupt and set the next one. */ 112 expirelo += cycles_per_jiffy; 113 write_c0_compare(expirelo); 114 115 /* Check to see if we have missed any timer interrupts. */ 116 count = read_c0_count(); 117 if ((count - expirelo) < 0x7fffffff) { 118 /* missed_timer_count++; */ 119 expirelo = count + cycles_per_jiffy; 120 write_c0_compare(expirelo); 121 } 122 } 123 124 /* 125 * High precision timer functions for a R4k-compatible timer. 126 */ 127 static unsigned int c0_hpt_read(void) 128 { 129 return read_c0_count(); 130 } 131 132 /* For use solely as a high precision timer. */ 133 static void c0_hpt_init(unsigned int count) 134 { 135 write_c0_count(read_c0_count() - count); 136 } 137 138 /* For use both as a high precision timer and an interrupt source. */ 139 static void c0_hpt_timer_init(unsigned int count) 140 { 141 count = read_c0_count() - count; 142 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; 143 write_c0_count(expirelo - cycles_per_jiffy); 144 write_c0_compare(expirelo); 145 write_c0_count(count); 146 } 147 148 int (*mips_timer_state)(void); 149 void (*mips_timer_ack)(void); 150 unsigned int (*mips_hpt_read)(void); 151 void (*mips_hpt_init)(unsigned int); 152 153 154 /* 155 * This version of gettimeofday has microsecond resolution and better than 156 * microsecond precision on fast machines with cycle counter. 157 */ 158 void do_gettimeofday(struct timeval *tv) 159 { 160 unsigned long seq; 161 unsigned long lost; 162 unsigned long usec, sec; 163 unsigned long max_ntp_tick = tick_usec - tickadj; 164 165 do { 166 seq = read_seqbegin(&xtime_lock); 167 168 usec = do_gettimeoffset(); 169 170 lost = jiffies - wall_jiffies; 171 172 /* 173 * If time_adjust is negative then NTP is slowing the clock 174 * so make sure not to go into next possible interval. 175 * Better to lose some accuracy than have time go backwards.. 176 */ 177 if (unlikely(time_adjust < 0)) { 178 usec = min(usec, max_ntp_tick); 179 180 if (lost) 181 usec += lost * max_ntp_tick; 182 } else if (unlikely(lost)) 183 usec += lost * tick_usec; 184 185 sec = xtime.tv_sec; 186 usec += (xtime.tv_nsec / 1000); 187 188 } while (read_seqretry(&xtime_lock, seq)); 189 190 while (usec >= 1000000) { 191 usec -= 1000000; 192 sec++; 193 } 194 195 tv->tv_sec = sec; 196 tv->tv_usec = usec; 197 } 198 199 EXPORT_SYMBOL(do_gettimeofday); 200 201 int do_settimeofday(struct timespec *tv) 202 { 203 time_t wtm_sec, sec = tv->tv_sec; 204 long wtm_nsec, nsec = tv->tv_nsec; 205 206 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 207 return -EINVAL; 208 209 write_seqlock_irq(&xtime_lock); 210 211 /* 212 * This is revolting. We need to set "xtime" correctly. However, 213 * the value in this location is the value at the most recent update 214 * of wall time. Discover what correction gettimeofday() would have 215 * made, and then undo it! 216 */ 217 nsec -= do_gettimeoffset() * NSEC_PER_USEC; 218 nsec -= (jiffies - wall_jiffies) * tick_nsec; 219 220 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); 221 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); 222 223 set_normalized_timespec(&xtime, sec, nsec); 224 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 225 226 ntp_clear(); 227 228 write_sequnlock_irq(&xtime_lock); 229 clock_was_set(); 230 return 0; 231 } 232 233 EXPORT_SYMBOL(do_settimeofday); 234 235 /* 236 * Gettimeoffset routines. These routines returns the time duration 237 * since last timer interrupt in usecs. 238 * 239 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset. 240 * Otherwise use calibrate_gettimeoffset() 241 * 242 * If the CPU does not have the counter register, you can either supply 243 * your own gettimeoffset() routine, or use null_gettimeoffset(), which 244 * gives the same resolution as HZ. 245 */ 246 247 static unsigned long null_gettimeoffset(void) 248 { 249 return 0; 250 } 251 252 253 /* The function pointer to one of the gettimeoffset funcs. */ 254 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset; 255 256 257 static unsigned long fixed_rate_gettimeoffset(void) 258 { 259 u32 count; 260 unsigned long res; 261 262 /* Get last timer tick in absolute kernel time */ 263 count = mips_hpt_read(); 264 265 /* .. relative to previous jiffy (32 bits is enough) */ 266 count -= timerlo; 267 268 __asm__("multu %1,%2" 269 : "=h" (res) 270 : "r" (count), "r" (sll32_usecs_per_cycle) 271 : "lo", GCC_REG_ACCUM); 272 273 /* 274 * Due to possible jiffies inconsistencies, we need to check 275 * the result so that we'll get a timer that is monotonic. 276 */ 277 if (res >= USECS_PER_JIFFY) 278 res = USECS_PER_JIFFY - 1; 279 280 return res; 281 } 282 283 284 /* 285 * Cached "1/(clocks per usec) * 2^32" value. 286 * It has to be recalculated once each jiffy. 287 */ 288 static unsigned long cached_quotient; 289 290 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */ 291 static unsigned long last_jiffies; 292 293 /* 294 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej. 295 */ 296 static unsigned long calibrate_div32_gettimeoffset(void) 297 { 298 u32 count; 299 unsigned long res, tmp; 300 unsigned long quotient; 301 302 tmp = jiffies; 303 304 quotient = cached_quotient; 305 306 if (last_jiffies != tmp) { 307 last_jiffies = tmp; 308 if (last_jiffies != 0) { 309 unsigned long r0; 310 do_div64_32(r0, timerhi, timerlo, tmp); 311 do_div64_32(quotient, USECS_PER_JIFFY, 312 USECS_PER_JIFFY_FRAC, r0); 313 cached_quotient = quotient; 314 } 315 } 316 317 /* Get last timer tick in absolute kernel time */ 318 count = mips_hpt_read(); 319 320 /* .. relative to previous jiffy (32 bits is enough) */ 321 count -= timerlo; 322 323 __asm__("multu %1,%2" 324 : "=h" (res) 325 : "r" (count), "r" (quotient) 326 : "lo", GCC_REG_ACCUM); 327 328 /* 329 * Due to possible jiffies inconsistencies, we need to check 330 * the result so that we'll get a timer that is monotonic. 331 */ 332 if (res >= USECS_PER_JIFFY) 333 res = USECS_PER_JIFFY - 1; 334 335 return res; 336 } 337 338 static unsigned long calibrate_div64_gettimeoffset(void) 339 { 340 u32 count; 341 unsigned long res, tmp; 342 unsigned long quotient; 343 344 tmp = jiffies; 345 346 quotient = cached_quotient; 347 348 if (last_jiffies != tmp) { 349 last_jiffies = tmp; 350 if (last_jiffies) { 351 unsigned long r0; 352 __asm__(".set push\n\t" 353 ".set mips3\n\t" 354 "lwu %0,%3\n\t" 355 "dsll32 %1,%2,0\n\t" 356 "or %1,%1,%0\n\t" 357 "ddivu $0,%1,%4\n\t" 358 "mflo %1\n\t" 359 "dsll32 %0,%5,0\n\t" 360 "or %0,%0,%6\n\t" 361 "ddivu $0,%0,%1\n\t" 362 "mflo %0\n\t" 363 ".set pop" 364 : "=&r" (quotient), "=&r" (r0) 365 : "r" (timerhi), "m" (timerlo), 366 "r" (tmp), "r" (USECS_PER_JIFFY), 367 "r" (USECS_PER_JIFFY_FRAC) 368 : "hi", "lo", GCC_REG_ACCUM); 369 cached_quotient = quotient; 370 } 371 } 372 373 /* Get last timer tick in absolute kernel time */ 374 count = mips_hpt_read(); 375 376 /* .. relative to previous jiffy (32 bits is enough) */ 377 count -= timerlo; 378 379 __asm__("multu %1,%2" 380 : "=h" (res) 381 : "r" (count), "r" (quotient) 382 : "lo", GCC_REG_ACCUM); 383 384 /* 385 * Due to possible jiffies inconsistencies, we need to check 386 * the result so that we'll get a timer that is monotonic. 387 */ 388 if (res >= USECS_PER_JIFFY) 389 res = USECS_PER_JIFFY - 1; 390 391 return res; 392 } 393 394 395 /* last time when xtime and rtc are sync'ed up */ 396 static long last_rtc_update; 397 398 /* 399 * local_timer_interrupt() does profiling and process accounting 400 * on a per-CPU basis. 401 * 402 * In UP mode, it is invoked from the (global) timer_interrupt. 403 * 404 * In SMP mode, it might invoked by per-CPU timer interrupt, or 405 * a broadcasted inter-processor interrupt which itself is triggered 406 * by the global timer interrupt. 407 */ 408 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) 409 { 410 if (current->pid) 411 profile_tick(CPU_PROFILING, regs); 412 update_process_times(user_mode(regs)); 413 } 414 415 /* 416 * High-level timer interrupt service routines. This function 417 * is set as irqaction->handler and is invoked through do_IRQ. 418 */ 419 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) 420 { 421 unsigned long j; 422 unsigned int count; 423 424 count = mips_hpt_read(); 425 mips_timer_ack(); 426 427 /* Update timerhi/timerlo for intra-jiffy calibration. */ 428 timerhi += count < timerlo; /* Wrap around */ 429 timerlo = count; 430 431 /* 432 * call the generic timer interrupt handling 433 */ 434 do_timer(regs); 435 436 /* 437 * If we have an externally synchronized Linux clock, then update 438 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be 439 * called as close as possible to 500 ms before the new second starts. 440 */ 441 write_seqlock(&xtime_lock); 442 if (ntp_synced() && 443 xtime.tv_sec > last_rtc_update + 660 && 444 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && 445 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { 446 if (rtc_set_mmss(xtime.tv_sec) == 0) { 447 last_rtc_update = xtime.tv_sec; 448 } else { 449 /* do it again in 60 s */ 450 last_rtc_update = xtime.tv_sec - 600; 451 } 452 } 453 write_sequnlock(&xtime_lock); 454 455 /* 456 * If jiffies has overflown in this timer_interrupt, we must 457 * update the timer[hi]/[lo] to make fast gettimeoffset funcs 458 * quotient calc still valid. -arca 459 * 460 * The first timer interrupt comes late as interrupts are 461 * enabled long after timers are initialized. Therefore the 462 * high precision timer is fast, leading to wrong gettimeoffset() 463 * calculations. We deal with it by setting it based on the 464 * number of its ticks between the second and the third interrupt. 465 * That is still somewhat imprecise, but it's a good estimate. 466 * --macro 467 */ 468 j = jiffies; 469 if (j < 4) { 470 static unsigned int prev_count; 471 static int hpt_initialized; 472 473 switch (j) { 474 case 0: 475 timerhi = timerlo = 0; 476 mips_hpt_init(count); 477 break; 478 case 2: 479 prev_count = count; 480 break; 481 case 3: 482 if (!hpt_initialized) { 483 unsigned int c3 = 3 * (count - prev_count); 484 485 timerhi = 0; 486 timerlo = c3; 487 mips_hpt_init(count - c3); 488 hpt_initialized = 1; 489 } 490 break; 491 default: 492 break; 493 } 494 } 495 496 /* 497 * In UP mode, we call local_timer_interrupt() to do profiling 498 * and process accouting. 499 * 500 * In SMP mode, local_timer_interrupt() is invoked by appropriate 501 * low-level local timer interrupt handler. 502 */ 503 local_timer_interrupt(irq, dev_id, regs); 504 505 return IRQ_HANDLED; 506 } 507 508 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs) 509 { 510 irq_enter(); 511 kstat_this_cpu.irqs[irq]++; 512 513 /* we keep interrupt disabled all the time */ 514 timer_interrupt(irq, NULL, regs); 515 516 irq_exit(); 517 } 518 519 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs) 520 { 521 irq_enter(); 522 if (smp_processor_id() != 0) 523 kstat_this_cpu.irqs[irq]++; 524 525 /* we keep interrupt disabled all the time */ 526 local_timer_interrupt(irq, NULL, regs); 527 528 irq_exit(); 529 } 530 531 /* 532 * time_init() - it does the following things. 533 * 534 * 1) board_time_init() - 535 * a) (optional) set up RTC routines, 536 * b) (optional) calibrate and set the mips_hpt_frequency 537 * (only needed if you intended to use fixed_rate_gettimeoffset 538 * or use cpu counter as timer interrupt source) 539 * 2) setup xtime based on rtc_get_time(). 540 * 3) choose a appropriate gettimeoffset routine. 541 * 4) calculate a couple of cached variables for later usage 542 * 5) board_timer_setup() - 543 * a) (optional) over-write any choices made above by time_init(). 544 * b) machine specific code should setup the timer irqaction. 545 * c) enable the timer interrupt 546 */ 547 548 void (*board_time_init)(void); 549 void (*board_timer_setup)(struct irqaction *irq); 550 551 unsigned int mips_hpt_frequency; 552 553 static struct irqaction timer_irqaction = { 554 .handler = timer_interrupt, 555 .flags = SA_INTERRUPT, 556 .name = "timer", 557 }; 558 559 static unsigned int __init calibrate_hpt(void) 560 { 561 u64 frequency; 562 u32 hpt_start, hpt_end, hpt_count, hz; 563 564 const int loops = HZ / 10; 565 int log_2_loops = 0; 566 int i; 567 568 /* 569 * We want to calibrate for 0.1s, but to avoid a 64-bit 570 * division we round the number of loops up to the nearest 571 * power of 2. 572 */ 573 while (loops > 1 << log_2_loops) 574 log_2_loops++; 575 i = 1 << log_2_loops; 576 577 /* 578 * Wait for a rising edge of the timer interrupt. 579 */ 580 while (mips_timer_state()); 581 while (!mips_timer_state()); 582 583 /* 584 * Now see how many high precision timer ticks happen 585 * during the calculated number of periods between timer 586 * interrupts. 587 */ 588 hpt_start = mips_hpt_read(); 589 do { 590 while (mips_timer_state()); 591 while (!mips_timer_state()); 592 } while (--i); 593 hpt_end = mips_hpt_read(); 594 595 hpt_count = hpt_end - hpt_start; 596 hz = HZ; 597 frequency = (u64)hpt_count * (u64)hz; 598 599 return frequency >> log_2_loops; 600 } 601 602 void __init time_init(void) 603 { 604 if (board_time_init) 605 board_time_init(); 606 607 if (!rtc_set_mmss) 608 rtc_set_mmss = rtc_set_time; 609 610 xtime.tv_sec = rtc_get_time(); 611 xtime.tv_nsec = 0; 612 613 set_normalized_timespec(&wall_to_monotonic, 614 -xtime.tv_sec, -xtime.tv_nsec); 615 616 /* Choose appropriate high precision timer routines. */ 617 if (!cpu_has_counter && !mips_hpt_read) { 618 /* No high precision timer -- sorry. */ 619 mips_hpt_read = null_hpt_read; 620 mips_hpt_init = null_hpt_init; 621 } else if (!mips_hpt_frequency && !mips_timer_state) { 622 /* A high precision timer of unknown frequency. */ 623 if (!mips_hpt_read) { 624 /* No external high precision timer -- use R4k. */ 625 mips_hpt_read = c0_hpt_read; 626 mips_hpt_init = c0_hpt_init; 627 } 628 629 if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) || 630 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) || 631 (current_cpu_data.isa_level == MIPS_CPU_ISA_II)) 632 /* 633 * We need to calibrate the counter but we don't have 634 * 64-bit division. 635 */ 636 do_gettimeoffset = calibrate_div32_gettimeoffset; 637 else 638 /* 639 * We need to calibrate the counter but we *do* have 640 * 64-bit division. 641 */ 642 do_gettimeoffset = calibrate_div64_gettimeoffset; 643 } else { 644 /* We know counter frequency. Or we can get it. */ 645 if (!mips_hpt_read) { 646 /* No external high precision timer -- use R4k. */ 647 mips_hpt_read = c0_hpt_read; 648 649 if (mips_timer_state) 650 mips_hpt_init = c0_hpt_init; 651 else { 652 /* No external timer interrupt -- use R4k. */ 653 mips_hpt_init = c0_hpt_timer_init; 654 mips_timer_ack = c0_timer_ack; 655 } 656 } 657 if (!mips_hpt_frequency) 658 mips_hpt_frequency = calibrate_hpt(); 659 660 do_gettimeoffset = fixed_rate_gettimeoffset; 661 662 /* Calculate cache parameters. */ 663 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ; 664 665 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */ 666 do_div64_32(sll32_usecs_per_cycle, 667 1000000, mips_hpt_frequency / 2, 668 mips_hpt_frequency); 669 670 /* Report the high precision timer rate for a reference. */ 671 printk("Using %u.%03u MHz high precision timer.\n", 672 ((mips_hpt_frequency + 500) / 1000) / 1000, 673 ((mips_hpt_frequency + 500) / 1000) % 1000); 674 } 675 676 if (!mips_timer_ack) 677 /* No timer interrupt ack (e.g. i8254). */ 678 mips_timer_ack = null_timer_ack; 679 680 /* This sets up the high precision timer for the first interrupt. */ 681 mips_hpt_init(mips_hpt_read()); 682 683 /* 684 * Call board specific timer interrupt setup. 685 * 686 * this pointer must be setup in machine setup routine. 687 * 688 * Even if a machine chooses to use a low-level timer interrupt, 689 * it still needs to setup the timer_irqaction. 690 * In that case, it might be better to set timer_irqaction.handler 691 * to be NULL function so that we are sure the high-level code 692 * is not invoked accidentally. 693 */ 694 board_timer_setup(&timer_irqaction); 695 } 696 697 #define FEBRUARY 2 698 #define STARTOFTIME 1970 699 #define SECDAY 86400L 700 #define SECYR (SECDAY * 365) 701 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400)) 702 #define days_in_year(y) (leapyear(y) ? 366 : 365) 703 #define days_in_month(m) (month_days[(m) - 1]) 704 705 static int month_days[12] = { 706 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 707 }; 708 709 void to_tm(unsigned long tim, struct rtc_time *tm) 710 { 711 long hms, day, gday; 712 int i; 713 714 gday = day = tim / SECDAY; 715 hms = tim % SECDAY; 716 717 /* Hours, minutes, seconds are easy */ 718 tm->tm_hour = hms / 3600; 719 tm->tm_min = (hms % 3600) / 60; 720 tm->tm_sec = (hms % 3600) % 60; 721 722 /* Number of years in days */ 723 for (i = STARTOFTIME; day >= days_in_year(i); i++) 724 day -= days_in_year(i); 725 tm->tm_year = i; 726 727 /* Number of months in days left */ 728 if (leapyear(tm->tm_year)) 729 days_in_month(FEBRUARY) = 29; 730 for (i = 1; day >= days_in_month(i); i++) 731 day -= days_in_month(i); 732 days_in_month(FEBRUARY) = 28; 733 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */ 734 735 /* Days are what is left over (+1) from all that. */ 736 tm->tm_mday = day + 1; 737 738 /* 739 * Determine the day of week 740 */ 741 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */ 742 } 743 744 EXPORT_SYMBOL(rtc_lock); 745 EXPORT_SYMBOL(to_tm); 746 EXPORT_SYMBOL(rtc_set_time); 747 EXPORT_SYMBOL(rtc_get_time); 748 749 unsigned long long sched_clock(void) 750 { 751 return (unsigned long long)jiffies*(1000000000/HZ); 752 } 753