xref: /linux/arch/mips/kernel/time.c (revision 22a3e233ca08a2ddc949ba1ae8f6e16ec7ef1a13)
1 /*
2  * Copyright 2001 MontaVista Software Inc.
3  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4  * Copyright (c) 2003, 2004  Maciej W. Rozycki
5  *
6  * Common time service routines for MIPS machines. See
7  * Documentation/mips/time.README.
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  */
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 
27 #include <asm/bootinfo.h>
28 #include <asm/cache.h>
29 #include <asm/compiler.h>
30 #include <asm/cpu.h>
31 #include <asm/cpu-features.h>
32 #include <asm/div64.h>
33 #include <asm/sections.h>
34 #include <asm/time.h>
35 
36 /*
37  * The integer part of the number of usecs per jiffy is taken from tick,
38  * but the fractional part is not recorded, so we calculate it using the
39  * initial value of HZ.  This aids systems where tick isn't really an
40  * integer (e.g. for HZ = 128).
41  */
42 #define USECS_PER_JIFFY		TICK_SIZE
43 #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))
44 
45 #define TICK_SIZE	(tick_nsec / 1000)
46 
47 /*
48  * forward reference
49  */
50 extern volatile unsigned long wall_jiffies;
51 
52 DEFINE_SPINLOCK(rtc_lock);
53 
54 /*
55  * By default we provide the null RTC ops
56  */
57 static unsigned long null_rtc_get_time(void)
58 {
59 	return mktime(2000, 1, 1, 0, 0, 0);
60 }
61 
62 static int null_rtc_set_time(unsigned long sec)
63 {
64 	return 0;
65 }
66 
67 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
68 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
69 int (*rtc_mips_set_mmss)(unsigned long);
70 
71 
72 /* usecs per counter cycle, shifted to left by 32 bits */
73 static unsigned int sll32_usecs_per_cycle;
74 
75 /* how many counter cycles in a jiffy */
76 static unsigned long cycles_per_jiffy __read_mostly;
77 
78 /* Cycle counter value at the previous timer interrupt.. */
79 static unsigned int timerhi, timerlo;
80 
81 /* expirelo is the count value for next CPU timer interrupt */
82 static unsigned int expirelo;
83 
84 
85 /*
86  * Null timer ack for systems not needing one (e.g. i8254).
87  */
88 static void null_timer_ack(void) { /* nothing */ }
89 
90 /*
91  * Null high precision timer functions for systems lacking one.
92  */
93 static unsigned int null_hpt_read(void)
94 {
95 	return 0;
96 }
97 
98 static void null_hpt_init(unsigned int count)
99 {
100 	/* nothing */
101 }
102 
103 
104 /*
105  * Timer ack for an R4k-compatible timer of a known frequency.
106  */
107 static void c0_timer_ack(void)
108 {
109 	unsigned int count;
110 
111 #ifndef CONFIG_SOC_PNX8550	/* pnx8550 resets to zero */
112 	/* Ack this timer interrupt and set the next one.  */
113 	expirelo += cycles_per_jiffy;
114 #endif
115 	write_c0_compare(expirelo);
116 
117 	/* Check to see if we have missed any timer interrupts.  */
118 	while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
119 		/* missed_timer_count++; */
120 		expirelo = count + cycles_per_jiffy;
121 		write_c0_compare(expirelo);
122 	}
123 }
124 
125 /*
126  * High precision timer functions for a R4k-compatible timer.
127  */
128 static unsigned int c0_hpt_read(void)
129 {
130 	return read_c0_count();
131 }
132 
133 /* For use solely as a high precision timer.  */
134 static void c0_hpt_init(unsigned int count)
135 {
136 	write_c0_count(read_c0_count() - count);
137 }
138 
139 /* For use both as a high precision timer and an interrupt source.  */
140 static void c0_hpt_timer_init(unsigned int count)
141 {
142 	count = read_c0_count() - count;
143 	expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
144 	write_c0_count(expirelo - cycles_per_jiffy);
145 	write_c0_compare(expirelo);
146 	write_c0_count(count);
147 }
148 
149 int (*mips_timer_state)(void);
150 void (*mips_timer_ack)(void);
151 unsigned int (*mips_hpt_read)(void);
152 void (*mips_hpt_init)(unsigned int);
153 
154 
155 /*
156  * This version of gettimeofday has microsecond resolution and better than
157  * microsecond precision on fast machines with cycle counter.
158  */
159 void do_gettimeofday(struct timeval *tv)
160 {
161 	unsigned long seq;
162 	unsigned long lost;
163 	unsigned long usec, sec;
164 	unsigned long max_ntp_tick;
165 
166 	do {
167 		seq = read_seqbegin(&xtime_lock);
168 
169 		usec = do_gettimeoffset();
170 
171 		lost = jiffies - wall_jiffies;
172 
173 		/*
174 		 * If time_adjust is negative then NTP is slowing the clock
175 		 * so make sure not to go into next possible interval.
176 		 * Better to lose some accuracy than have time go backwards..
177 		 */
178 		if (unlikely(time_adjust < 0)) {
179 			max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
180 			usec = min(usec, max_ntp_tick);
181 
182 			if (lost)
183 				usec += lost * max_ntp_tick;
184 		} else if (unlikely(lost))
185 			usec += lost * (USEC_PER_SEC / HZ);
186 
187 		sec = xtime.tv_sec;
188 		usec += (xtime.tv_nsec / 1000);
189 
190 	} while (read_seqretry(&xtime_lock, seq));
191 
192 	while (usec >= 1000000) {
193 		usec -= 1000000;
194 		sec++;
195 	}
196 
197 	tv->tv_sec = sec;
198 	tv->tv_usec = usec;
199 }
200 
201 EXPORT_SYMBOL(do_gettimeofday);
202 
203 int do_settimeofday(struct timespec *tv)
204 {
205 	time_t wtm_sec, sec = tv->tv_sec;
206 	long wtm_nsec, nsec = tv->tv_nsec;
207 
208 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
209 		return -EINVAL;
210 
211 	write_seqlock_irq(&xtime_lock);
212 
213 	/*
214 	 * This is revolting.  We need to set "xtime" correctly.  However,
215 	 * the value in this location is the value at the most recent update
216 	 * of wall time.  Discover what correction gettimeofday() would have
217 	 * made, and then undo it!
218 	 */
219 	nsec -= do_gettimeoffset() * NSEC_PER_USEC;
220 	nsec -= (jiffies - wall_jiffies) * tick_nsec;
221 
222 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
223 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
224 
225 	set_normalized_timespec(&xtime, sec, nsec);
226 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
227 
228 	ntp_clear();
229 	write_sequnlock_irq(&xtime_lock);
230 	clock_was_set();
231 	return 0;
232 }
233 
234 EXPORT_SYMBOL(do_settimeofday);
235 
236 /*
237  * Gettimeoffset routines.  These routines returns the time duration
238  * since last timer interrupt in usecs.
239  *
240  * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
241  * Otherwise use calibrate_gettimeoffset()
242  *
243  * If the CPU does not have the counter register, you can either supply
244  * your own gettimeoffset() routine, or use null_gettimeoffset(), which
245  * gives the same resolution as HZ.
246  */
247 
248 static unsigned long null_gettimeoffset(void)
249 {
250 	return 0;
251 }
252 
253 
254 /* The function pointer to one of the gettimeoffset funcs.  */
255 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
256 
257 
258 static unsigned long fixed_rate_gettimeoffset(void)
259 {
260 	u32 count;
261 	unsigned long res;
262 
263 	/* Get last timer tick in absolute kernel time */
264 	count = mips_hpt_read();
265 
266 	/* .. relative to previous jiffy (32 bits is enough) */
267 	count -= timerlo;
268 
269 	__asm__("multu	%1,%2"
270 		: "=h" (res)
271 		: "r" (count), "r" (sll32_usecs_per_cycle)
272 		: "lo", GCC_REG_ACCUM);
273 
274 	/*
275 	 * Due to possible jiffies inconsistencies, we need to check
276 	 * the result so that we'll get a timer that is monotonic.
277 	 */
278 	if (res >= USECS_PER_JIFFY)
279 		res = USECS_PER_JIFFY - 1;
280 
281 	return res;
282 }
283 
284 
285 /*
286  * Cached "1/(clocks per usec) * 2^32" value.
287  * It has to be recalculated once each jiffy.
288  */
289 static unsigned long cached_quotient;
290 
291 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
292 static unsigned long last_jiffies;
293 
294 /*
295  * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
296  */
297 static unsigned long calibrate_div32_gettimeoffset(void)
298 {
299 	u32 count;
300 	unsigned long res, tmp;
301 	unsigned long quotient;
302 
303 	tmp = jiffies;
304 
305 	quotient = cached_quotient;
306 
307 	if (last_jiffies != tmp) {
308 		last_jiffies = tmp;
309 		if (last_jiffies != 0) {
310 			unsigned long r0;
311 			do_div64_32(r0, timerhi, timerlo, tmp);
312 			do_div64_32(quotient, USECS_PER_JIFFY,
313 				    USECS_PER_JIFFY_FRAC, r0);
314 			cached_quotient = quotient;
315 		}
316 	}
317 
318 	/* Get last timer tick in absolute kernel time */
319 	count = mips_hpt_read();
320 
321 	/* .. relative to previous jiffy (32 bits is enough) */
322 	count -= timerlo;
323 
324 	__asm__("multu  %1,%2"
325 		: "=h" (res)
326 		: "r" (count), "r" (quotient)
327 		: "lo", GCC_REG_ACCUM);
328 
329 	/*
330 	 * Due to possible jiffies inconsistencies, we need to check
331 	 * the result so that we'll get a timer that is monotonic.
332 	 */
333 	if (res >= USECS_PER_JIFFY)
334 		res = USECS_PER_JIFFY - 1;
335 
336 	return res;
337 }
338 
339 static unsigned long calibrate_div64_gettimeoffset(void)
340 {
341 	u32 count;
342 	unsigned long res, tmp;
343 	unsigned long quotient;
344 
345 	tmp = jiffies;
346 
347 	quotient = cached_quotient;
348 
349 	if (last_jiffies != tmp) {
350 		last_jiffies = tmp;
351 		if (last_jiffies) {
352 			unsigned long r0;
353 			__asm__(".set	push\n\t"
354 				".set	mips3\n\t"
355 				"lwu	%0,%3\n\t"
356 				"dsll32	%1,%2,0\n\t"
357 				"or	%1,%1,%0\n\t"
358 				"ddivu	$0,%1,%4\n\t"
359 				"mflo	%1\n\t"
360 				"dsll32	%0,%5,0\n\t"
361 				"or	%0,%0,%6\n\t"
362 				"ddivu	$0,%0,%1\n\t"
363 				"mflo	%0\n\t"
364 				".set	pop"
365 				: "=&r" (quotient), "=&r" (r0)
366 				: "r" (timerhi), "m" (timerlo),
367 				  "r" (tmp), "r" (USECS_PER_JIFFY),
368 				  "r" (USECS_PER_JIFFY_FRAC)
369 				: "hi", "lo", GCC_REG_ACCUM);
370 			cached_quotient = quotient;
371 		}
372 	}
373 
374 	/* Get last timer tick in absolute kernel time */
375 	count = mips_hpt_read();
376 
377 	/* .. relative to previous jiffy (32 bits is enough) */
378 	count -= timerlo;
379 
380 	__asm__("multu	%1,%2"
381 		: "=h" (res)
382 		: "r" (count), "r" (quotient)
383 		: "lo", GCC_REG_ACCUM);
384 
385 	/*
386 	 * Due to possible jiffies inconsistencies, we need to check
387 	 * the result so that we'll get a timer that is monotonic.
388 	 */
389 	if (res >= USECS_PER_JIFFY)
390 		res = USECS_PER_JIFFY - 1;
391 
392 	return res;
393 }
394 
395 
396 /* last time when xtime and rtc are sync'ed up */
397 static long last_rtc_update;
398 
399 /*
400  * local_timer_interrupt() does profiling and process accounting
401  * on a per-CPU basis.
402  *
403  * In UP mode, it is invoked from the (global) timer_interrupt.
404  *
405  * In SMP mode, it might invoked by per-CPU timer interrupt, or
406  * a broadcasted inter-processor interrupt which itself is triggered
407  * by the global timer interrupt.
408  */
409 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
410 {
411 	if (current->pid)
412 		profile_tick(CPU_PROFILING, regs);
413 	update_process_times(user_mode(regs));
414 }
415 
416 /*
417  * High-level timer interrupt service routines.  This function
418  * is set as irqaction->handler and is invoked through do_IRQ.
419  */
420 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
421 {
422 	unsigned long j;
423 	unsigned int count;
424 
425 	write_seqlock(&xtime_lock);
426 
427 	count = mips_hpt_read();
428 	mips_timer_ack();
429 
430 	/* Update timerhi/timerlo for intra-jiffy calibration. */
431 	timerhi += count < timerlo;			/* Wrap around */
432 	timerlo = count;
433 
434 	/*
435 	 * call the generic timer interrupt handling
436 	 */
437 	do_timer(regs);
438 
439 	/*
440 	 * If we have an externally synchronized Linux clock, then update
441 	 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
442 	 * called as close as possible to 500 ms before the new second starts.
443 	 */
444 	if (ntp_synced() &&
445 	    xtime.tv_sec > last_rtc_update + 660 &&
446 	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
447 	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
448 		if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
449 			last_rtc_update = xtime.tv_sec;
450 		} else {
451 			/* do it again in 60 s */
452 			last_rtc_update = xtime.tv_sec - 600;
453 		}
454 	}
455 
456 	/*
457 	 * If jiffies has overflown in this timer_interrupt, we must
458 	 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
459 	 * quotient calc still valid. -arca
460 	 *
461 	 * The first timer interrupt comes late as interrupts are
462 	 * enabled long after timers are initialized.  Therefore the
463 	 * high precision timer is fast, leading to wrong gettimeoffset()
464 	 * calculations.  We deal with it by setting it based on the
465 	 * number of its ticks between the second and the third interrupt.
466 	 * That is still somewhat imprecise, but it's a good estimate.
467 	 * --macro
468 	 */
469 	j = jiffies;
470 	if (j < 4) {
471 		static unsigned int prev_count;
472 		static int hpt_initialized;
473 
474 		switch (j) {
475 		case 0:
476 			timerhi = timerlo = 0;
477 			mips_hpt_init(count);
478 			break;
479 		case 2:
480 			prev_count = count;
481 			break;
482 		case 3:
483 			if (!hpt_initialized) {
484 				unsigned int c3 = 3 * (count - prev_count);
485 
486 				timerhi = 0;
487 				timerlo = c3;
488 				mips_hpt_init(count - c3);
489 				hpt_initialized = 1;
490 			}
491 			break;
492 		default:
493 			break;
494 		}
495 	}
496 
497 	write_sequnlock(&xtime_lock);
498 
499 	/*
500 	 * In UP mode, we call local_timer_interrupt() to do profiling
501 	 * and process accouting.
502 	 *
503 	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
504 	 * low-level local timer interrupt handler.
505 	 */
506 	local_timer_interrupt(irq, dev_id, regs);
507 
508 	return IRQ_HANDLED;
509 }
510 
511 int null_perf_irq(struct pt_regs *regs)
512 {
513 	return 0;
514 }
515 
516 int (*perf_irq)(struct pt_regs *regs) = null_perf_irq;
517 
518 EXPORT_SYMBOL(null_perf_irq);
519 EXPORT_SYMBOL(perf_irq);
520 
521 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
522 {
523 	int r2 = cpu_has_mips_r2;
524 
525 	irq_enter();
526 	kstat_this_cpu.irqs[irq]++;
527 
528 	/*
529 	 * Suckage alert:
530 	 * Before R2 of the architecture there was no way to see if a
531 	 * performance counter interrupt was pending, so we have to run the
532 	 * performance counter interrupt handler anyway.
533 	 */
534 	if (!r2 || (read_c0_cause() & (1 << 26)))
535 		if (perf_irq(regs))
536 			goto out;
537 
538 	/* we keep interrupt disabled all the time */
539 	if (!r2 || (read_c0_cause() & (1 << 30)))
540 		timer_interrupt(irq, NULL, regs);
541 
542 out:
543 	irq_exit();
544 }
545 
546 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
547 {
548 	irq_enter();
549 	if (smp_processor_id() != 0)
550 		kstat_this_cpu.irqs[irq]++;
551 
552 	/* we keep interrupt disabled all the time */
553 	local_timer_interrupt(irq, NULL, regs);
554 
555 	irq_exit();
556 }
557 
558 /*
559  * time_init() - it does the following things.
560  *
561  * 1) board_time_init() -
562  * 	a) (optional) set up RTC routines,
563  *      b) (optional) calibrate and set the mips_hpt_frequency
564  *	    (only needed if you intended to use fixed_rate_gettimeoffset
565  *	     or use cpu counter as timer interrupt source)
566  * 2) setup xtime based on rtc_mips_get_time().
567  * 3) choose a appropriate gettimeoffset routine.
568  * 4) calculate a couple of cached variables for later usage
569  * 5) board_timer_setup() -
570  *	a) (optional) over-write any choices made above by time_init().
571  *	b) machine specific code should setup the timer irqaction.
572  *	c) enable the timer interrupt
573  */
574 
575 void (*board_time_init)(void);
576 void (*board_timer_setup)(struct irqaction *irq);
577 
578 unsigned int mips_hpt_frequency;
579 
580 static struct irqaction timer_irqaction = {
581 	.handler = timer_interrupt,
582 	.flags = SA_INTERRUPT,
583 	.name = "timer",
584 };
585 
586 static unsigned int __init calibrate_hpt(void)
587 {
588 	u64 frequency;
589 	u32 hpt_start, hpt_end, hpt_count, hz;
590 
591 	const int loops = HZ / 10;
592 	int log_2_loops = 0;
593 	int i;
594 
595 	/*
596 	 * We want to calibrate for 0.1s, but to avoid a 64-bit
597 	 * division we round the number of loops up to the nearest
598 	 * power of 2.
599 	 */
600 	while (loops > 1 << log_2_loops)
601 		log_2_loops++;
602 	i = 1 << log_2_loops;
603 
604 	/*
605 	 * Wait for a rising edge of the timer interrupt.
606 	 */
607 	while (mips_timer_state());
608 	while (!mips_timer_state());
609 
610 	/*
611 	 * Now see how many high precision timer ticks happen
612 	 * during the calculated number of periods between timer
613 	 * interrupts.
614 	 */
615 	hpt_start = mips_hpt_read();
616 	do {
617 		while (mips_timer_state());
618 		while (!mips_timer_state());
619 	} while (--i);
620 	hpt_end = mips_hpt_read();
621 
622 	hpt_count = hpt_end - hpt_start;
623 	hz = HZ;
624 	frequency = (u64)hpt_count * (u64)hz;
625 
626 	return frequency >> log_2_loops;
627 }
628 
629 void __init time_init(void)
630 {
631 	if (board_time_init)
632 		board_time_init();
633 
634 	if (!rtc_mips_set_mmss)
635 		rtc_mips_set_mmss = rtc_mips_set_time;
636 
637 	xtime.tv_sec = rtc_mips_get_time();
638 	xtime.tv_nsec = 0;
639 
640 	set_normalized_timespec(&wall_to_monotonic,
641 	                        -xtime.tv_sec, -xtime.tv_nsec);
642 
643 	/* Choose appropriate high precision timer routines.  */
644 	if (!cpu_has_counter && !mips_hpt_read) {
645 		/* No high precision timer -- sorry.  */
646 		mips_hpt_read = null_hpt_read;
647 		mips_hpt_init = null_hpt_init;
648 	} else if (!mips_hpt_frequency && !mips_timer_state) {
649 		/* A high precision timer of unknown frequency.  */
650 		if (!mips_hpt_read) {
651 			/* No external high precision timer -- use R4k.  */
652 			mips_hpt_read = c0_hpt_read;
653 			mips_hpt_init = c0_hpt_init;
654 		}
655 
656 		if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
657 		    (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
658 		    (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
659 			/*
660 			 * We need to calibrate the counter but we don't have
661 			 * 64-bit division.
662 			 */
663 			do_gettimeoffset = calibrate_div32_gettimeoffset;
664 		else
665 			/*
666 			 * We need to calibrate the counter but we *do* have
667 			 * 64-bit division.
668 			 */
669 			do_gettimeoffset = calibrate_div64_gettimeoffset;
670 	} else {
671 		/* We know counter frequency.  Or we can get it.  */
672 		if (!mips_hpt_read) {
673 			/* No external high precision timer -- use R4k.  */
674 			mips_hpt_read = c0_hpt_read;
675 
676 			if (mips_timer_state)
677 				mips_hpt_init = c0_hpt_init;
678 			else {
679 				/* No external timer interrupt -- use R4k.  */
680 				mips_hpt_init = c0_hpt_timer_init;
681 				mips_timer_ack = c0_timer_ack;
682 			}
683 		}
684 		if (!mips_hpt_frequency)
685 			mips_hpt_frequency = calibrate_hpt();
686 
687 		do_gettimeoffset = fixed_rate_gettimeoffset;
688 
689 		/* Calculate cache parameters.  */
690 		cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
691 
692 		/* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq  */
693 		do_div64_32(sll32_usecs_per_cycle,
694 			    1000000, mips_hpt_frequency / 2,
695 			    mips_hpt_frequency);
696 
697 		/* Report the high precision timer rate for a reference.  */
698 		printk("Using %u.%03u MHz high precision timer.\n",
699 		       ((mips_hpt_frequency + 500) / 1000) / 1000,
700 		       ((mips_hpt_frequency + 500) / 1000) % 1000);
701 	}
702 
703 	if (!mips_timer_ack)
704 		/* No timer interrupt ack (e.g. i8254).  */
705 		mips_timer_ack = null_timer_ack;
706 
707 	/* This sets up the high precision timer for the first interrupt.  */
708 	mips_hpt_init(mips_hpt_read());
709 
710 	/*
711 	 * Call board specific timer interrupt setup.
712 	 *
713 	 * this pointer must be setup in machine setup routine.
714 	 *
715 	 * Even if a machine chooses to use a low-level timer interrupt,
716 	 * it still needs to setup the timer_irqaction.
717 	 * In that case, it might be better to set timer_irqaction.handler
718 	 * to be NULL function so that we are sure the high-level code
719 	 * is not invoked accidentally.
720 	 */
721 	board_timer_setup(&timer_irqaction);
722 }
723 
724 #define FEBRUARY		2
725 #define STARTOFTIME		1970
726 #define SECDAY			86400L
727 #define SECYR			(SECDAY * 365)
728 #define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
729 #define days_in_year(y)		(leapyear(y) ? 366 : 365)
730 #define days_in_month(m)	(month_days[(m) - 1])
731 
732 static int month_days[12] = {
733 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
734 };
735 
736 void to_tm(unsigned long tim, struct rtc_time *tm)
737 {
738 	long hms, day, gday;
739 	int i;
740 
741 	gday = day = tim / SECDAY;
742 	hms = tim % SECDAY;
743 
744 	/* Hours, minutes, seconds are easy */
745 	tm->tm_hour = hms / 3600;
746 	tm->tm_min = (hms % 3600) / 60;
747 	tm->tm_sec = (hms % 3600) % 60;
748 
749 	/* Number of years in days */
750 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
751 		day -= days_in_year(i);
752 	tm->tm_year = i;
753 
754 	/* Number of months in days left */
755 	if (leapyear(tm->tm_year))
756 		days_in_month(FEBRUARY) = 29;
757 	for (i = 1; day >= days_in_month(i); i++)
758 		day -= days_in_month(i);
759 	days_in_month(FEBRUARY) = 28;
760 	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */
761 
762 	/* Days are what is left over (+1) from all that. */
763 	tm->tm_mday = day + 1;
764 
765 	/*
766 	 * Determine the day of week
767 	 */
768 	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
769 }
770 
771 EXPORT_SYMBOL(rtc_lock);
772 EXPORT_SYMBOL(to_tm);
773 EXPORT_SYMBOL(rtc_mips_set_time);
774 EXPORT_SYMBOL(rtc_mips_get_time);
775 
776 unsigned long long sched_clock(void)
777 {
778 	return (unsigned long long)jiffies*(1000000000/HZ);
779 }
780