1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/threads.h> 27 #include <linux/module.h> 28 #include <linux/time.h> 29 #include <linux/timex.h> 30 #include <linux/sched.h> 31 #include <linux/cpumask.h> 32 #include <linux/cpu.h> 33 34 #include <asm/atomic.h> 35 #include <asm/cpu.h> 36 #include <asm/processor.h> 37 #include <asm/system.h> 38 #include <asm/mmu_context.h> 39 #include <asm/smp.h> 40 41 #ifdef CONFIG_MIPS_MT_SMTC 42 #include <asm/mipsmtregs.h> 43 #endif /* CONFIG_MIPS_MT_SMTC */ 44 45 cpumask_t phys_cpu_present_map; /* Bitmask of available CPUs */ 46 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 47 cpumask_t cpu_online_map; /* Bitmask of currently online CPUs */ 48 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 49 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 50 51 EXPORT_SYMBOL(phys_cpu_present_map); 52 EXPORT_SYMBOL(cpu_online_map); 53 54 static void smp_tune_scheduling (void) 55 { 56 struct cache_desc *cd = ¤t_cpu_data.scache; 57 unsigned long cachesize; /* kB */ 58 unsigned long cpu_khz; 59 60 /* 61 * Crude estimate until we actually meassure ... 62 */ 63 cpu_khz = loops_per_jiffy * 2 * HZ / 1000; 64 65 /* 66 * Rough estimation for SMP scheduling, this is the number of 67 * cycles it takes for a fully memory-limited process to flush 68 * the SMP-local cache. 69 * 70 * (For a P5 this pretty much means we will choose another idle 71 * CPU almost always at wakeup time (this is due to the small 72 * L1 cache), on PIIs it's around 50-100 usecs, depending on 73 * the cache size) 74 */ 75 if (!cpu_khz) 76 return; 77 78 cachesize = cd->linesz * cd->sets * cd->ways; 79 } 80 81 extern void __init calibrate_delay(void); 82 extern ATTRIB_NORET void cpu_idle(void); 83 84 /* 85 * First C code run on the secondary CPUs after being started up by 86 * the master. 87 */ 88 asmlinkage void start_secondary(void) 89 { 90 unsigned int cpu; 91 92 #ifdef CONFIG_MIPS_MT_SMTC 93 /* Only do cpu_probe for first TC of CPU */ 94 if ((read_c0_tcbind() & TCBIND_CURTC) == 0) 95 #endif /* CONFIG_MIPS_MT_SMTC */ 96 cpu_probe(); 97 cpu_report(); 98 per_cpu_trap_init(); 99 prom_init_secondary(); 100 101 /* 102 * XXX parity protection should be folded in here when it's converted 103 * to an option instead of something based on .cputype 104 */ 105 106 calibrate_delay(); 107 preempt_disable(); 108 cpu = smp_processor_id(); 109 cpu_data[cpu].udelay_val = loops_per_jiffy; 110 111 prom_smp_finish(); 112 113 cpu_set(cpu, cpu_callin_map); 114 115 cpu_idle(); 116 } 117 118 DEFINE_SPINLOCK(smp_call_lock); 119 120 struct call_data_struct *call_data; 121 122 /* 123 * Run a function on all other CPUs. 124 * <func> The function to run. This must be fast and non-blocking. 125 * <info> An arbitrary pointer to pass to the function. 126 * <retry> If true, keep retrying until ready. 127 * <wait> If true, wait until function has completed on other CPUs. 128 * [RETURNS] 0 on success, else a negative status code. 129 * 130 * Does not return until remote CPUs are nearly ready to execute <func> 131 * or are or have executed. 132 * 133 * You must not call this function with disabled interrupts or from a 134 * hardware interrupt handler or from a bottom half handler: 135 * 136 * CPU A CPU B 137 * Disable interrupts 138 * smp_call_function() 139 * Take call_lock 140 * Send IPIs 141 * Wait for all cpus to acknowledge IPI 142 * CPU A has not responded, spin waiting 143 * for cpu A to respond, holding call_lock 144 * smp_call_function() 145 * Spin waiting for call_lock 146 * Deadlock Deadlock 147 */ 148 int smp_call_function (void (*func) (void *info), void *info, int retry, 149 int wait) 150 { 151 struct call_data_struct data; 152 int i, cpus = num_online_cpus() - 1; 153 int cpu = smp_processor_id(); 154 155 /* 156 * Can die spectacularly if this CPU isn't yet marked online 157 */ 158 BUG_ON(!cpu_online(cpu)); 159 160 if (!cpus) 161 return 0; 162 163 /* Can deadlock when called with interrupts disabled */ 164 WARN_ON(irqs_disabled()); 165 166 data.func = func; 167 data.info = info; 168 atomic_set(&data.started, 0); 169 data.wait = wait; 170 if (wait) 171 atomic_set(&data.finished, 0); 172 173 spin_lock(&smp_call_lock); 174 call_data = &data; 175 mb(); 176 177 /* Send a message to all other CPUs and wait for them to respond */ 178 for_each_online_cpu(i) 179 if (i != cpu) 180 core_send_ipi(i, SMP_CALL_FUNCTION); 181 182 /* Wait for response */ 183 /* FIXME: lock-up detection, backtrace on lock-up */ 184 while (atomic_read(&data.started) != cpus) 185 barrier(); 186 187 if (wait) 188 while (atomic_read(&data.finished) != cpus) 189 barrier(); 190 call_data = NULL; 191 spin_unlock(&smp_call_lock); 192 193 return 0; 194 } 195 196 197 void smp_call_function_interrupt(void) 198 { 199 void (*func) (void *info) = call_data->func; 200 void *info = call_data->info; 201 int wait = call_data->wait; 202 203 /* 204 * Notify initiating CPU that I've grabbed the data and am 205 * about to execute the function. 206 */ 207 mb(); 208 atomic_inc(&call_data->started); 209 210 /* 211 * At this point the info structure may be out of scope unless wait==1. 212 */ 213 irq_enter(); 214 (*func)(info); 215 irq_exit(); 216 217 if (wait) { 218 mb(); 219 atomic_inc(&call_data->finished); 220 } 221 } 222 223 static void stop_this_cpu(void *dummy) 224 { 225 /* 226 * Remove this CPU: 227 */ 228 cpu_clear(smp_processor_id(), cpu_online_map); 229 local_irq_enable(); /* May need to service _machine_restart IPI */ 230 for (;;); /* Wait if available. */ 231 } 232 233 void smp_send_stop(void) 234 { 235 smp_call_function(stop_this_cpu, NULL, 1, 0); 236 } 237 238 void __init smp_cpus_done(unsigned int max_cpus) 239 { 240 prom_cpus_done(); 241 } 242 243 /* called from main before smp_init() */ 244 void __init smp_prepare_cpus(unsigned int max_cpus) 245 { 246 init_new_context(current, &init_mm); 247 current_thread_info()->cpu = 0; 248 smp_tune_scheduling(); 249 plat_prepare_cpus(max_cpus); 250 #ifndef CONFIG_HOTPLUG_CPU 251 cpu_present_map = cpu_possible_map; 252 #endif 253 } 254 255 /* preload SMP state for boot cpu */ 256 void __devinit smp_prepare_boot_cpu(void) 257 { 258 /* 259 * This assumes that bootup is always handled by the processor 260 * with the logic and physical number 0. 261 */ 262 __cpu_number_map[0] = 0; 263 __cpu_logical_map[0] = 0; 264 cpu_set(0, phys_cpu_present_map); 265 cpu_set(0, cpu_online_map); 266 cpu_set(0, cpu_callin_map); 267 } 268 269 /* 270 * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu 271 * and keep control until "cpu_online(cpu)" is set. Note: cpu is 272 * physical, not logical. 273 */ 274 int __devinit __cpu_up(unsigned int cpu) 275 { 276 struct task_struct *idle; 277 278 /* 279 * Processor goes to start_secondary(), sets online flag 280 * The following code is purely to make sure 281 * Linux can schedule processes on this slave. 282 */ 283 idle = fork_idle(cpu); 284 if (IS_ERR(idle)) 285 panic(KERN_ERR "Fork failed for CPU %d", cpu); 286 287 prom_boot_secondary(cpu, idle); 288 289 /* 290 * Trust is futile. We should really have timeouts ... 291 */ 292 while (!cpu_isset(cpu, cpu_callin_map)) 293 udelay(100); 294 295 cpu_set(cpu, cpu_online_map); 296 297 return 0; 298 } 299 300 /* Not really SMP stuff ... */ 301 int setup_profiling_timer(unsigned int multiplier) 302 { 303 return 0; 304 } 305 306 static void flush_tlb_all_ipi(void *info) 307 { 308 local_flush_tlb_all(); 309 } 310 311 void flush_tlb_all(void) 312 { 313 on_each_cpu(flush_tlb_all_ipi, 0, 1, 1); 314 } 315 316 static void flush_tlb_mm_ipi(void *mm) 317 { 318 local_flush_tlb_mm((struct mm_struct *)mm); 319 } 320 321 /* 322 * The following tlb flush calls are invoked when old translations are 323 * being torn down, or pte attributes are changing. For single threaded 324 * address spaces, a new context is obtained on the current cpu, and tlb 325 * context on other cpus are invalidated to force a new context allocation 326 * at switch_mm time, should the mm ever be used on other cpus. For 327 * multithreaded address spaces, intercpu interrupts have to be sent. 328 * Another case where intercpu interrupts are required is when the target 329 * mm might be active on another cpu (eg debuggers doing the flushes on 330 * behalf of debugees, kswapd stealing pages from another process etc). 331 * Kanoj 07/00. 332 */ 333 334 void flush_tlb_mm(struct mm_struct *mm) 335 { 336 preempt_disable(); 337 338 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 339 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1); 340 } else { 341 int i; 342 for (i = 0; i < num_online_cpus(); i++) 343 if (smp_processor_id() != i) 344 cpu_context(i, mm) = 0; 345 } 346 local_flush_tlb_mm(mm); 347 348 preempt_enable(); 349 } 350 351 struct flush_tlb_data { 352 struct vm_area_struct *vma; 353 unsigned long addr1; 354 unsigned long addr2; 355 }; 356 357 static void flush_tlb_range_ipi(void *info) 358 { 359 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 360 361 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 362 } 363 364 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 365 { 366 struct mm_struct *mm = vma->vm_mm; 367 368 preempt_disable(); 369 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 370 struct flush_tlb_data fd; 371 372 fd.vma = vma; 373 fd.addr1 = start; 374 fd.addr2 = end; 375 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1); 376 } else { 377 int i; 378 for (i = 0; i < num_online_cpus(); i++) 379 if (smp_processor_id() != i) 380 cpu_context(i, mm) = 0; 381 } 382 local_flush_tlb_range(vma, start, end); 383 preempt_enable(); 384 } 385 386 static void flush_tlb_kernel_range_ipi(void *info) 387 { 388 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 389 390 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 391 } 392 393 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 394 { 395 struct flush_tlb_data fd; 396 397 fd.addr1 = start; 398 fd.addr2 = end; 399 on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1, 1); 400 } 401 402 static void flush_tlb_page_ipi(void *info) 403 { 404 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 405 406 local_flush_tlb_page(fd->vma, fd->addr1); 407 } 408 409 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 410 { 411 preempt_disable(); 412 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 413 struct flush_tlb_data fd; 414 415 fd.vma = vma; 416 fd.addr1 = page; 417 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1); 418 } else { 419 int i; 420 for (i = 0; i < num_online_cpus(); i++) 421 if (smp_processor_id() != i) 422 cpu_context(i, vma->vm_mm) = 0; 423 } 424 local_flush_tlb_page(vma, page); 425 preempt_enable(); 426 } 427 428 static void flush_tlb_one_ipi(void *info) 429 { 430 unsigned long vaddr = (unsigned long) info; 431 432 local_flush_tlb_one(vaddr); 433 } 434 435 void flush_tlb_one(unsigned long vaddr) 436 { 437 smp_call_function(flush_tlb_one_ipi, (void *) vaddr, 1, 1); 438 local_flush_tlb_one(vaddr); 439 } 440 441 static DEFINE_PER_CPU(struct cpu, cpu_devices); 442 443 static int __init topology_init(void) 444 { 445 int cpu; 446 int ret; 447 448 for_each_present_cpu(cpu) { 449 ret = register_cpu(&per_cpu(cpu_devices, cpu), cpu, NULL); 450 if (ret) 451 printk(KERN_WARNING "topology_init: register_cpu %d " 452 "failed (%d)\n", cpu, ret); 453 } 454 455 return 0; 456 } 457 458 subsys_initcall(topology_init); 459 460 EXPORT_SYMBOL(flush_tlb_page); 461 EXPORT_SYMBOL(flush_tlb_one); 462