xref: /linux/arch/mips/kernel/smp.c (revision e7b2b108cdeab76a7e7324459e50b0c1214c0386)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2000, 2001 Kanoj Sarcar
5  * Copyright (C) 2000, 2001 Ralf Baechle
6  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8  */
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/smp.h>
14 #include <linux/spinlock.h>
15 #include <linux/threads.h>
16 #include <linux/export.h>
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/sched/mm.h>
20 #include <linux/cpumask.h>
21 #include <linux/cpu.h>
22 #include <linux/err.h>
23 #include <linux/ftrace.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 
28 #include <linux/atomic.h>
29 #include <asm/cpu.h>
30 #include <asm/ginvt.h>
31 #include <asm/processor.h>
32 #include <asm/idle.h>
33 #include <asm/r4k-timer.h>
34 #include <asm/mips-cps.h>
35 #include <asm/mmu_context.h>
36 #include <asm/time.h>
37 #include <asm/setup.h>
38 #include <asm/maar.h>
39 
40 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
41 EXPORT_SYMBOL(__cpu_number_map);
42 
43 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
44 EXPORT_SYMBOL(__cpu_logical_map);
45 
46 /* Number of TCs (or siblings in Intel speak) per CPU core */
47 int smp_num_siblings = 1;
48 EXPORT_SYMBOL(smp_num_siblings);
49 
50 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
52 EXPORT_SYMBOL(cpu_sibling_map);
53 
54 /* representing the core map of multi-core chips of each logical CPU */
55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
56 EXPORT_SYMBOL(cpu_core_map);
57 
58 static DECLARE_COMPLETION(cpu_starting);
59 static DECLARE_COMPLETION(cpu_running);
60 
61 /*
62  * A logical cpu mask containing only one VPE per core to
63  * reduce the number of IPIs on large MT systems.
64  */
65 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
66 EXPORT_SYMBOL(cpu_foreign_map);
67 
68 /* representing cpus for which sibling maps can be computed */
69 static cpumask_t cpu_sibling_setup_map;
70 
71 /* representing cpus for which core maps can be computed */
72 static cpumask_t cpu_core_setup_map;
73 
74 cpumask_t cpu_coherent_mask;
75 
76 unsigned int smp_max_threads __initdata = UINT_MAX;
77 
78 static int __init early_nosmt(char *s)
79 {
80 	smp_max_threads = 1;
81 	return 0;
82 }
83 early_param("nosmt", early_nosmt);
84 
85 static int __init early_smt(char *s)
86 {
87 	get_option(&s, &smp_max_threads);
88 	/* Ensure at least one thread is available */
89 	smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX);
90 	return 0;
91 }
92 early_param("smt", early_smt);
93 
94 #ifdef CONFIG_GENERIC_IRQ_IPI
95 static struct irq_desc *call_desc;
96 static struct irq_desc *sched_desc;
97 #endif
98 
99 static inline void set_cpu_sibling_map(int cpu)
100 {
101 	int i;
102 
103 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
104 
105 	if (smp_num_siblings > 1) {
106 		for_each_cpu(i, &cpu_sibling_setup_map) {
107 			if (cpus_are_siblings(cpu, i)) {
108 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
109 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
110 			}
111 		}
112 	} else
113 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
114 }
115 
116 static inline void set_cpu_core_map(int cpu)
117 {
118 	int i;
119 
120 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
121 
122 	for_each_cpu(i, &cpu_core_setup_map) {
123 		if (cpu_data[cpu].package == cpu_data[i].package) {
124 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
125 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
126 		}
127 	}
128 }
129 
130 /*
131  * Calculate a new cpu_foreign_map mask whenever a
132  * new cpu appears or disappears.
133  */
134 void calculate_cpu_foreign_map(void)
135 {
136 	int i, k, core_present;
137 	cpumask_t temp_foreign_map;
138 
139 	/* Re-calculate the mask */
140 	cpumask_clear(&temp_foreign_map);
141 	for_each_online_cpu(i) {
142 		core_present = 0;
143 		for_each_cpu(k, &temp_foreign_map)
144 			if (cpus_are_siblings(i, k))
145 				core_present = 1;
146 		if (!core_present)
147 			cpumask_set_cpu(i, &temp_foreign_map);
148 	}
149 
150 	for_each_online_cpu(i)
151 		cpumask_andnot(&cpu_foreign_map[i],
152 			       &temp_foreign_map, &cpu_sibling_map[i]);
153 }
154 
155 const struct plat_smp_ops *mp_ops;
156 EXPORT_SYMBOL(mp_ops);
157 
158 void register_smp_ops(const struct plat_smp_ops *ops)
159 {
160 	if (mp_ops)
161 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
162 
163 	mp_ops = ops;
164 }
165 
166 #ifdef CONFIG_GENERIC_IRQ_IPI
167 void mips_smp_send_ipi_single(int cpu, unsigned int action)
168 {
169 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
170 }
171 
172 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
173 {
174 	unsigned long flags;
175 	unsigned int core;
176 	int cpu;
177 
178 	local_irq_save(flags);
179 
180 	switch (action) {
181 	case SMP_CALL_FUNCTION:
182 		__ipi_send_mask(call_desc, mask);
183 		break;
184 
185 	case SMP_RESCHEDULE_YOURSELF:
186 		__ipi_send_mask(sched_desc, mask);
187 		break;
188 
189 	default:
190 		BUG();
191 	}
192 
193 	if (mips_cpc_present()) {
194 		for_each_cpu(cpu, mask) {
195 			if (cpus_are_siblings(cpu, smp_processor_id()))
196 				continue;
197 
198 			core = cpu_core(&cpu_data[cpu]);
199 
200 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
201 				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
202 				mips_cpc_lock_other(core);
203 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
204 				mips_cpc_unlock_other();
205 				mips_cm_unlock_other();
206 			}
207 		}
208 	}
209 
210 	local_irq_restore(flags);
211 }
212 
213 
214 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
215 {
216 	scheduler_ipi();
217 
218 	return IRQ_HANDLED;
219 }
220 
221 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
222 {
223 	generic_smp_call_function_interrupt();
224 
225 	return IRQ_HANDLED;
226 }
227 
228 static void smp_ipi_init_one(unsigned int virq, const char *name,
229 			     irq_handler_t handler)
230 {
231 	int ret;
232 
233 	irq_set_handler(virq, handle_percpu_irq);
234 	ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
235 	BUG_ON(ret);
236 }
237 
238 static unsigned int call_virq, sched_virq;
239 
240 int mips_smp_ipi_allocate(const struct cpumask *mask)
241 {
242 	int virq;
243 	struct irq_domain *ipidomain;
244 	struct device_node *node;
245 
246 	node = of_irq_find_parent(of_root);
247 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
248 
249 	/*
250 	 * Some platforms have half DT setup. So if we found irq node but
251 	 * didn't find an ipidomain, try to search for one that is not in the
252 	 * DT.
253 	 */
254 	if (node && !ipidomain)
255 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
256 
257 	/*
258 	 * There are systems which use IPI IRQ domains, but only have one
259 	 * registered when some runtime condition is met. For example a Malta
260 	 * kernel may include support for GIC & CPU interrupt controller IPI
261 	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
262 	 * neither will be supported or registered.
263 	 *
264 	 * We only have a problem if we're actually using multiple CPUs so fail
265 	 * loudly if that is the case. Otherwise simply return, skipping IPI
266 	 * setup, if we're running with only a single CPU.
267 	 */
268 	if (!ipidomain) {
269 		BUG_ON(num_present_cpus() > 1);
270 		return 0;
271 	}
272 
273 	virq = irq_reserve_ipi(ipidomain, mask);
274 	BUG_ON(!virq);
275 	if (!call_virq)
276 		call_virq = virq;
277 
278 	virq = irq_reserve_ipi(ipidomain, mask);
279 	BUG_ON(!virq);
280 	if (!sched_virq)
281 		sched_virq = virq;
282 
283 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
284 		int cpu;
285 
286 		for_each_cpu(cpu, mask) {
287 			smp_ipi_init_one(call_virq + cpu, "IPI call",
288 					 ipi_call_interrupt);
289 			smp_ipi_init_one(sched_virq + cpu, "IPI resched",
290 					 ipi_resched_interrupt);
291 		}
292 	} else {
293 		smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
294 		smp_ipi_init_one(sched_virq, "IPI resched",
295 				 ipi_resched_interrupt);
296 	}
297 
298 	return 0;
299 }
300 
301 int mips_smp_ipi_free(const struct cpumask *mask)
302 {
303 	struct irq_domain *ipidomain;
304 	struct device_node *node;
305 
306 	node = of_irq_find_parent(of_root);
307 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
308 
309 	/*
310 	 * Some platforms have half DT setup. So if we found irq node but
311 	 * didn't find an ipidomain, try to search for one that is not in the
312 	 * DT.
313 	 */
314 	if (node && !ipidomain)
315 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
316 
317 	BUG_ON(!ipidomain);
318 
319 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
320 		int cpu;
321 
322 		for_each_cpu(cpu, mask) {
323 			free_irq(call_virq + cpu, NULL);
324 			free_irq(sched_virq + cpu, NULL);
325 		}
326 	}
327 	irq_destroy_ipi(call_virq, mask);
328 	irq_destroy_ipi(sched_virq, mask);
329 	return 0;
330 }
331 
332 
333 static int __init mips_smp_ipi_init(void)
334 {
335 	if (num_possible_cpus() == 1)
336 		return 0;
337 
338 	mips_smp_ipi_allocate(cpu_possible_mask);
339 
340 	call_desc = irq_to_desc(call_virq);
341 	sched_desc = irq_to_desc(sched_virq);
342 
343 	return 0;
344 }
345 early_initcall(mips_smp_ipi_init);
346 #endif
347 
348 /*
349  * First C code run on the secondary CPUs after being started up by
350  * the master.
351  */
352 asmlinkage void start_secondary(void)
353 {
354 	unsigned int cpu = raw_smp_processor_id();
355 
356 	cpu_probe();
357 	per_cpu_trap_init(false);
358 	rcutree_report_cpu_starting(cpu);
359 	mips_clockevent_init();
360 	mp_ops->init_secondary();
361 	cpu_report();
362 	maar_init();
363 
364 	/*
365 	 * XXX parity protection should be folded in here when it's converted
366 	 * to an option instead of something based on .cputype
367 	 */
368 
369 	calibrate_delay();
370 	cpu_data[cpu].udelay_val = loops_per_jiffy;
371 
372 	set_cpu_sibling_map(cpu);
373 	set_cpu_core_map(cpu);
374 
375 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
376 	notify_cpu_starting(cpu);
377 
378 	/* Notify boot CPU that we're starting & ready to sync counters */
379 	complete(&cpu_starting);
380 
381 	synchronise_count_slave(cpu);
382 
383 	/* The CPU is running and counters synchronised, now mark it online */
384 	set_cpu_online(cpu, true);
385 
386 	calculate_cpu_foreign_map();
387 
388 	/*
389 	 * Notify boot CPU that we're up & online and it can safely return
390 	 * from __cpu_up
391 	 */
392 	complete(&cpu_running);
393 
394 	/*
395 	 * irq will be enabled in ->smp_finish(), enabling it too early
396 	 * is dangerous.
397 	 */
398 	WARN_ON_ONCE(!irqs_disabled());
399 	mp_ops->smp_finish();
400 
401 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
402 }
403 
404 static void stop_this_cpu(void *dummy)
405 {
406 	/*
407 	 * Remove this CPU:
408 	 */
409 
410 	set_cpu_online(smp_processor_id(), false);
411 	calculate_cpu_foreign_map();
412 	local_irq_disable();
413 	while (1);
414 }
415 
416 void smp_send_stop(void)
417 {
418 	smp_call_function(stop_this_cpu, NULL, 0);
419 }
420 
421 void __init smp_cpus_done(unsigned int max_cpus)
422 {
423 }
424 
425 /* called from main before smp_init() */
426 void __init smp_prepare_cpus(unsigned int max_cpus)
427 {
428 	init_new_context(current, &init_mm);
429 	current_thread_info()->cpu = 0;
430 	mp_ops->prepare_cpus(max_cpus);
431 	set_cpu_sibling_map(0);
432 	set_cpu_core_map(0);
433 	calculate_cpu_foreign_map();
434 #ifndef CONFIG_HOTPLUG_CPU
435 	init_cpu_present(cpu_possible_mask);
436 #endif
437 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
438 }
439 
440 /* preload SMP state for boot cpu */
441 void smp_prepare_boot_cpu(void)
442 {
443 	if (mp_ops->prepare_boot_cpu)
444 		mp_ops->prepare_boot_cpu();
445 	set_cpu_possible(0, true);
446 	set_cpu_online(0, true);
447 }
448 
449 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
450 {
451 	int err;
452 
453 	err = mp_ops->boot_secondary(cpu, tidle);
454 	if (err)
455 		return err;
456 
457 	/* Wait for CPU to start and be ready to sync counters */
458 	if (!wait_for_completion_timeout(&cpu_starting,
459 					 msecs_to_jiffies(1000))) {
460 		pr_crit("CPU%u: failed to start\n", cpu);
461 		return -EIO;
462 	}
463 
464 	synchronise_count_master(cpu);
465 
466 	/* Wait for CPU to finish startup & mark itself online before return */
467 	wait_for_completion(&cpu_running);
468 	return 0;
469 }
470 
471 /* Not really SMP stuff ... */
472 int setup_profiling_timer(unsigned int multiplier)
473 {
474 	return 0;
475 }
476 
477 static void flush_tlb_all_ipi(void *info)
478 {
479 	local_flush_tlb_all();
480 }
481 
482 void flush_tlb_all(void)
483 {
484 	if (cpu_has_mmid) {
485 		htw_stop();
486 		ginvt_full();
487 		sync_ginv();
488 		instruction_hazard();
489 		htw_start();
490 		return;
491 	}
492 
493 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
494 }
495 
496 static void flush_tlb_mm_ipi(void *mm)
497 {
498 	drop_mmu_context((struct mm_struct *)mm);
499 }
500 
501 /*
502  * Special Variant of smp_call_function for use by TLB functions:
503  *
504  *  o No return value
505  *  o collapses to normal function call on UP kernels
506  *  o collapses to normal function call on systems with a single shared
507  *    primary cache.
508  */
509 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
510 {
511 	smp_call_function(func, info, 1);
512 }
513 
514 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
515 {
516 	preempt_disable();
517 
518 	smp_on_other_tlbs(func, info);
519 	func(info);
520 
521 	preempt_enable();
522 }
523 
524 /*
525  * The following tlb flush calls are invoked when old translations are
526  * being torn down, or pte attributes are changing. For single threaded
527  * address spaces, a new context is obtained on the current cpu, and tlb
528  * context on other cpus are invalidated to force a new context allocation
529  * at switch_mm time, should the mm ever be used on other cpus. For
530  * multithreaded address spaces, inter-CPU interrupts have to be sent.
531  * Another case where inter-CPU interrupts are required is when the target
532  * mm might be active on another cpu (eg debuggers doing the flushes on
533  * behalf of debugees, kswapd stealing pages from another process etc).
534  * Kanoj 07/00.
535  */
536 
537 void flush_tlb_mm(struct mm_struct *mm)
538 {
539 	if (!mm)
540 		return;
541 
542 	if (atomic_read(&mm->mm_users) == 0)
543 		return;		/* happens as a result of exit_mmap() */
544 
545 	preempt_disable();
546 
547 	if (cpu_has_mmid) {
548 		/*
549 		 * No need to worry about other CPUs - the ginvt in
550 		 * drop_mmu_context() will be globalized.
551 		 */
552 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
553 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
554 	} else {
555 		unsigned int cpu;
556 
557 		for_each_online_cpu(cpu) {
558 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
559 				set_cpu_context(cpu, mm, 0);
560 		}
561 	}
562 	drop_mmu_context(mm);
563 
564 	preempt_enable();
565 }
566 
567 struct flush_tlb_data {
568 	struct vm_area_struct *vma;
569 	unsigned long addr1;
570 	unsigned long addr2;
571 };
572 
573 static void flush_tlb_range_ipi(void *info)
574 {
575 	struct flush_tlb_data *fd = info;
576 
577 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
578 }
579 
580 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
581 {
582 	struct mm_struct *mm = vma->vm_mm;
583 	unsigned long addr;
584 	u32 old_mmid;
585 
586 	preempt_disable();
587 	if (cpu_has_mmid) {
588 		htw_stop();
589 		old_mmid = read_c0_memorymapid();
590 		write_c0_memorymapid(cpu_asid(0, mm));
591 		mtc0_tlbw_hazard();
592 		addr = round_down(start, PAGE_SIZE * 2);
593 		end = round_up(end, PAGE_SIZE * 2);
594 		do {
595 			ginvt_va_mmid(addr);
596 			sync_ginv();
597 			addr += PAGE_SIZE * 2;
598 		} while (addr < end);
599 		write_c0_memorymapid(old_mmid);
600 		instruction_hazard();
601 		htw_start();
602 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
603 		struct flush_tlb_data fd = {
604 			.vma = vma,
605 			.addr1 = start,
606 			.addr2 = end,
607 		};
608 
609 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
610 		local_flush_tlb_range(vma, start, end);
611 	} else {
612 		unsigned int cpu;
613 		int exec = vma->vm_flags & VM_EXEC;
614 
615 		for_each_online_cpu(cpu) {
616 			/*
617 			 * flush_cache_range() will only fully flush icache if
618 			 * the VMA is executable, otherwise we must invalidate
619 			 * ASID without it appearing to has_valid_asid() as if
620 			 * mm has been completely unused by that CPU.
621 			 */
622 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
623 				set_cpu_context(cpu, mm, !exec);
624 		}
625 		local_flush_tlb_range(vma, start, end);
626 	}
627 	preempt_enable();
628 }
629 
630 static void flush_tlb_kernel_range_ipi(void *info)
631 {
632 	struct flush_tlb_data *fd = info;
633 
634 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
635 }
636 
637 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
638 {
639 	struct flush_tlb_data fd = {
640 		.addr1 = start,
641 		.addr2 = end,
642 	};
643 
644 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
645 }
646 
647 static void flush_tlb_page_ipi(void *info)
648 {
649 	struct flush_tlb_data *fd = info;
650 
651 	local_flush_tlb_page(fd->vma, fd->addr1);
652 }
653 
654 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
655 {
656 	u32 old_mmid;
657 
658 	preempt_disable();
659 	if (cpu_has_mmid) {
660 		htw_stop();
661 		old_mmid = read_c0_memorymapid();
662 		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
663 		mtc0_tlbw_hazard();
664 		ginvt_va_mmid(page);
665 		sync_ginv();
666 		write_c0_memorymapid(old_mmid);
667 		instruction_hazard();
668 		htw_start();
669 	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
670 		   (current->mm != vma->vm_mm)) {
671 		struct flush_tlb_data fd = {
672 			.vma = vma,
673 			.addr1 = page,
674 		};
675 
676 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
677 		local_flush_tlb_page(vma, page);
678 	} else {
679 		unsigned int cpu;
680 
681 		for_each_online_cpu(cpu) {
682 			/*
683 			 * flush_cache_page() only does partial flushes, so
684 			 * invalidate ASID without it appearing to
685 			 * has_valid_asid() as if mm has been completely unused
686 			 * by that CPU.
687 			 */
688 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
689 				set_cpu_context(cpu, vma->vm_mm, 1);
690 		}
691 		local_flush_tlb_page(vma, page);
692 	}
693 	preempt_enable();
694 }
695 
696 static void flush_tlb_one_ipi(void *info)
697 {
698 	unsigned long vaddr = (unsigned long) info;
699 
700 	local_flush_tlb_one(vaddr);
701 }
702 
703 void flush_tlb_one(unsigned long vaddr)
704 {
705 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
706 }
707 
708 EXPORT_SYMBOL(flush_tlb_page);
709 EXPORT_SYMBOL(flush_tlb_one);
710 
711 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
712 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
713 {
714 	if (mp_ops->cleanup_dead_cpu)
715 		mp_ops->cleanup_dead_cpu(cpu);
716 }
717 #endif
718 
719 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
720 
721 static void tick_broadcast_callee(void *info)
722 {
723 	tick_receive_broadcast();
724 }
725 
726 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
727 	CSD_INIT(tick_broadcast_callee, NULL);
728 
729 void tick_broadcast(const struct cpumask *mask)
730 {
731 	call_single_data_t *csd;
732 	int cpu;
733 
734 	for_each_cpu(cpu, mask) {
735 		csd = &per_cpu(tick_broadcast_csd, cpu);
736 		smp_call_function_single_async(cpu, csd);
737 	}
738 }
739 
740 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
741