1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/module.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 #include <linux/ftrace.h> 36 37 #include <linux/atomic.h> 38 #include <asm/cpu.h> 39 #include <asm/processor.h> 40 #include <asm/idle.h> 41 #include <asm/r4k-timer.h> 42 #include <asm/mmu_context.h> 43 #include <asm/time.h> 44 #include <asm/setup.h> 45 46 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 47 48 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 49 EXPORT_SYMBOL(__cpu_number_map); 50 51 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 52 EXPORT_SYMBOL(__cpu_logical_map); 53 54 /* Number of TCs (or siblings in Intel speak) per CPU core */ 55 int smp_num_siblings = 1; 56 EXPORT_SYMBOL(smp_num_siblings); 57 58 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 59 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 60 EXPORT_SYMBOL(cpu_sibling_map); 61 62 /* representing the core map of multi-core chips of each logical CPU */ 63 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 64 EXPORT_SYMBOL(cpu_core_map); 65 66 /* representing cpus for which sibling maps can be computed */ 67 static cpumask_t cpu_sibling_setup_map; 68 69 /* representing cpus for which core maps can be computed */ 70 static cpumask_t cpu_core_setup_map; 71 72 cpumask_t cpu_coherent_mask; 73 74 static inline void set_cpu_sibling_map(int cpu) 75 { 76 int i; 77 78 cpu_set(cpu, cpu_sibling_setup_map); 79 80 if (smp_num_siblings > 1) { 81 for_each_cpu_mask(i, cpu_sibling_setup_map) { 82 if (cpu_data[cpu].package == cpu_data[i].package && 83 cpu_data[cpu].core == cpu_data[i].core) { 84 cpu_set(i, cpu_sibling_map[cpu]); 85 cpu_set(cpu, cpu_sibling_map[i]); 86 } 87 } 88 } else 89 cpu_set(cpu, cpu_sibling_map[cpu]); 90 } 91 92 static inline void set_cpu_core_map(int cpu) 93 { 94 int i; 95 96 cpu_set(cpu, cpu_core_setup_map); 97 98 for_each_cpu_mask(i, cpu_core_setup_map) { 99 if (cpu_data[cpu].package == cpu_data[i].package) { 100 cpu_set(i, cpu_core_map[cpu]); 101 cpu_set(cpu, cpu_core_map[i]); 102 } 103 } 104 } 105 106 struct plat_smp_ops *mp_ops; 107 EXPORT_SYMBOL(mp_ops); 108 109 void register_smp_ops(struct plat_smp_ops *ops) 110 { 111 if (mp_ops) 112 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 113 114 mp_ops = ops; 115 } 116 117 /* 118 * First C code run on the secondary CPUs after being started up by 119 * the master. 120 */ 121 asmlinkage void start_secondary(void) 122 { 123 unsigned int cpu; 124 125 cpu_probe(); 126 per_cpu_trap_init(false); 127 mips_clockevent_init(); 128 mp_ops->init_secondary(); 129 cpu_report(); 130 131 /* 132 * XXX parity protection should be folded in here when it's converted 133 * to an option instead of something based on .cputype 134 */ 135 136 calibrate_delay(); 137 preempt_disable(); 138 cpu = smp_processor_id(); 139 cpu_data[cpu].udelay_val = loops_per_jiffy; 140 141 cpu_set(cpu, cpu_coherent_mask); 142 notify_cpu_starting(cpu); 143 144 set_cpu_online(cpu, true); 145 146 set_cpu_sibling_map(cpu); 147 set_cpu_core_map(cpu); 148 149 cpu_set(cpu, cpu_callin_map); 150 151 synchronise_count_slave(cpu); 152 153 /* 154 * irq will be enabled in ->smp_finish(), enabling it too early 155 * is dangerous. 156 */ 157 WARN_ON_ONCE(!irqs_disabled()); 158 mp_ops->smp_finish(); 159 160 cpu_startup_entry(CPUHP_ONLINE); 161 } 162 163 /* 164 * Call into both interrupt handlers, as we share the IPI for them 165 */ 166 void __irq_entry smp_call_function_interrupt(void) 167 { 168 irq_enter(); 169 generic_smp_call_function_interrupt(); 170 irq_exit(); 171 } 172 173 static void stop_this_cpu(void *dummy) 174 { 175 /* 176 * Remove this CPU: 177 */ 178 set_cpu_online(smp_processor_id(), false); 179 for (;;) { 180 if (cpu_wait) 181 (*cpu_wait)(); /* Wait if available. */ 182 } 183 } 184 185 void smp_send_stop(void) 186 { 187 smp_call_function(stop_this_cpu, NULL, 0); 188 } 189 190 void __init smp_cpus_done(unsigned int max_cpus) 191 { 192 } 193 194 /* called from main before smp_init() */ 195 void __init smp_prepare_cpus(unsigned int max_cpus) 196 { 197 init_new_context(current, &init_mm); 198 current_thread_info()->cpu = 0; 199 mp_ops->prepare_cpus(max_cpus); 200 set_cpu_sibling_map(0); 201 set_cpu_core_map(0); 202 #ifndef CONFIG_HOTPLUG_CPU 203 init_cpu_present(cpu_possible_mask); 204 #endif 205 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 206 } 207 208 /* preload SMP state for boot cpu */ 209 void smp_prepare_boot_cpu(void) 210 { 211 set_cpu_possible(0, true); 212 set_cpu_online(0, true); 213 cpu_set(0, cpu_callin_map); 214 } 215 216 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 217 { 218 mp_ops->boot_secondary(cpu, tidle); 219 220 /* 221 * Trust is futile. We should really have timeouts ... 222 */ 223 while (!cpu_isset(cpu, cpu_callin_map)) 224 udelay(100); 225 226 synchronise_count_master(cpu); 227 return 0; 228 } 229 230 /* Not really SMP stuff ... */ 231 int setup_profiling_timer(unsigned int multiplier) 232 { 233 return 0; 234 } 235 236 static void flush_tlb_all_ipi(void *info) 237 { 238 local_flush_tlb_all(); 239 } 240 241 void flush_tlb_all(void) 242 { 243 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 244 } 245 246 static void flush_tlb_mm_ipi(void *mm) 247 { 248 local_flush_tlb_mm((struct mm_struct *)mm); 249 } 250 251 /* 252 * Special Variant of smp_call_function for use by TLB functions: 253 * 254 * o No return value 255 * o collapses to normal function call on UP kernels 256 * o collapses to normal function call on systems with a single shared 257 * primary cache. 258 */ 259 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 260 { 261 smp_call_function(func, info, 1); 262 } 263 264 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 265 { 266 preempt_disable(); 267 268 smp_on_other_tlbs(func, info); 269 func(info); 270 271 preempt_enable(); 272 } 273 274 /* 275 * The following tlb flush calls are invoked when old translations are 276 * being torn down, or pte attributes are changing. For single threaded 277 * address spaces, a new context is obtained on the current cpu, and tlb 278 * context on other cpus are invalidated to force a new context allocation 279 * at switch_mm time, should the mm ever be used on other cpus. For 280 * multithreaded address spaces, intercpu interrupts have to be sent. 281 * Another case where intercpu interrupts are required is when the target 282 * mm might be active on another cpu (eg debuggers doing the flushes on 283 * behalf of debugees, kswapd stealing pages from another process etc). 284 * Kanoj 07/00. 285 */ 286 287 void flush_tlb_mm(struct mm_struct *mm) 288 { 289 preempt_disable(); 290 291 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 292 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 293 } else { 294 unsigned int cpu; 295 296 for_each_online_cpu(cpu) { 297 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 298 cpu_context(cpu, mm) = 0; 299 } 300 } 301 local_flush_tlb_mm(mm); 302 303 preempt_enable(); 304 } 305 306 struct flush_tlb_data { 307 struct vm_area_struct *vma; 308 unsigned long addr1; 309 unsigned long addr2; 310 }; 311 312 static void flush_tlb_range_ipi(void *info) 313 { 314 struct flush_tlb_data *fd = info; 315 316 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 317 } 318 319 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 320 { 321 struct mm_struct *mm = vma->vm_mm; 322 323 preempt_disable(); 324 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 325 struct flush_tlb_data fd = { 326 .vma = vma, 327 .addr1 = start, 328 .addr2 = end, 329 }; 330 331 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 332 } else { 333 unsigned int cpu; 334 335 for_each_online_cpu(cpu) { 336 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 337 cpu_context(cpu, mm) = 0; 338 } 339 } 340 local_flush_tlb_range(vma, start, end); 341 preempt_enable(); 342 } 343 344 static void flush_tlb_kernel_range_ipi(void *info) 345 { 346 struct flush_tlb_data *fd = info; 347 348 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 349 } 350 351 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 352 { 353 struct flush_tlb_data fd = { 354 .addr1 = start, 355 .addr2 = end, 356 }; 357 358 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 359 } 360 361 static void flush_tlb_page_ipi(void *info) 362 { 363 struct flush_tlb_data *fd = info; 364 365 local_flush_tlb_page(fd->vma, fd->addr1); 366 } 367 368 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 369 { 370 preempt_disable(); 371 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 372 struct flush_tlb_data fd = { 373 .vma = vma, 374 .addr1 = page, 375 }; 376 377 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 378 } else { 379 unsigned int cpu; 380 381 for_each_online_cpu(cpu) { 382 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 383 cpu_context(cpu, vma->vm_mm) = 0; 384 } 385 } 386 local_flush_tlb_page(vma, page); 387 preempt_enable(); 388 } 389 390 static void flush_tlb_one_ipi(void *info) 391 { 392 unsigned long vaddr = (unsigned long) info; 393 394 local_flush_tlb_one(vaddr); 395 } 396 397 void flush_tlb_one(unsigned long vaddr) 398 { 399 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 400 } 401 402 EXPORT_SYMBOL(flush_tlb_page); 403 EXPORT_SYMBOL(flush_tlb_one); 404 405 #if defined(CONFIG_KEXEC) 406 void (*dump_ipi_function_ptr)(void *) = NULL; 407 void dump_send_ipi(void (*dump_ipi_callback)(void *)) 408 { 409 int i; 410 int cpu = smp_processor_id(); 411 412 dump_ipi_function_ptr = dump_ipi_callback; 413 smp_mb(); 414 for_each_online_cpu(i) 415 if (i != cpu) 416 mp_ops->send_ipi_single(i, SMP_DUMP); 417 418 } 419 EXPORT_SYMBOL(dump_send_ipi); 420 #endif 421 422 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 423 424 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); 425 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd); 426 427 void tick_broadcast(const struct cpumask *mask) 428 { 429 atomic_t *count; 430 struct call_single_data *csd; 431 int cpu; 432 433 for_each_cpu(cpu, mask) { 434 count = &per_cpu(tick_broadcast_count, cpu); 435 csd = &per_cpu(tick_broadcast_csd, cpu); 436 437 if (atomic_inc_return(count) == 1) 438 smp_call_function_single_async(cpu, csd); 439 } 440 } 441 442 static void tick_broadcast_callee(void *info) 443 { 444 int cpu = smp_processor_id(); 445 tick_receive_broadcast(); 446 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); 447 } 448 449 static int __init tick_broadcast_init(void) 450 { 451 struct call_single_data *csd; 452 int cpu; 453 454 for (cpu = 0; cpu < NR_CPUS; cpu++) { 455 csd = &per_cpu(tick_broadcast_csd, cpu); 456 csd->func = tick_broadcast_callee; 457 } 458 459 return 0; 460 } 461 early_initcall(tick_broadcast_init); 462 463 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 464