xref: /linux/arch/mips/kernel/smp.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/threads.h>
27 #include <linux/module.h>
28 #include <linux/time.h>
29 #include <linux/timex.h>
30 #include <linux/sched.h>
31 #include <linux/cpumask.h>
32 #include <linux/cpu.h>
33 
34 #include <asm/atomic.h>
35 #include <asm/cpu.h>
36 #include <asm/processor.h>
37 #include <asm/system.h>
38 #include <asm/mmu_context.h>
39 #include <asm/smp.h>
40 
41 cpumask_t phys_cpu_present_map;		/* Bitmask of available CPUs */
42 volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
43 cpumask_t cpu_online_map;		/* Bitmask of currently online CPUs */
44 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
45 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
46 
47 EXPORT_SYMBOL(phys_cpu_present_map);
48 EXPORT_SYMBOL(cpu_online_map);
49 
50 static void smp_tune_scheduling (void)
51 {
52 	struct cache_desc *cd = &current_cpu_data.scache;
53 	unsigned long cachesize;       /* kB   */
54 	unsigned long cpu_khz;
55 
56 	/*
57 	 * Crude estimate until we actually meassure ...
58 	 */
59 	cpu_khz = loops_per_jiffy * 2 * HZ / 1000;
60 
61 	/*
62 	 * Rough estimation for SMP scheduling, this is the number of
63 	 * cycles it takes for a fully memory-limited process to flush
64 	 * the SMP-local cache.
65 	 *
66 	 * (For a P5 this pretty much means we will choose another idle
67 	 *  CPU almost always at wakeup time (this is due to the small
68 	 *  L1 cache), on PIIs it's around 50-100 usecs, depending on
69 	 *  the cache size)
70 	 */
71 	if (!cpu_khz)
72 		return;
73 
74 	cachesize = cd->linesz * cd->sets * cd->ways;
75 }
76 
77 extern void __init calibrate_delay(void);
78 extern ATTRIB_NORET void cpu_idle(void);
79 
80 /*
81  * First C code run on the secondary CPUs after being started up by
82  * the master.
83  */
84 asmlinkage void start_secondary(void)
85 {
86 	unsigned int cpu;
87 
88 	cpu_probe();
89 	cpu_report();
90 	per_cpu_trap_init();
91 	prom_init_secondary();
92 
93 	/*
94 	 * XXX parity protection should be folded in here when it's converted
95 	 * to an option instead of something based on .cputype
96 	 */
97 
98 	calibrate_delay();
99 	preempt_disable();
100 	cpu = smp_processor_id();
101 	cpu_data[cpu].udelay_val = loops_per_jiffy;
102 
103 	prom_smp_finish();
104 
105 	cpu_set(cpu, cpu_callin_map);
106 
107 	cpu_idle();
108 }
109 
110 DEFINE_SPINLOCK(smp_call_lock);
111 
112 struct call_data_struct *call_data;
113 
114 /*
115  * Run a function on all other CPUs.
116  *  <func>      The function to run. This must be fast and non-blocking.
117  *  <info>      An arbitrary pointer to pass to the function.
118  *  <retry>     If true, keep retrying until ready.
119  *  <wait>      If true, wait until function has completed on other CPUs.
120  *  [RETURNS]   0 on success, else a negative status code.
121  *
122  * Does not return until remote CPUs are nearly ready to execute <func>
123  * or are or have executed.
124  *
125  * You must not call this function with disabled interrupts or from a
126  * hardware interrupt handler or from a bottom half handler:
127  *
128  * CPU A                               CPU B
129  * Disable interrupts
130  *                                     smp_call_function()
131  *                                     Take call_lock
132  *                                     Send IPIs
133  *                                     Wait for all cpus to acknowledge IPI
134  *                                     CPU A has not responded, spin waiting
135  *                                     for cpu A to respond, holding call_lock
136  * smp_call_function()
137  * Spin waiting for call_lock
138  * Deadlock                            Deadlock
139  */
140 int smp_call_function (void (*func) (void *info), void *info, int retry,
141 								int wait)
142 {
143 	struct call_data_struct data;
144 	int i, cpus = num_online_cpus() - 1;
145 	int cpu = smp_processor_id();
146 
147 	/*
148 	 * Can die spectacularly if this CPU isn't yet marked online
149 	 */
150 	BUG_ON(!cpu_online(cpu));
151 
152 	if (!cpus)
153 		return 0;
154 
155 	/* Can deadlock when called with interrupts disabled */
156 	WARN_ON(irqs_disabled());
157 
158 	data.func = func;
159 	data.info = info;
160 	atomic_set(&data.started, 0);
161 	data.wait = wait;
162 	if (wait)
163 		atomic_set(&data.finished, 0);
164 
165 	spin_lock(&smp_call_lock);
166 	call_data = &data;
167 	mb();
168 
169 	/* Send a message to all other CPUs and wait for them to respond */
170 	for_each_online_cpu(i)
171 		if (i != cpu)
172 			core_send_ipi(i, SMP_CALL_FUNCTION);
173 
174 	/* Wait for response */
175 	/* FIXME: lock-up detection, backtrace on lock-up */
176 	while (atomic_read(&data.started) != cpus)
177 		barrier();
178 
179 	if (wait)
180 		while (atomic_read(&data.finished) != cpus)
181 			barrier();
182 	spin_unlock(&smp_call_lock);
183 
184 	return 0;
185 }
186 
187 void smp_call_function_interrupt(void)
188 {
189 	void (*func) (void *info) = call_data->func;
190 	void *info = call_data->info;
191 	int wait = call_data->wait;
192 
193 	/*
194 	 * Notify initiating CPU that I've grabbed the data and am
195 	 * about to execute the function.
196 	 */
197 	mb();
198 	atomic_inc(&call_data->started);
199 
200 	/*
201 	 * At this point the info structure may be out of scope unless wait==1.
202 	 */
203 	irq_enter();
204 	(*func)(info);
205 	irq_exit();
206 
207 	if (wait) {
208 		mb();
209 		atomic_inc(&call_data->finished);
210 	}
211 }
212 
213 static void stop_this_cpu(void *dummy)
214 {
215 	/*
216 	 * Remove this CPU:
217 	 */
218 	cpu_clear(smp_processor_id(), cpu_online_map);
219 	local_irq_enable();	/* May need to service _machine_restart IPI */
220 	for (;;);		/* Wait if available. */
221 }
222 
223 void smp_send_stop(void)
224 {
225 	smp_call_function(stop_this_cpu, NULL, 1, 0);
226 }
227 
228 void __init smp_cpus_done(unsigned int max_cpus)
229 {
230 	prom_cpus_done();
231 }
232 
233 /* called from main before smp_init() */
234 void __init smp_prepare_cpus(unsigned int max_cpus)
235 {
236 	init_new_context(current, &init_mm);
237 	current_thread_info()->cpu = 0;
238 	smp_tune_scheduling();
239 	plat_prepare_cpus(max_cpus);
240 }
241 
242 /* preload SMP state for boot cpu */
243 void __devinit smp_prepare_boot_cpu(void)
244 {
245 	/*
246 	 * This assumes that bootup is always handled by the processor
247 	 * with the logic and physical number 0.
248 	 */
249 	__cpu_number_map[0] = 0;
250 	__cpu_logical_map[0] = 0;
251 	cpu_set(0, phys_cpu_present_map);
252 	cpu_set(0, cpu_online_map);
253 	cpu_set(0, cpu_callin_map);
254 }
255 
256 /*
257  * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu
258  * and keep control until "cpu_online(cpu)" is set.  Note: cpu is
259  * physical, not logical.
260  */
261 int __devinit __cpu_up(unsigned int cpu)
262 {
263 	struct task_struct *idle;
264 
265 	/*
266 	 * Processor goes to start_secondary(), sets online flag
267 	 * The following code is purely to make sure
268 	 * Linux can schedule processes on this slave.
269 	 */
270 	idle = fork_idle(cpu);
271 	if (IS_ERR(idle))
272 		panic(KERN_ERR "Fork failed for CPU %d", cpu);
273 
274 	prom_boot_secondary(cpu, idle);
275 
276 	/*
277 	 * Trust is futile.  We should really have timeouts ...
278 	 */
279 	while (!cpu_isset(cpu, cpu_callin_map))
280 		udelay(100);
281 
282 	cpu_set(cpu, cpu_online_map);
283 
284 	return 0;
285 }
286 
287 /* Not really SMP stuff ... */
288 int setup_profiling_timer(unsigned int multiplier)
289 {
290 	return 0;
291 }
292 
293 static void flush_tlb_all_ipi(void *info)
294 {
295 	local_flush_tlb_all();
296 }
297 
298 void flush_tlb_all(void)
299 {
300 	on_each_cpu(flush_tlb_all_ipi, 0, 1, 1);
301 }
302 
303 static void flush_tlb_mm_ipi(void *mm)
304 {
305 	local_flush_tlb_mm((struct mm_struct *)mm);
306 }
307 
308 /*
309  * The following tlb flush calls are invoked when old translations are
310  * being torn down, or pte attributes are changing. For single threaded
311  * address spaces, a new context is obtained on the current cpu, and tlb
312  * context on other cpus are invalidated to force a new context allocation
313  * at switch_mm time, should the mm ever be used on other cpus. For
314  * multithreaded address spaces, intercpu interrupts have to be sent.
315  * Another case where intercpu interrupts are required is when the target
316  * mm might be active on another cpu (eg debuggers doing the flushes on
317  * behalf of debugees, kswapd stealing pages from another process etc).
318  * Kanoj 07/00.
319  */
320 
321 void flush_tlb_mm(struct mm_struct *mm)
322 {
323 	preempt_disable();
324 
325 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
326 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1);
327 	} else {
328 		int i;
329 		for (i = 0; i < num_online_cpus(); i++)
330 			if (smp_processor_id() != i)
331 				cpu_context(i, mm) = 0;
332 	}
333 	local_flush_tlb_mm(mm);
334 
335 	preempt_enable();
336 }
337 
338 struct flush_tlb_data {
339 	struct vm_area_struct *vma;
340 	unsigned long addr1;
341 	unsigned long addr2;
342 };
343 
344 static void flush_tlb_range_ipi(void *info)
345 {
346 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
347 
348 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
349 }
350 
351 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
352 {
353 	struct mm_struct *mm = vma->vm_mm;
354 
355 	preempt_disable();
356 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
357 		struct flush_tlb_data fd;
358 
359 		fd.vma = vma;
360 		fd.addr1 = start;
361 		fd.addr2 = end;
362 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1);
363 	} else {
364 		int i;
365 		for (i = 0; i < num_online_cpus(); i++)
366 			if (smp_processor_id() != i)
367 				cpu_context(i, mm) = 0;
368 	}
369 	local_flush_tlb_range(vma, start, end);
370 	preempt_enable();
371 }
372 
373 static void flush_tlb_kernel_range_ipi(void *info)
374 {
375 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
376 
377 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
378 }
379 
380 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
381 {
382 	struct flush_tlb_data fd;
383 
384 	fd.addr1 = start;
385 	fd.addr2 = end;
386 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1, 1);
387 }
388 
389 static void flush_tlb_page_ipi(void *info)
390 {
391 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
392 
393 	local_flush_tlb_page(fd->vma, fd->addr1);
394 }
395 
396 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
397 {
398 	preempt_disable();
399 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
400 		struct flush_tlb_data fd;
401 
402 		fd.vma = vma;
403 		fd.addr1 = page;
404 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1);
405 	} else {
406 		int i;
407 		for (i = 0; i < num_online_cpus(); i++)
408 			if (smp_processor_id() != i)
409 				cpu_context(i, vma->vm_mm) = 0;
410 	}
411 	local_flush_tlb_page(vma, page);
412 	preempt_enable();
413 }
414 
415 static void flush_tlb_one_ipi(void *info)
416 {
417 	unsigned long vaddr = (unsigned long) info;
418 
419 	local_flush_tlb_one(vaddr);
420 }
421 
422 void flush_tlb_one(unsigned long vaddr)
423 {
424 	smp_call_function(flush_tlb_one_ipi, (void *) vaddr, 1, 1);
425 	local_flush_tlb_one(vaddr);
426 }
427 
428 static DEFINE_PER_CPU(struct cpu, cpu_devices);
429 
430 static int __init topology_init(void)
431 {
432 	int cpu;
433 	int ret;
434 
435 	for_each_cpu(cpu) {
436 		ret = register_cpu(&per_cpu(cpu_devices, cpu), cpu, NULL);
437 		if (ret)
438 			printk(KERN_WARNING "topology_init: register_cpu %d "
439 			       "failed (%d)\n", cpu, ret);
440 	}
441 
442 	return 0;
443 }
444 
445 subsys_initcall(topology_init);
446 
447 EXPORT_SYMBOL(flush_tlb_page);
448 EXPORT_SYMBOL(flush_tlb_one);
449 EXPORT_SYMBOL(cpu_data);
450 EXPORT_SYMBOL(synchronize_irq);
451