1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/module.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 #include <linux/ftrace.h> 36 37 #include <linux/atomic.h> 38 #include <asm/cpu.h> 39 #include <asm/processor.h> 40 #include <asm/r4k-timer.h> 41 #include <asm/mmu_context.h> 42 #include <asm/time.h> 43 #include <asm/setup.h> 44 45 #ifdef CONFIG_MIPS_MT_SMTC 46 #include <asm/mipsmtregs.h> 47 #endif /* CONFIG_MIPS_MT_SMTC */ 48 49 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 50 51 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 52 EXPORT_SYMBOL(__cpu_number_map); 53 54 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 55 EXPORT_SYMBOL(__cpu_logical_map); 56 57 /* Number of TCs (or siblings in Intel speak) per CPU core */ 58 int smp_num_siblings = 1; 59 EXPORT_SYMBOL(smp_num_siblings); 60 61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 63 EXPORT_SYMBOL(cpu_sibling_map); 64 65 /* representing cpus for which sibling maps can be computed */ 66 static cpumask_t cpu_sibling_setup_map; 67 68 static inline void set_cpu_sibling_map(int cpu) 69 { 70 int i; 71 72 cpu_set(cpu, cpu_sibling_setup_map); 73 74 if (smp_num_siblings > 1) { 75 for_each_cpu_mask(i, cpu_sibling_setup_map) { 76 if (cpu_data[cpu].core == cpu_data[i].core) { 77 cpu_set(i, cpu_sibling_map[cpu]); 78 cpu_set(cpu, cpu_sibling_map[i]); 79 } 80 } 81 } else 82 cpu_set(cpu, cpu_sibling_map[cpu]); 83 } 84 85 struct plat_smp_ops *mp_ops; 86 87 __cpuinit void register_smp_ops(struct plat_smp_ops *ops) 88 { 89 if (mp_ops) 90 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 91 92 mp_ops = ops; 93 } 94 95 /* 96 * First C code run on the secondary CPUs after being started up by 97 * the master. 98 */ 99 asmlinkage __cpuinit void start_secondary(void) 100 { 101 unsigned int cpu; 102 103 #ifdef CONFIG_MIPS_MT_SMTC 104 /* Only do cpu_probe for first TC of CPU */ 105 if ((read_c0_tcbind() & TCBIND_CURTC) == 0) 106 #endif /* CONFIG_MIPS_MT_SMTC */ 107 cpu_probe(); 108 cpu_report(); 109 per_cpu_trap_init(false); 110 mips_clockevent_init(); 111 mp_ops->init_secondary(); 112 113 /* 114 * XXX parity protection should be folded in here when it's converted 115 * to an option instead of something based on .cputype 116 */ 117 118 calibrate_delay(); 119 preempt_disable(); 120 cpu = smp_processor_id(); 121 cpu_data[cpu].udelay_val = loops_per_jiffy; 122 123 notify_cpu_starting(cpu); 124 125 set_cpu_online(cpu, true); 126 127 set_cpu_sibling_map(cpu); 128 129 cpu_set(cpu, cpu_callin_map); 130 131 synchronise_count_slave(); 132 133 /* 134 * irq will be enabled in ->smp_finish(), enabling it too early 135 * is dangerous. 136 */ 137 WARN_ON_ONCE(!irqs_disabled()); 138 mp_ops->smp_finish(); 139 140 cpu_idle(); 141 } 142 143 /* 144 * Call into both interrupt handlers, as we share the IPI for them 145 */ 146 void __irq_entry smp_call_function_interrupt(void) 147 { 148 irq_enter(); 149 generic_smp_call_function_single_interrupt(); 150 generic_smp_call_function_interrupt(); 151 irq_exit(); 152 } 153 154 static void stop_this_cpu(void *dummy) 155 { 156 /* 157 * Remove this CPU: 158 */ 159 set_cpu_online(smp_processor_id(), false); 160 for (;;) { 161 if (cpu_wait) 162 (*cpu_wait)(); /* Wait if available. */ 163 } 164 } 165 166 void smp_send_stop(void) 167 { 168 smp_call_function(stop_this_cpu, NULL, 0); 169 } 170 171 void __init smp_cpus_done(unsigned int max_cpus) 172 { 173 mp_ops->cpus_done(); 174 synchronise_count_master(); 175 } 176 177 /* called from main before smp_init() */ 178 void __init smp_prepare_cpus(unsigned int max_cpus) 179 { 180 init_new_context(current, &init_mm); 181 current_thread_info()->cpu = 0; 182 mp_ops->prepare_cpus(max_cpus); 183 set_cpu_sibling_map(0); 184 #ifndef CONFIG_HOTPLUG_CPU 185 init_cpu_present(cpu_possible_mask); 186 #endif 187 } 188 189 /* preload SMP state for boot cpu */ 190 void __devinit smp_prepare_boot_cpu(void) 191 { 192 set_cpu_possible(0, true); 193 set_cpu_online(0, true); 194 cpu_set(0, cpu_callin_map); 195 } 196 197 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle) 198 { 199 mp_ops->boot_secondary(cpu, tidle); 200 201 /* 202 * Trust is futile. We should really have timeouts ... 203 */ 204 while (!cpu_isset(cpu, cpu_callin_map)) 205 udelay(100); 206 207 return 0; 208 } 209 210 /* Not really SMP stuff ... */ 211 int setup_profiling_timer(unsigned int multiplier) 212 { 213 return 0; 214 } 215 216 static void flush_tlb_all_ipi(void *info) 217 { 218 local_flush_tlb_all(); 219 } 220 221 void flush_tlb_all(void) 222 { 223 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 224 } 225 226 static void flush_tlb_mm_ipi(void *mm) 227 { 228 local_flush_tlb_mm((struct mm_struct *)mm); 229 } 230 231 /* 232 * Special Variant of smp_call_function for use by TLB functions: 233 * 234 * o No return value 235 * o collapses to normal function call on UP kernels 236 * o collapses to normal function call on systems with a single shared 237 * primary cache. 238 * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core. 239 */ 240 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 241 { 242 #ifndef CONFIG_MIPS_MT_SMTC 243 smp_call_function(func, info, 1); 244 #endif 245 } 246 247 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 248 { 249 preempt_disable(); 250 251 smp_on_other_tlbs(func, info); 252 func(info); 253 254 preempt_enable(); 255 } 256 257 /* 258 * The following tlb flush calls are invoked when old translations are 259 * being torn down, or pte attributes are changing. For single threaded 260 * address spaces, a new context is obtained on the current cpu, and tlb 261 * context on other cpus are invalidated to force a new context allocation 262 * at switch_mm time, should the mm ever be used on other cpus. For 263 * multithreaded address spaces, intercpu interrupts have to be sent. 264 * Another case where intercpu interrupts are required is when the target 265 * mm might be active on another cpu (eg debuggers doing the flushes on 266 * behalf of debugees, kswapd stealing pages from another process etc). 267 * Kanoj 07/00. 268 */ 269 270 void flush_tlb_mm(struct mm_struct *mm) 271 { 272 preempt_disable(); 273 274 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 275 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 276 } else { 277 unsigned int cpu; 278 279 for_each_online_cpu(cpu) { 280 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 281 cpu_context(cpu, mm) = 0; 282 } 283 } 284 local_flush_tlb_mm(mm); 285 286 preempt_enable(); 287 } 288 289 struct flush_tlb_data { 290 struct vm_area_struct *vma; 291 unsigned long addr1; 292 unsigned long addr2; 293 }; 294 295 static void flush_tlb_range_ipi(void *info) 296 { 297 struct flush_tlb_data *fd = info; 298 299 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 300 } 301 302 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 303 { 304 struct mm_struct *mm = vma->vm_mm; 305 306 preempt_disable(); 307 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 308 struct flush_tlb_data fd = { 309 .vma = vma, 310 .addr1 = start, 311 .addr2 = end, 312 }; 313 314 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 315 } else { 316 unsigned int cpu; 317 318 for_each_online_cpu(cpu) { 319 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 320 cpu_context(cpu, mm) = 0; 321 } 322 } 323 local_flush_tlb_range(vma, start, end); 324 preempt_enable(); 325 } 326 327 static void flush_tlb_kernel_range_ipi(void *info) 328 { 329 struct flush_tlb_data *fd = info; 330 331 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 332 } 333 334 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 335 { 336 struct flush_tlb_data fd = { 337 .addr1 = start, 338 .addr2 = end, 339 }; 340 341 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 342 } 343 344 static void flush_tlb_page_ipi(void *info) 345 { 346 struct flush_tlb_data *fd = info; 347 348 local_flush_tlb_page(fd->vma, fd->addr1); 349 } 350 351 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 352 { 353 preempt_disable(); 354 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 355 struct flush_tlb_data fd = { 356 .vma = vma, 357 .addr1 = page, 358 }; 359 360 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 361 } else { 362 unsigned int cpu; 363 364 for_each_online_cpu(cpu) { 365 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 366 cpu_context(cpu, vma->vm_mm) = 0; 367 } 368 } 369 local_flush_tlb_page(vma, page); 370 preempt_enable(); 371 } 372 373 static void flush_tlb_one_ipi(void *info) 374 { 375 unsigned long vaddr = (unsigned long) info; 376 377 local_flush_tlb_one(vaddr); 378 } 379 380 void flush_tlb_one(unsigned long vaddr) 381 { 382 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 383 } 384 385 EXPORT_SYMBOL(flush_tlb_page); 386 EXPORT_SYMBOL(flush_tlb_one); 387