xref: /linux/arch/mips/kernel/smp.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2000, 2001 Kanoj Sarcar
5  * Copyright (C) 2000, 2001 Ralf Baechle
6  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8  */
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/smp.h>
14 #include <linux/spinlock.h>
15 #include <linux/threads.h>
16 #include <linux/export.h>
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/sched/mm.h>
20 #include <linux/cpumask.h>
21 #include <linux/cpu.h>
22 #include <linux/err.h>
23 #include <linux/ftrace.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 
28 #include <linux/atomic.h>
29 #include <asm/cpu.h>
30 #include <asm/ginvt.h>
31 #include <asm/processor.h>
32 #include <asm/idle.h>
33 #include <asm/r4k-timer.h>
34 #include <asm/mips-cps.h>
35 #include <asm/mmu_context.h>
36 #include <asm/time.h>
37 #include <asm/setup.h>
38 #include <asm/maar.h>
39 
40 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
41 EXPORT_SYMBOL(__cpu_number_map);
42 
43 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
44 EXPORT_SYMBOL(__cpu_logical_map);
45 
46 /* Number of TCs (or siblings in Intel speak) per CPU core */
47 int smp_num_siblings = 1;
48 EXPORT_SYMBOL(smp_num_siblings);
49 
50 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
52 EXPORT_SYMBOL(cpu_sibling_map);
53 
54 /* representing the core map of multi-core chips of each logical CPU */
55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
56 EXPORT_SYMBOL(cpu_core_map);
57 
58 static DECLARE_COMPLETION(cpu_starting);
59 static DECLARE_COMPLETION(cpu_running);
60 
61 /*
62  * A logcal cpu mask containing only one VPE per core to
63  * reduce the number of IPIs on large MT systems.
64  */
65 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
66 EXPORT_SYMBOL(cpu_foreign_map);
67 
68 /* representing cpus for which sibling maps can be computed */
69 static cpumask_t cpu_sibling_setup_map;
70 
71 /* representing cpus for which core maps can be computed */
72 static cpumask_t cpu_core_setup_map;
73 
74 cpumask_t cpu_coherent_mask;
75 
76 #ifdef CONFIG_GENERIC_IRQ_IPI
77 static struct irq_desc *call_desc;
78 static struct irq_desc *sched_desc;
79 #endif
80 
81 static inline void set_cpu_sibling_map(int cpu)
82 {
83 	int i;
84 
85 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
86 
87 	if (smp_num_siblings > 1) {
88 		for_each_cpu(i, &cpu_sibling_setup_map) {
89 			if (cpus_are_siblings(cpu, i)) {
90 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
91 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
92 			}
93 		}
94 	} else
95 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
96 }
97 
98 static inline void set_cpu_core_map(int cpu)
99 {
100 	int i;
101 
102 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
103 
104 	for_each_cpu(i, &cpu_core_setup_map) {
105 		if (cpu_data[cpu].package == cpu_data[i].package) {
106 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
107 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
108 		}
109 	}
110 }
111 
112 /*
113  * Calculate a new cpu_foreign_map mask whenever a
114  * new cpu appears or disappears.
115  */
116 void calculate_cpu_foreign_map(void)
117 {
118 	int i, k, core_present;
119 	cpumask_t temp_foreign_map;
120 
121 	/* Re-calculate the mask */
122 	cpumask_clear(&temp_foreign_map);
123 	for_each_online_cpu(i) {
124 		core_present = 0;
125 		for_each_cpu(k, &temp_foreign_map)
126 			if (cpus_are_siblings(i, k))
127 				core_present = 1;
128 		if (!core_present)
129 			cpumask_set_cpu(i, &temp_foreign_map);
130 	}
131 
132 	for_each_online_cpu(i)
133 		cpumask_andnot(&cpu_foreign_map[i],
134 			       &temp_foreign_map, &cpu_sibling_map[i]);
135 }
136 
137 const struct plat_smp_ops *mp_ops;
138 EXPORT_SYMBOL(mp_ops);
139 
140 void register_smp_ops(const struct plat_smp_ops *ops)
141 {
142 	if (mp_ops)
143 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
144 
145 	mp_ops = ops;
146 }
147 
148 #ifdef CONFIG_GENERIC_IRQ_IPI
149 void mips_smp_send_ipi_single(int cpu, unsigned int action)
150 {
151 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
152 }
153 
154 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
155 {
156 	unsigned long flags;
157 	unsigned int core;
158 	int cpu;
159 
160 	local_irq_save(flags);
161 
162 	switch (action) {
163 	case SMP_CALL_FUNCTION:
164 		__ipi_send_mask(call_desc, mask);
165 		break;
166 
167 	case SMP_RESCHEDULE_YOURSELF:
168 		__ipi_send_mask(sched_desc, mask);
169 		break;
170 
171 	default:
172 		BUG();
173 	}
174 
175 	if (mips_cpc_present()) {
176 		for_each_cpu(cpu, mask) {
177 			if (cpus_are_siblings(cpu, smp_processor_id()))
178 				continue;
179 
180 			core = cpu_core(&cpu_data[cpu]);
181 
182 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
183 				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
184 				mips_cpc_lock_other(core);
185 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
186 				mips_cpc_unlock_other();
187 				mips_cm_unlock_other();
188 			}
189 		}
190 	}
191 
192 	local_irq_restore(flags);
193 }
194 
195 
196 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
197 {
198 	scheduler_ipi();
199 
200 	return IRQ_HANDLED;
201 }
202 
203 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
204 {
205 	generic_smp_call_function_interrupt();
206 
207 	return IRQ_HANDLED;
208 }
209 
210 static void smp_ipi_init_one(unsigned int virq, const char *name,
211 			     irq_handler_t handler)
212 {
213 	int ret;
214 
215 	irq_set_handler(virq, handle_percpu_irq);
216 	ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
217 	BUG_ON(ret);
218 }
219 
220 static unsigned int call_virq, sched_virq;
221 
222 int mips_smp_ipi_allocate(const struct cpumask *mask)
223 {
224 	int virq;
225 	struct irq_domain *ipidomain;
226 	struct device_node *node;
227 
228 	node = of_irq_find_parent(of_root);
229 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
230 
231 	/*
232 	 * Some platforms have half DT setup. So if we found irq node but
233 	 * didn't find an ipidomain, try to search for one that is not in the
234 	 * DT.
235 	 */
236 	if (node && !ipidomain)
237 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
238 
239 	/*
240 	 * There are systems which use IPI IRQ domains, but only have one
241 	 * registered when some runtime condition is met. For example a Malta
242 	 * kernel may include support for GIC & CPU interrupt controller IPI
243 	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
244 	 * neither will be supported or registered.
245 	 *
246 	 * We only have a problem if we're actually using multiple CPUs so fail
247 	 * loudly if that is the case. Otherwise simply return, skipping IPI
248 	 * setup, if we're running with only a single CPU.
249 	 */
250 	if (!ipidomain) {
251 		BUG_ON(num_present_cpus() > 1);
252 		return 0;
253 	}
254 
255 	virq = irq_reserve_ipi(ipidomain, mask);
256 	BUG_ON(!virq);
257 	if (!call_virq)
258 		call_virq = virq;
259 
260 	virq = irq_reserve_ipi(ipidomain, mask);
261 	BUG_ON(!virq);
262 	if (!sched_virq)
263 		sched_virq = virq;
264 
265 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
266 		int cpu;
267 
268 		for_each_cpu(cpu, mask) {
269 			smp_ipi_init_one(call_virq + cpu, "IPI call",
270 					 ipi_call_interrupt);
271 			smp_ipi_init_one(sched_virq + cpu, "IPI resched",
272 					 ipi_resched_interrupt);
273 		}
274 	} else {
275 		smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
276 		smp_ipi_init_one(sched_virq, "IPI resched",
277 				 ipi_resched_interrupt);
278 	}
279 
280 	return 0;
281 }
282 
283 int mips_smp_ipi_free(const struct cpumask *mask)
284 {
285 	struct irq_domain *ipidomain;
286 	struct device_node *node;
287 
288 	node = of_irq_find_parent(of_root);
289 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
290 
291 	/*
292 	 * Some platforms have half DT setup. So if we found irq node but
293 	 * didn't find an ipidomain, try to search for one that is not in the
294 	 * DT.
295 	 */
296 	if (node && !ipidomain)
297 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
298 
299 	BUG_ON(!ipidomain);
300 
301 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
302 		int cpu;
303 
304 		for_each_cpu(cpu, mask) {
305 			free_irq(call_virq + cpu, NULL);
306 			free_irq(sched_virq + cpu, NULL);
307 		}
308 	}
309 	irq_destroy_ipi(call_virq, mask);
310 	irq_destroy_ipi(sched_virq, mask);
311 	return 0;
312 }
313 
314 
315 static int __init mips_smp_ipi_init(void)
316 {
317 	if (num_possible_cpus() == 1)
318 		return 0;
319 
320 	mips_smp_ipi_allocate(cpu_possible_mask);
321 
322 	call_desc = irq_to_desc(call_virq);
323 	sched_desc = irq_to_desc(sched_virq);
324 
325 	return 0;
326 }
327 early_initcall(mips_smp_ipi_init);
328 #endif
329 
330 /*
331  * First C code run on the secondary CPUs after being started up by
332  * the master.
333  */
334 asmlinkage void start_secondary(void)
335 {
336 	unsigned int cpu;
337 
338 	cpu_probe();
339 	per_cpu_trap_init(false);
340 	mips_clockevent_init();
341 	mp_ops->init_secondary();
342 	cpu_report();
343 	maar_init();
344 
345 	/*
346 	 * XXX parity protection should be folded in here when it's converted
347 	 * to an option instead of something based on .cputype
348 	 */
349 
350 	calibrate_delay();
351 	preempt_disable();
352 	cpu = smp_processor_id();
353 	cpu_data[cpu].udelay_val = loops_per_jiffy;
354 
355 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
356 	notify_cpu_starting(cpu);
357 
358 	/* Notify boot CPU that we're starting & ready to sync counters */
359 	complete(&cpu_starting);
360 
361 	synchronise_count_slave(cpu);
362 
363 	/* The CPU is running and counters synchronised, now mark it online */
364 	set_cpu_online(cpu, true);
365 
366 	set_cpu_sibling_map(cpu);
367 	set_cpu_core_map(cpu);
368 
369 	calculate_cpu_foreign_map();
370 
371 	/*
372 	 * Notify boot CPU that we're up & online and it can safely return
373 	 * from __cpu_up
374 	 */
375 	complete(&cpu_running);
376 
377 	/*
378 	 * irq will be enabled in ->smp_finish(), enabling it too early
379 	 * is dangerous.
380 	 */
381 	WARN_ON_ONCE(!irqs_disabled());
382 	mp_ops->smp_finish();
383 
384 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
385 }
386 
387 static void stop_this_cpu(void *dummy)
388 {
389 	/*
390 	 * Remove this CPU:
391 	 */
392 
393 	set_cpu_online(smp_processor_id(), false);
394 	calculate_cpu_foreign_map();
395 	local_irq_disable();
396 	while (1);
397 }
398 
399 void smp_send_stop(void)
400 {
401 	smp_call_function(stop_this_cpu, NULL, 0);
402 }
403 
404 void __init smp_cpus_done(unsigned int max_cpus)
405 {
406 }
407 
408 /* called from main before smp_init() */
409 void __init smp_prepare_cpus(unsigned int max_cpus)
410 {
411 	init_new_context(current, &init_mm);
412 	current_thread_info()->cpu = 0;
413 	mp_ops->prepare_cpus(max_cpus);
414 	set_cpu_sibling_map(0);
415 	set_cpu_core_map(0);
416 	calculate_cpu_foreign_map();
417 #ifndef CONFIG_HOTPLUG_CPU
418 	init_cpu_present(cpu_possible_mask);
419 #endif
420 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
421 }
422 
423 /* preload SMP state for boot cpu */
424 void smp_prepare_boot_cpu(void)
425 {
426 	if (mp_ops->prepare_boot_cpu)
427 		mp_ops->prepare_boot_cpu();
428 	set_cpu_possible(0, true);
429 	set_cpu_online(0, true);
430 }
431 
432 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
433 {
434 	int err;
435 
436 	err = mp_ops->boot_secondary(cpu, tidle);
437 	if (err)
438 		return err;
439 
440 	/* Wait for CPU to start and be ready to sync counters */
441 	if (!wait_for_completion_timeout(&cpu_starting,
442 					 msecs_to_jiffies(1000))) {
443 		pr_crit("CPU%u: failed to start\n", cpu);
444 		return -EIO;
445 	}
446 
447 	synchronise_count_master(cpu);
448 
449 	/* Wait for CPU to finish startup & mark itself online before return */
450 	wait_for_completion(&cpu_running);
451 	return 0;
452 }
453 
454 /* Not really SMP stuff ... */
455 int setup_profiling_timer(unsigned int multiplier)
456 {
457 	return 0;
458 }
459 
460 static void flush_tlb_all_ipi(void *info)
461 {
462 	local_flush_tlb_all();
463 }
464 
465 void flush_tlb_all(void)
466 {
467 	if (cpu_has_mmid) {
468 		htw_stop();
469 		ginvt_full();
470 		sync_ginv();
471 		instruction_hazard();
472 		htw_start();
473 		return;
474 	}
475 
476 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
477 }
478 
479 static void flush_tlb_mm_ipi(void *mm)
480 {
481 	drop_mmu_context((struct mm_struct *)mm);
482 }
483 
484 /*
485  * Special Variant of smp_call_function for use by TLB functions:
486  *
487  *  o No return value
488  *  o collapses to normal function call on UP kernels
489  *  o collapses to normal function call on systems with a single shared
490  *    primary cache.
491  */
492 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
493 {
494 	smp_call_function(func, info, 1);
495 }
496 
497 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
498 {
499 	preempt_disable();
500 
501 	smp_on_other_tlbs(func, info);
502 	func(info);
503 
504 	preempt_enable();
505 }
506 
507 /*
508  * The following tlb flush calls are invoked when old translations are
509  * being torn down, or pte attributes are changing. For single threaded
510  * address spaces, a new context is obtained on the current cpu, and tlb
511  * context on other cpus are invalidated to force a new context allocation
512  * at switch_mm time, should the mm ever be used on other cpus. For
513  * multithreaded address spaces, intercpu interrupts have to be sent.
514  * Another case where intercpu interrupts are required is when the target
515  * mm might be active on another cpu (eg debuggers doing the flushes on
516  * behalf of debugees, kswapd stealing pages from another process etc).
517  * Kanoj 07/00.
518  */
519 
520 void flush_tlb_mm(struct mm_struct *mm)
521 {
522 	preempt_disable();
523 
524 	if (cpu_has_mmid) {
525 		/*
526 		 * No need to worry about other CPUs - the ginvt in
527 		 * drop_mmu_context() will be globalized.
528 		 */
529 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
530 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
531 	} else {
532 		unsigned int cpu;
533 
534 		for_each_online_cpu(cpu) {
535 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
536 				set_cpu_context(cpu, mm, 0);
537 		}
538 	}
539 	drop_mmu_context(mm);
540 
541 	preempt_enable();
542 }
543 
544 struct flush_tlb_data {
545 	struct vm_area_struct *vma;
546 	unsigned long addr1;
547 	unsigned long addr2;
548 };
549 
550 static void flush_tlb_range_ipi(void *info)
551 {
552 	struct flush_tlb_data *fd = info;
553 
554 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
555 }
556 
557 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
558 {
559 	struct mm_struct *mm = vma->vm_mm;
560 	unsigned long addr;
561 	u32 old_mmid;
562 
563 	preempt_disable();
564 	if (cpu_has_mmid) {
565 		htw_stop();
566 		old_mmid = read_c0_memorymapid();
567 		write_c0_memorymapid(cpu_asid(0, mm));
568 		mtc0_tlbw_hazard();
569 		addr = round_down(start, PAGE_SIZE * 2);
570 		end = round_up(end, PAGE_SIZE * 2);
571 		do {
572 			ginvt_va_mmid(addr);
573 			sync_ginv();
574 			addr += PAGE_SIZE * 2;
575 		} while (addr < end);
576 		write_c0_memorymapid(old_mmid);
577 		instruction_hazard();
578 		htw_start();
579 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
580 		struct flush_tlb_data fd = {
581 			.vma = vma,
582 			.addr1 = start,
583 			.addr2 = end,
584 		};
585 
586 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
587 		local_flush_tlb_range(vma, start, end);
588 	} else {
589 		unsigned int cpu;
590 		int exec = vma->vm_flags & VM_EXEC;
591 
592 		for_each_online_cpu(cpu) {
593 			/*
594 			 * flush_cache_range() will only fully flush icache if
595 			 * the VMA is executable, otherwise we must invalidate
596 			 * ASID without it appearing to has_valid_asid() as if
597 			 * mm has been completely unused by that CPU.
598 			 */
599 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
600 				set_cpu_context(cpu, mm, !exec);
601 		}
602 		local_flush_tlb_range(vma, start, end);
603 	}
604 	preempt_enable();
605 }
606 
607 static void flush_tlb_kernel_range_ipi(void *info)
608 {
609 	struct flush_tlb_data *fd = info;
610 
611 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
612 }
613 
614 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
615 {
616 	struct flush_tlb_data fd = {
617 		.addr1 = start,
618 		.addr2 = end,
619 	};
620 
621 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
622 }
623 
624 static void flush_tlb_page_ipi(void *info)
625 {
626 	struct flush_tlb_data *fd = info;
627 
628 	local_flush_tlb_page(fd->vma, fd->addr1);
629 }
630 
631 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
632 {
633 	u32 old_mmid;
634 
635 	preempt_disable();
636 	if (cpu_has_mmid) {
637 		htw_stop();
638 		old_mmid = read_c0_memorymapid();
639 		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
640 		mtc0_tlbw_hazard();
641 		ginvt_va_mmid(page);
642 		sync_ginv();
643 		write_c0_memorymapid(old_mmid);
644 		instruction_hazard();
645 		htw_start();
646 	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
647 		   (current->mm != vma->vm_mm)) {
648 		struct flush_tlb_data fd = {
649 			.vma = vma,
650 			.addr1 = page,
651 		};
652 
653 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
654 		local_flush_tlb_page(vma, page);
655 	} else {
656 		unsigned int cpu;
657 
658 		for_each_online_cpu(cpu) {
659 			/*
660 			 * flush_cache_page() only does partial flushes, so
661 			 * invalidate ASID without it appearing to
662 			 * has_valid_asid() as if mm has been completely unused
663 			 * by that CPU.
664 			 */
665 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
666 				set_cpu_context(cpu, vma->vm_mm, 1);
667 		}
668 		local_flush_tlb_page(vma, page);
669 	}
670 	preempt_enable();
671 }
672 
673 static void flush_tlb_one_ipi(void *info)
674 {
675 	unsigned long vaddr = (unsigned long) info;
676 
677 	local_flush_tlb_one(vaddr);
678 }
679 
680 void flush_tlb_one(unsigned long vaddr)
681 {
682 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
683 }
684 
685 EXPORT_SYMBOL(flush_tlb_page);
686 EXPORT_SYMBOL(flush_tlb_one);
687 
688 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
689 
690 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
691 
692 void tick_broadcast(const struct cpumask *mask)
693 {
694 	call_single_data_t *csd;
695 	int cpu;
696 
697 	for_each_cpu(cpu, mask) {
698 		csd = &per_cpu(tick_broadcast_csd, cpu);
699 		smp_call_function_single_async(cpu, csd);
700 	}
701 }
702 
703 static void tick_broadcast_callee(void *info)
704 {
705 	tick_receive_broadcast();
706 }
707 
708 static int __init tick_broadcast_init(void)
709 {
710 	call_single_data_t *csd;
711 	int cpu;
712 
713 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
714 		csd = &per_cpu(tick_broadcast_csd, cpu);
715 		csd->func = tick_broadcast_callee;
716 	}
717 
718 	return 0;
719 }
720 early_initcall(tick_broadcast_init);
721 
722 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
723