1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/threads.h> 27 #include <linux/module.h> 28 #include <linux/time.h> 29 #include <linux/timex.h> 30 #include <linux/sched.h> 31 #include <linux/cpumask.h> 32 #include <linux/cpu.h> 33 #include <linux/err.h> 34 35 #include <asm/atomic.h> 36 #include <asm/cpu.h> 37 #include <asm/processor.h> 38 #include <asm/r4k-timer.h> 39 #include <asm/system.h> 40 #include <asm/mmu_context.h> 41 #include <asm/time.h> 42 43 #ifdef CONFIG_MIPS_MT_SMTC 44 #include <asm/mipsmtregs.h> 45 #endif /* CONFIG_MIPS_MT_SMTC */ 46 47 cpumask_t phys_cpu_present_map; /* Bitmask of available CPUs */ 48 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 49 cpumask_t cpu_online_map; /* Bitmask of currently online CPUs */ 50 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 51 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 52 53 EXPORT_SYMBOL(phys_cpu_present_map); 54 EXPORT_SYMBOL(cpu_online_map); 55 56 extern void cpu_idle(void); 57 58 /* Number of TCs (or siblings in Intel speak) per CPU core */ 59 int smp_num_siblings = 1; 60 EXPORT_SYMBOL(smp_num_siblings); 61 62 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 63 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 64 EXPORT_SYMBOL(cpu_sibling_map); 65 66 /* representing cpus for which sibling maps can be computed */ 67 static cpumask_t cpu_sibling_setup_map; 68 69 static inline void set_cpu_sibling_map(int cpu) 70 { 71 int i; 72 73 cpu_set(cpu, cpu_sibling_setup_map); 74 75 if (smp_num_siblings > 1) { 76 for_each_cpu_mask(i, cpu_sibling_setup_map) { 77 if (cpu_data[cpu].core == cpu_data[i].core) { 78 cpu_set(i, cpu_sibling_map[cpu]); 79 cpu_set(cpu, cpu_sibling_map[i]); 80 } 81 } 82 } else 83 cpu_set(cpu, cpu_sibling_map[cpu]); 84 } 85 86 struct plat_smp_ops *mp_ops; 87 88 __cpuinit void register_smp_ops(struct plat_smp_ops *ops) 89 { 90 if (mp_ops) 91 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 92 93 mp_ops = ops; 94 } 95 96 /* 97 * First C code run on the secondary CPUs after being started up by 98 * the master. 99 */ 100 asmlinkage __cpuinit void start_secondary(void) 101 { 102 unsigned int cpu; 103 104 #ifdef CONFIG_MIPS_MT_SMTC 105 /* Only do cpu_probe for first TC of CPU */ 106 if ((read_c0_tcbind() & TCBIND_CURTC) == 0) 107 #endif /* CONFIG_MIPS_MT_SMTC */ 108 cpu_probe(); 109 cpu_report(); 110 per_cpu_trap_init(); 111 mips_clockevent_init(); 112 mp_ops->init_secondary(); 113 114 /* 115 * XXX parity protection should be folded in here when it's converted 116 * to an option instead of something based on .cputype 117 */ 118 119 calibrate_delay(); 120 preempt_disable(); 121 cpu = smp_processor_id(); 122 cpu_data[cpu].udelay_val = loops_per_jiffy; 123 124 notify_cpu_starting(cpu); 125 126 mp_ops->smp_finish(); 127 set_cpu_sibling_map(cpu); 128 129 cpu_set(cpu, cpu_callin_map); 130 131 synchronise_count_slave(); 132 133 cpu_idle(); 134 } 135 136 void arch_send_call_function_ipi(cpumask_t mask) 137 { 138 mp_ops->send_ipi_mask(mask, SMP_CALL_FUNCTION); 139 } 140 141 /* 142 * We reuse the same vector for the single IPI 143 */ 144 void arch_send_call_function_single_ipi(int cpu) 145 { 146 mp_ops->send_ipi_mask(cpumask_of_cpu(cpu), SMP_CALL_FUNCTION); 147 } 148 149 /* 150 * Call into both interrupt handlers, as we share the IPI for them 151 */ 152 void smp_call_function_interrupt(void) 153 { 154 irq_enter(); 155 generic_smp_call_function_single_interrupt(); 156 generic_smp_call_function_interrupt(); 157 irq_exit(); 158 } 159 160 static void stop_this_cpu(void *dummy) 161 { 162 /* 163 * Remove this CPU: 164 */ 165 cpu_clear(smp_processor_id(), cpu_online_map); 166 local_irq_enable(); /* May need to service _machine_restart IPI */ 167 for (;;); /* Wait if available. */ 168 } 169 170 void smp_send_stop(void) 171 { 172 smp_call_function(stop_this_cpu, NULL, 0); 173 } 174 175 void __init smp_cpus_done(unsigned int max_cpus) 176 { 177 mp_ops->cpus_done(); 178 synchronise_count_master(); 179 } 180 181 /* called from main before smp_init() */ 182 void __init smp_prepare_cpus(unsigned int max_cpus) 183 { 184 init_new_context(current, &init_mm); 185 current_thread_info()->cpu = 0; 186 mp_ops->prepare_cpus(max_cpus); 187 set_cpu_sibling_map(0); 188 #ifndef CONFIG_HOTPLUG_CPU 189 cpu_present_map = cpu_possible_map; 190 #endif 191 } 192 193 /* preload SMP state for boot cpu */ 194 void __devinit smp_prepare_boot_cpu(void) 195 { 196 /* 197 * This assumes that bootup is always handled by the processor 198 * with the logic and physical number 0. 199 */ 200 __cpu_number_map[0] = 0; 201 __cpu_logical_map[0] = 0; 202 cpu_set(0, phys_cpu_present_map); 203 cpu_set(0, cpu_online_map); 204 cpu_set(0, cpu_callin_map); 205 } 206 207 /* 208 * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu 209 * and keep control until "cpu_online(cpu)" is set. Note: cpu is 210 * physical, not logical. 211 */ 212 int __cpuinit __cpu_up(unsigned int cpu) 213 { 214 struct task_struct *idle; 215 216 /* 217 * Processor goes to start_secondary(), sets online flag 218 * The following code is purely to make sure 219 * Linux can schedule processes on this slave. 220 */ 221 idle = fork_idle(cpu); 222 if (IS_ERR(idle)) 223 panic(KERN_ERR "Fork failed for CPU %d", cpu); 224 225 mp_ops->boot_secondary(cpu, idle); 226 227 /* 228 * Trust is futile. We should really have timeouts ... 229 */ 230 while (!cpu_isset(cpu, cpu_callin_map)) 231 udelay(100); 232 233 cpu_set(cpu, cpu_online_map); 234 235 return 0; 236 } 237 238 /* Not really SMP stuff ... */ 239 int setup_profiling_timer(unsigned int multiplier) 240 { 241 return 0; 242 } 243 244 static void flush_tlb_all_ipi(void *info) 245 { 246 local_flush_tlb_all(); 247 } 248 249 void flush_tlb_all(void) 250 { 251 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 252 } 253 254 static void flush_tlb_mm_ipi(void *mm) 255 { 256 local_flush_tlb_mm((struct mm_struct *)mm); 257 } 258 259 /* 260 * Special Variant of smp_call_function for use by TLB functions: 261 * 262 * o No return value 263 * o collapses to normal function call on UP kernels 264 * o collapses to normal function call on systems with a single shared 265 * primary cache. 266 * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core. 267 */ 268 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 269 { 270 #ifndef CONFIG_MIPS_MT_SMTC 271 smp_call_function(func, info, 1); 272 #endif 273 } 274 275 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 276 { 277 preempt_disable(); 278 279 smp_on_other_tlbs(func, info); 280 func(info); 281 282 preempt_enable(); 283 } 284 285 /* 286 * The following tlb flush calls are invoked when old translations are 287 * being torn down, or pte attributes are changing. For single threaded 288 * address spaces, a new context is obtained on the current cpu, and tlb 289 * context on other cpus are invalidated to force a new context allocation 290 * at switch_mm time, should the mm ever be used on other cpus. For 291 * multithreaded address spaces, intercpu interrupts have to be sent. 292 * Another case where intercpu interrupts are required is when the target 293 * mm might be active on another cpu (eg debuggers doing the flushes on 294 * behalf of debugees, kswapd stealing pages from another process etc). 295 * Kanoj 07/00. 296 */ 297 298 void flush_tlb_mm(struct mm_struct *mm) 299 { 300 preempt_disable(); 301 302 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 303 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 304 } else { 305 cpumask_t mask = cpu_online_map; 306 unsigned int cpu; 307 308 cpu_clear(smp_processor_id(), mask); 309 for_each_cpu_mask(cpu, mask) 310 if (cpu_context(cpu, mm)) 311 cpu_context(cpu, mm) = 0; 312 } 313 local_flush_tlb_mm(mm); 314 315 preempt_enable(); 316 } 317 318 struct flush_tlb_data { 319 struct vm_area_struct *vma; 320 unsigned long addr1; 321 unsigned long addr2; 322 }; 323 324 static void flush_tlb_range_ipi(void *info) 325 { 326 struct flush_tlb_data *fd = info; 327 328 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 329 } 330 331 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 332 { 333 struct mm_struct *mm = vma->vm_mm; 334 335 preempt_disable(); 336 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 337 struct flush_tlb_data fd = { 338 .vma = vma, 339 .addr1 = start, 340 .addr2 = end, 341 }; 342 343 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 344 } else { 345 cpumask_t mask = cpu_online_map; 346 unsigned int cpu; 347 348 cpu_clear(smp_processor_id(), mask); 349 for_each_cpu_mask(cpu, mask) 350 if (cpu_context(cpu, mm)) 351 cpu_context(cpu, mm) = 0; 352 } 353 local_flush_tlb_range(vma, start, end); 354 preempt_enable(); 355 } 356 357 static void flush_tlb_kernel_range_ipi(void *info) 358 { 359 struct flush_tlb_data *fd = info; 360 361 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 362 } 363 364 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 365 { 366 struct flush_tlb_data fd = { 367 .addr1 = start, 368 .addr2 = end, 369 }; 370 371 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 372 } 373 374 static void flush_tlb_page_ipi(void *info) 375 { 376 struct flush_tlb_data *fd = info; 377 378 local_flush_tlb_page(fd->vma, fd->addr1); 379 } 380 381 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 382 { 383 preempt_disable(); 384 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 385 struct flush_tlb_data fd = { 386 .vma = vma, 387 .addr1 = page, 388 }; 389 390 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 391 } else { 392 cpumask_t mask = cpu_online_map; 393 unsigned int cpu; 394 395 cpu_clear(smp_processor_id(), mask); 396 for_each_cpu_mask(cpu, mask) 397 if (cpu_context(cpu, vma->vm_mm)) 398 cpu_context(cpu, vma->vm_mm) = 0; 399 } 400 local_flush_tlb_page(vma, page); 401 preempt_enable(); 402 } 403 404 static void flush_tlb_one_ipi(void *info) 405 { 406 unsigned long vaddr = (unsigned long) info; 407 408 local_flush_tlb_one(vaddr); 409 } 410 411 void flush_tlb_one(unsigned long vaddr) 412 { 413 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 414 } 415 416 EXPORT_SYMBOL(flush_tlb_page); 417 EXPORT_SYMBOL(flush_tlb_one); 418