1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/module.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 #include <linux/ftrace.h> 36 #include <linux/irqdomain.h> 37 #include <linux/of.h> 38 #include <linux/of_irq.h> 39 40 #include <linux/atomic.h> 41 #include <asm/cpu.h> 42 #include <asm/processor.h> 43 #include <asm/idle.h> 44 #include <asm/r4k-timer.h> 45 #include <asm/mips-cpc.h> 46 #include <asm/mmu_context.h> 47 #include <asm/time.h> 48 #include <asm/setup.h> 49 #include <asm/maar.h> 50 51 cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 52 53 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 54 EXPORT_SYMBOL(__cpu_number_map); 55 56 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 57 EXPORT_SYMBOL(__cpu_logical_map); 58 59 /* Number of TCs (or siblings in Intel speak) per CPU core */ 60 int smp_num_siblings = 1; 61 EXPORT_SYMBOL(smp_num_siblings); 62 63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 65 EXPORT_SYMBOL(cpu_sibling_map); 66 67 /* representing the core map of multi-core chips of each logical CPU */ 68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 69 EXPORT_SYMBOL(cpu_core_map); 70 71 /* 72 * A logcal cpu mask containing only one VPE per core to 73 * reduce the number of IPIs on large MT systems. 74 */ 75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 76 EXPORT_SYMBOL(cpu_foreign_map); 77 78 /* representing cpus for which sibling maps can be computed */ 79 static cpumask_t cpu_sibling_setup_map; 80 81 /* representing cpus for which core maps can be computed */ 82 static cpumask_t cpu_core_setup_map; 83 84 cpumask_t cpu_coherent_mask; 85 86 #ifdef CONFIG_GENERIC_IRQ_IPI 87 static struct irq_desc *call_desc; 88 static struct irq_desc *sched_desc; 89 #endif 90 91 static inline void set_cpu_sibling_map(int cpu) 92 { 93 int i; 94 95 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 96 97 if (smp_num_siblings > 1) { 98 for_each_cpu(i, &cpu_sibling_setup_map) { 99 if (cpu_data[cpu].package == cpu_data[i].package && 100 cpu_data[cpu].core == cpu_data[i].core) { 101 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 102 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 103 } 104 } 105 } else 106 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 107 } 108 109 static inline void set_cpu_core_map(int cpu) 110 { 111 int i; 112 113 cpumask_set_cpu(cpu, &cpu_core_setup_map); 114 115 for_each_cpu(i, &cpu_core_setup_map) { 116 if (cpu_data[cpu].package == cpu_data[i].package) { 117 cpumask_set_cpu(i, &cpu_core_map[cpu]); 118 cpumask_set_cpu(cpu, &cpu_core_map[i]); 119 } 120 } 121 } 122 123 /* 124 * Calculate a new cpu_foreign_map mask whenever a 125 * new cpu appears or disappears. 126 */ 127 void calculate_cpu_foreign_map(void) 128 { 129 int i, k, core_present; 130 cpumask_t temp_foreign_map; 131 132 /* Re-calculate the mask */ 133 cpumask_clear(&temp_foreign_map); 134 for_each_online_cpu(i) { 135 core_present = 0; 136 for_each_cpu(k, &temp_foreign_map) 137 if (cpu_data[i].package == cpu_data[k].package && 138 cpu_data[i].core == cpu_data[k].core) 139 core_present = 1; 140 if (!core_present) 141 cpumask_set_cpu(i, &temp_foreign_map); 142 } 143 144 for_each_online_cpu(i) 145 cpumask_andnot(&cpu_foreign_map[i], 146 &temp_foreign_map, &cpu_sibling_map[i]); 147 } 148 149 struct plat_smp_ops *mp_ops; 150 EXPORT_SYMBOL(mp_ops); 151 152 void register_smp_ops(struct plat_smp_ops *ops) 153 { 154 if (mp_ops) 155 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 156 157 mp_ops = ops; 158 } 159 160 #ifdef CONFIG_GENERIC_IRQ_IPI 161 void mips_smp_send_ipi_single(int cpu, unsigned int action) 162 { 163 mips_smp_send_ipi_mask(cpumask_of(cpu), action); 164 } 165 166 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) 167 { 168 unsigned long flags; 169 unsigned int core; 170 int cpu; 171 172 local_irq_save(flags); 173 174 switch (action) { 175 case SMP_CALL_FUNCTION: 176 __ipi_send_mask(call_desc, mask); 177 break; 178 179 case SMP_RESCHEDULE_YOURSELF: 180 __ipi_send_mask(sched_desc, mask); 181 break; 182 183 default: 184 BUG(); 185 } 186 187 if (mips_cpc_present()) { 188 for_each_cpu(cpu, mask) { 189 core = cpu_data[cpu].core; 190 191 if (core == current_cpu_data.core) 192 continue; 193 194 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { 195 mips_cpc_lock_other(core); 196 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); 197 mips_cpc_unlock_other(); 198 } 199 } 200 } 201 202 local_irq_restore(flags); 203 } 204 205 206 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) 207 { 208 scheduler_ipi(); 209 210 return IRQ_HANDLED; 211 } 212 213 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) 214 { 215 generic_smp_call_function_interrupt(); 216 217 return IRQ_HANDLED; 218 } 219 220 static struct irqaction irq_resched = { 221 .handler = ipi_resched_interrupt, 222 .flags = IRQF_PERCPU, 223 .name = "IPI resched" 224 }; 225 226 static struct irqaction irq_call = { 227 .handler = ipi_call_interrupt, 228 .flags = IRQF_PERCPU, 229 .name = "IPI call" 230 }; 231 232 static __init void smp_ipi_init_one(unsigned int virq, 233 struct irqaction *action) 234 { 235 int ret; 236 237 irq_set_handler(virq, handle_percpu_irq); 238 ret = setup_irq(virq, action); 239 BUG_ON(ret); 240 } 241 242 static int __init mips_smp_ipi_init(void) 243 { 244 unsigned int call_virq, sched_virq; 245 struct irq_domain *ipidomain; 246 struct device_node *node; 247 248 node = of_irq_find_parent(of_root); 249 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 250 251 /* 252 * Some platforms have half DT setup. So if we found irq node but 253 * didn't find an ipidomain, try to search for one that is not in the 254 * DT. 255 */ 256 if (node && !ipidomain) 257 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 258 259 /* 260 * There are systems which only use IPI domains some of the time, 261 * depending upon configuration we don't know until runtime. An 262 * example is Malta where we may compile in support for GIC & the 263 * MT ASE, but run on a system which has multiple VPEs in a single 264 * core and doesn't include a GIC. Until all IPI implementations 265 * have been converted to use IPI domains the best we can do here 266 * is to return & hope some other code sets up the IPIs. 267 */ 268 if (!ipidomain) 269 return 0; 270 271 call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask); 272 BUG_ON(!call_virq); 273 274 sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask); 275 BUG_ON(!sched_virq); 276 277 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 278 int cpu; 279 280 for_each_cpu(cpu, cpu_possible_mask) { 281 smp_ipi_init_one(call_virq + cpu, &irq_call); 282 smp_ipi_init_one(sched_virq + cpu, &irq_resched); 283 } 284 } else { 285 smp_ipi_init_one(call_virq, &irq_call); 286 smp_ipi_init_one(sched_virq, &irq_resched); 287 } 288 289 call_desc = irq_to_desc(call_virq); 290 sched_desc = irq_to_desc(sched_virq); 291 292 return 0; 293 } 294 early_initcall(mips_smp_ipi_init); 295 #endif 296 297 /* 298 * First C code run on the secondary CPUs after being started up by 299 * the master. 300 */ 301 asmlinkage void start_secondary(void) 302 { 303 unsigned int cpu; 304 305 cpu_probe(); 306 per_cpu_trap_init(false); 307 mips_clockevent_init(); 308 mp_ops->init_secondary(); 309 cpu_report(); 310 maar_init(); 311 312 /* 313 * XXX parity protection should be folded in here when it's converted 314 * to an option instead of something based on .cputype 315 */ 316 317 calibrate_delay(); 318 preempt_disable(); 319 cpu = smp_processor_id(); 320 cpu_data[cpu].udelay_val = loops_per_jiffy; 321 322 cpumask_set_cpu(cpu, &cpu_coherent_mask); 323 notify_cpu_starting(cpu); 324 325 cpumask_set_cpu(cpu, &cpu_callin_map); 326 synchronise_count_slave(cpu); 327 328 set_cpu_online(cpu, true); 329 330 set_cpu_sibling_map(cpu); 331 set_cpu_core_map(cpu); 332 333 calculate_cpu_foreign_map(); 334 335 /* 336 * irq will be enabled in ->smp_finish(), enabling it too early 337 * is dangerous. 338 */ 339 WARN_ON_ONCE(!irqs_disabled()); 340 mp_ops->smp_finish(); 341 342 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 343 } 344 345 static void stop_this_cpu(void *dummy) 346 { 347 /* 348 * Remove this CPU: 349 */ 350 351 set_cpu_online(smp_processor_id(), false); 352 calculate_cpu_foreign_map(); 353 local_irq_disable(); 354 while (1); 355 } 356 357 void smp_send_stop(void) 358 { 359 smp_call_function(stop_this_cpu, NULL, 0); 360 } 361 362 void __init smp_cpus_done(unsigned int max_cpus) 363 { 364 } 365 366 /* called from main before smp_init() */ 367 void __init smp_prepare_cpus(unsigned int max_cpus) 368 { 369 init_new_context(current, &init_mm); 370 current_thread_info()->cpu = 0; 371 mp_ops->prepare_cpus(max_cpus); 372 set_cpu_sibling_map(0); 373 set_cpu_core_map(0); 374 calculate_cpu_foreign_map(); 375 #ifndef CONFIG_HOTPLUG_CPU 376 init_cpu_present(cpu_possible_mask); 377 #endif 378 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 379 } 380 381 /* preload SMP state for boot cpu */ 382 void smp_prepare_boot_cpu(void) 383 { 384 set_cpu_possible(0, true); 385 set_cpu_online(0, true); 386 cpumask_set_cpu(0, &cpu_callin_map); 387 } 388 389 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 390 { 391 mp_ops->boot_secondary(cpu, tidle); 392 393 /* 394 * Trust is futile. We should really have timeouts ... 395 */ 396 while (!cpumask_test_cpu(cpu, &cpu_callin_map)) { 397 udelay(100); 398 schedule(); 399 } 400 401 synchronise_count_master(cpu); 402 return 0; 403 } 404 405 /* Not really SMP stuff ... */ 406 int setup_profiling_timer(unsigned int multiplier) 407 { 408 return 0; 409 } 410 411 static void flush_tlb_all_ipi(void *info) 412 { 413 local_flush_tlb_all(); 414 } 415 416 void flush_tlb_all(void) 417 { 418 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 419 } 420 421 static void flush_tlb_mm_ipi(void *mm) 422 { 423 local_flush_tlb_mm((struct mm_struct *)mm); 424 } 425 426 /* 427 * Special Variant of smp_call_function for use by TLB functions: 428 * 429 * o No return value 430 * o collapses to normal function call on UP kernels 431 * o collapses to normal function call on systems with a single shared 432 * primary cache. 433 */ 434 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 435 { 436 smp_call_function(func, info, 1); 437 } 438 439 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 440 { 441 preempt_disable(); 442 443 smp_on_other_tlbs(func, info); 444 func(info); 445 446 preempt_enable(); 447 } 448 449 /* 450 * The following tlb flush calls are invoked when old translations are 451 * being torn down, or pte attributes are changing. For single threaded 452 * address spaces, a new context is obtained on the current cpu, and tlb 453 * context on other cpus are invalidated to force a new context allocation 454 * at switch_mm time, should the mm ever be used on other cpus. For 455 * multithreaded address spaces, intercpu interrupts have to be sent. 456 * Another case where intercpu interrupts are required is when the target 457 * mm might be active on another cpu (eg debuggers doing the flushes on 458 * behalf of debugees, kswapd stealing pages from another process etc). 459 * Kanoj 07/00. 460 */ 461 462 void flush_tlb_mm(struct mm_struct *mm) 463 { 464 preempt_disable(); 465 466 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 467 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 468 } else { 469 unsigned int cpu; 470 471 for_each_online_cpu(cpu) { 472 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 473 cpu_context(cpu, mm) = 0; 474 } 475 } 476 local_flush_tlb_mm(mm); 477 478 preempt_enable(); 479 } 480 481 struct flush_tlb_data { 482 struct vm_area_struct *vma; 483 unsigned long addr1; 484 unsigned long addr2; 485 }; 486 487 static void flush_tlb_range_ipi(void *info) 488 { 489 struct flush_tlb_data *fd = info; 490 491 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 492 } 493 494 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 495 { 496 struct mm_struct *mm = vma->vm_mm; 497 498 preempt_disable(); 499 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 500 struct flush_tlb_data fd = { 501 .vma = vma, 502 .addr1 = start, 503 .addr2 = end, 504 }; 505 506 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 507 } else { 508 unsigned int cpu; 509 int exec = vma->vm_flags & VM_EXEC; 510 511 for_each_online_cpu(cpu) { 512 /* 513 * flush_cache_range() will only fully flush icache if 514 * the VMA is executable, otherwise we must invalidate 515 * ASID without it appearing to has_valid_asid() as if 516 * mm has been completely unused by that CPU. 517 */ 518 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 519 cpu_context(cpu, mm) = !exec; 520 } 521 } 522 local_flush_tlb_range(vma, start, end); 523 preempt_enable(); 524 } 525 526 static void flush_tlb_kernel_range_ipi(void *info) 527 { 528 struct flush_tlb_data *fd = info; 529 530 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 531 } 532 533 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 534 { 535 struct flush_tlb_data fd = { 536 .addr1 = start, 537 .addr2 = end, 538 }; 539 540 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 541 } 542 543 static void flush_tlb_page_ipi(void *info) 544 { 545 struct flush_tlb_data *fd = info; 546 547 local_flush_tlb_page(fd->vma, fd->addr1); 548 } 549 550 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 551 { 552 preempt_disable(); 553 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 554 struct flush_tlb_data fd = { 555 .vma = vma, 556 .addr1 = page, 557 }; 558 559 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 560 } else { 561 unsigned int cpu; 562 563 for_each_online_cpu(cpu) { 564 /* 565 * flush_cache_page() only does partial flushes, so 566 * invalidate ASID without it appearing to 567 * has_valid_asid() as if mm has been completely unused 568 * by that CPU. 569 */ 570 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 571 cpu_context(cpu, vma->vm_mm) = 1; 572 } 573 } 574 local_flush_tlb_page(vma, page); 575 preempt_enable(); 576 } 577 578 static void flush_tlb_one_ipi(void *info) 579 { 580 unsigned long vaddr = (unsigned long) info; 581 582 local_flush_tlb_one(vaddr); 583 } 584 585 void flush_tlb_one(unsigned long vaddr) 586 { 587 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 588 } 589 590 EXPORT_SYMBOL(flush_tlb_page); 591 EXPORT_SYMBOL(flush_tlb_one); 592 593 #if defined(CONFIG_KEXEC) 594 void (*dump_ipi_function_ptr)(void *) = NULL; 595 void dump_send_ipi(void (*dump_ipi_callback)(void *)) 596 { 597 int i; 598 int cpu = smp_processor_id(); 599 600 dump_ipi_function_ptr = dump_ipi_callback; 601 smp_mb(); 602 for_each_online_cpu(i) 603 if (i != cpu) 604 mp_ops->send_ipi_single(i, SMP_DUMP); 605 606 } 607 EXPORT_SYMBOL(dump_send_ipi); 608 #endif 609 610 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 611 612 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); 613 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd); 614 615 void tick_broadcast(const struct cpumask *mask) 616 { 617 atomic_t *count; 618 struct call_single_data *csd; 619 int cpu; 620 621 for_each_cpu(cpu, mask) { 622 count = &per_cpu(tick_broadcast_count, cpu); 623 csd = &per_cpu(tick_broadcast_csd, cpu); 624 625 if (atomic_inc_return(count) == 1) 626 smp_call_function_single_async(cpu, csd); 627 } 628 } 629 630 static void tick_broadcast_callee(void *info) 631 { 632 int cpu = smp_processor_id(); 633 tick_receive_broadcast(); 634 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); 635 } 636 637 static int __init tick_broadcast_init(void) 638 { 639 struct call_single_data *csd; 640 int cpu; 641 642 for (cpu = 0; cpu < NR_CPUS; cpu++) { 643 csd = &per_cpu(tick_broadcast_csd, cpu); 644 csd->func = tick_broadcast_callee; 645 } 646 647 return 0; 648 } 649 early_initcall(tick_broadcast_init); 650 651 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 652