xref: /linux/arch/mips/kernel/smp.c (revision a4cc96d1f0170b779c32c6b2cc58764f5d2cdef0)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39 
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50 
51 cpumask_t cpu_callin_map;		/* Bitmask of started secondaries */
52 
53 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
54 EXPORT_SYMBOL(__cpu_number_map);
55 
56 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
57 EXPORT_SYMBOL(__cpu_logical_map);
58 
59 /* Number of TCs (or siblings in Intel speak) per CPU core */
60 int smp_num_siblings = 1;
61 EXPORT_SYMBOL(smp_num_siblings);
62 
63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
65 EXPORT_SYMBOL(cpu_sibling_map);
66 
67 /* representing the core map of multi-core chips of each logical CPU */
68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
69 EXPORT_SYMBOL(cpu_core_map);
70 
71 /*
72  * A logcal cpu mask containing only one VPE per core to
73  * reduce the number of IPIs on large MT systems.
74  */
75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77 
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80 
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83 
84 cpumask_t cpu_coherent_mask;
85 
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90 
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93 	int i;
94 
95 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96 
97 	if (smp_num_siblings > 1) {
98 		for_each_cpu(i, &cpu_sibling_setup_map) {
99 			if (cpu_data[cpu].package == cpu_data[i].package &&
100 				    cpu_data[cpu].core == cpu_data[i].core) {
101 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103 			}
104 		}
105 	} else
106 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108 
109 static inline void set_cpu_core_map(int cpu)
110 {
111 	int i;
112 
113 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
114 
115 	for_each_cpu(i, &cpu_core_setup_map) {
116 		if (cpu_data[cpu].package == cpu_data[i].package) {
117 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
118 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
119 		}
120 	}
121 }
122 
123 /*
124  * Calculate a new cpu_foreign_map mask whenever a
125  * new cpu appears or disappears.
126  */
127 void calculate_cpu_foreign_map(void)
128 {
129 	int i, k, core_present;
130 	cpumask_t temp_foreign_map;
131 
132 	/* Re-calculate the mask */
133 	cpumask_clear(&temp_foreign_map);
134 	for_each_online_cpu(i) {
135 		core_present = 0;
136 		for_each_cpu(k, &temp_foreign_map)
137 			if (cpu_data[i].package == cpu_data[k].package &&
138 			    cpu_data[i].core == cpu_data[k].core)
139 				core_present = 1;
140 		if (!core_present)
141 			cpumask_set_cpu(i, &temp_foreign_map);
142 	}
143 
144 	for_each_online_cpu(i)
145 		cpumask_andnot(&cpu_foreign_map[i],
146 			       &temp_foreign_map, &cpu_sibling_map[i]);
147 }
148 
149 struct plat_smp_ops *mp_ops;
150 EXPORT_SYMBOL(mp_ops);
151 
152 void register_smp_ops(struct plat_smp_ops *ops)
153 {
154 	if (mp_ops)
155 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
156 
157 	mp_ops = ops;
158 }
159 
160 #ifdef CONFIG_GENERIC_IRQ_IPI
161 void mips_smp_send_ipi_single(int cpu, unsigned int action)
162 {
163 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
164 }
165 
166 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
167 {
168 	unsigned long flags;
169 	unsigned int core;
170 	int cpu;
171 
172 	local_irq_save(flags);
173 
174 	switch (action) {
175 	case SMP_CALL_FUNCTION:
176 		__ipi_send_mask(call_desc, mask);
177 		break;
178 
179 	case SMP_RESCHEDULE_YOURSELF:
180 		__ipi_send_mask(sched_desc, mask);
181 		break;
182 
183 	default:
184 		BUG();
185 	}
186 
187 	if (mips_cpc_present()) {
188 		for_each_cpu(cpu, mask) {
189 			core = cpu_data[cpu].core;
190 
191 			if (core == current_cpu_data.core)
192 				continue;
193 
194 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
195 				mips_cpc_lock_other(core);
196 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
197 				mips_cpc_unlock_other();
198 			}
199 		}
200 	}
201 
202 	local_irq_restore(flags);
203 }
204 
205 
206 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
207 {
208 	scheduler_ipi();
209 
210 	return IRQ_HANDLED;
211 }
212 
213 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
214 {
215 	generic_smp_call_function_interrupt();
216 
217 	return IRQ_HANDLED;
218 }
219 
220 static struct irqaction irq_resched = {
221 	.handler	= ipi_resched_interrupt,
222 	.flags		= IRQF_PERCPU,
223 	.name		= "IPI resched"
224 };
225 
226 static struct irqaction irq_call = {
227 	.handler	= ipi_call_interrupt,
228 	.flags		= IRQF_PERCPU,
229 	.name		= "IPI call"
230 };
231 
232 static __init void smp_ipi_init_one(unsigned int virq,
233 				    struct irqaction *action)
234 {
235 	int ret;
236 
237 	irq_set_handler(virq, handle_percpu_irq);
238 	ret = setup_irq(virq, action);
239 	BUG_ON(ret);
240 }
241 
242 static int __init mips_smp_ipi_init(void)
243 {
244 	unsigned int call_virq, sched_virq;
245 	struct irq_domain *ipidomain;
246 	struct device_node *node;
247 
248 	node = of_irq_find_parent(of_root);
249 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
250 
251 	/*
252 	 * Some platforms have half DT setup. So if we found irq node but
253 	 * didn't find an ipidomain, try to search for one that is not in the
254 	 * DT.
255 	 */
256 	if (node && !ipidomain)
257 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
258 
259 	/*
260 	 * There are systems which only use IPI domains some of the time,
261 	 * depending upon configuration we don't know until runtime. An
262 	 * example is Malta where we may compile in support for GIC & the
263 	 * MT ASE, but run on a system which has multiple VPEs in a single
264 	 * core and doesn't include a GIC. Until all IPI implementations
265 	 * have been converted to use IPI domains the best we can do here
266 	 * is to return & hope some other code sets up the IPIs.
267 	 */
268 	if (!ipidomain)
269 		return 0;
270 
271 	call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
272 	BUG_ON(!call_virq);
273 
274 	sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
275 	BUG_ON(!sched_virq);
276 
277 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
278 		int cpu;
279 
280 		for_each_cpu(cpu, cpu_possible_mask) {
281 			smp_ipi_init_one(call_virq + cpu, &irq_call);
282 			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
283 		}
284 	} else {
285 		smp_ipi_init_one(call_virq, &irq_call);
286 		smp_ipi_init_one(sched_virq, &irq_resched);
287 	}
288 
289 	call_desc = irq_to_desc(call_virq);
290 	sched_desc = irq_to_desc(sched_virq);
291 
292 	return 0;
293 }
294 early_initcall(mips_smp_ipi_init);
295 #endif
296 
297 /*
298  * First C code run on the secondary CPUs after being started up by
299  * the master.
300  */
301 asmlinkage void start_secondary(void)
302 {
303 	unsigned int cpu;
304 
305 	cpu_probe();
306 	per_cpu_trap_init(false);
307 	mips_clockevent_init();
308 	mp_ops->init_secondary();
309 	cpu_report();
310 	maar_init();
311 
312 	/*
313 	 * XXX parity protection should be folded in here when it's converted
314 	 * to an option instead of something based on .cputype
315 	 */
316 
317 	calibrate_delay();
318 	preempt_disable();
319 	cpu = smp_processor_id();
320 	cpu_data[cpu].udelay_val = loops_per_jiffy;
321 
322 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
323 	notify_cpu_starting(cpu);
324 
325 	cpumask_set_cpu(cpu, &cpu_callin_map);
326 	synchronise_count_slave(cpu);
327 
328 	set_cpu_online(cpu, true);
329 
330 	set_cpu_sibling_map(cpu);
331 	set_cpu_core_map(cpu);
332 
333 	calculate_cpu_foreign_map();
334 
335 	/*
336 	 * irq will be enabled in ->smp_finish(), enabling it too early
337 	 * is dangerous.
338 	 */
339 	WARN_ON_ONCE(!irqs_disabled());
340 	mp_ops->smp_finish();
341 
342 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
343 }
344 
345 static void stop_this_cpu(void *dummy)
346 {
347 	/*
348 	 * Remove this CPU:
349 	 */
350 
351 	set_cpu_online(smp_processor_id(), false);
352 	calculate_cpu_foreign_map();
353 	local_irq_disable();
354 	while (1);
355 }
356 
357 void smp_send_stop(void)
358 {
359 	smp_call_function(stop_this_cpu, NULL, 0);
360 }
361 
362 void __init smp_cpus_done(unsigned int max_cpus)
363 {
364 }
365 
366 /* called from main before smp_init() */
367 void __init smp_prepare_cpus(unsigned int max_cpus)
368 {
369 	init_new_context(current, &init_mm);
370 	current_thread_info()->cpu = 0;
371 	mp_ops->prepare_cpus(max_cpus);
372 	set_cpu_sibling_map(0);
373 	set_cpu_core_map(0);
374 	calculate_cpu_foreign_map();
375 #ifndef CONFIG_HOTPLUG_CPU
376 	init_cpu_present(cpu_possible_mask);
377 #endif
378 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
379 }
380 
381 /* preload SMP state for boot cpu */
382 void smp_prepare_boot_cpu(void)
383 {
384 	set_cpu_possible(0, true);
385 	set_cpu_online(0, true);
386 	cpumask_set_cpu(0, &cpu_callin_map);
387 }
388 
389 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
390 {
391 	mp_ops->boot_secondary(cpu, tidle);
392 
393 	/*
394 	 * Trust is futile.  We should really have timeouts ...
395 	 */
396 	while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
397 		udelay(100);
398 		schedule();
399 	}
400 
401 	synchronise_count_master(cpu);
402 	return 0;
403 }
404 
405 /* Not really SMP stuff ... */
406 int setup_profiling_timer(unsigned int multiplier)
407 {
408 	return 0;
409 }
410 
411 static void flush_tlb_all_ipi(void *info)
412 {
413 	local_flush_tlb_all();
414 }
415 
416 void flush_tlb_all(void)
417 {
418 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
419 }
420 
421 static void flush_tlb_mm_ipi(void *mm)
422 {
423 	local_flush_tlb_mm((struct mm_struct *)mm);
424 }
425 
426 /*
427  * Special Variant of smp_call_function for use by TLB functions:
428  *
429  *  o No return value
430  *  o collapses to normal function call on UP kernels
431  *  o collapses to normal function call on systems with a single shared
432  *    primary cache.
433  */
434 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
435 {
436 	smp_call_function(func, info, 1);
437 }
438 
439 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
440 {
441 	preempt_disable();
442 
443 	smp_on_other_tlbs(func, info);
444 	func(info);
445 
446 	preempt_enable();
447 }
448 
449 /*
450  * The following tlb flush calls are invoked when old translations are
451  * being torn down, or pte attributes are changing. For single threaded
452  * address spaces, a new context is obtained on the current cpu, and tlb
453  * context on other cpus are invalidated to force a new context allocation
454  * at switch_mm time, should the mm ever be used on other cpus. For
455  * multithreaded address spaces, intercpu interrupts have to be sent.
456  * Another case where intercpu interrupts are required is when the target
457  * mm might be active on another cpu (eg debuggers doing the flushes on
458  * behalf of debugees, kswapd stealing pages from another process etc).
459  * Kanoj 07/00.
460  */
461 
462 void flush_tlb_mm(struct mm_struct *mm)
463 {
464 	preempt_disable();
465 
466 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
467 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
468 	} else {
469 		unsigned int cpu;
470 
471 		for_each_online_cpu(cpu) {
472 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
473 				cpu_context(cpu, mm) = 0;
474 		}
475 	}
476 	local_flush_tlb_mm(mm);
477 
478 	preempt_enable();
479 }
480 
481 struct flush_tlb_data {
482 	struct vm_area_struct *vma;
483 	unsigned long addr1;
484 	unsigned long addr2;
485 };
486 
487 static void flush_tlb_range_ipi(void *info)
488 {
489 	struct flush_tlb_data *fd = info;
490 
491 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
492 }
493 
494 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
495 {
496 	struct mm_struct *mm = vma->vm_mm;
497 
498 	preempt_disable();
499 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
500 		struct flush_tlb_data fd = {
501 			.vma = vma,
502 			.addr1 = start,
503 			.addr2 = end,
504 		};
505 
506 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
507 	} else {
508 		unsigned int cpu;
509 		int exec = vma->vm_flags & VM_EXEC;
510 
511 		for_each_online_cpu(cpu) {
512 			/*
513 			 * flush_cache_range() will only fully flush icache if
514 			 * the VMA is executable, otherwise we must invalidate
515 			 * ASID without it appearing to has_valid_asid() as if
516 			 * mm has been completely unused by that CPU.
517 			 */
518 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
519 				cpu_context(cpu, mm) = !exec;
520 		}
521 	}
522 	local_flush_tlb_range(vma, start, end);
523 	preempt_enable();
524 }
525 
526 static void flush_tlb_kernel_range_ipi(void *info)
527 {
528 	struct flush_tlb_data *fd = info;
529 
530 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
531 }
532 
533 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
534 {
535 	struct flush_tlb_data fd = {
536 		.addr1 = start,
537 		.addr2 = end,
538 	};
539 
540 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
541 }
542 
543 static void flush_tlb_page_ipi(void *info)
544 {
545 	struct flush_tlb_data *fd = info;
546 
547 	local_flush_tlb_page(fd->vma, fd->addr1);
548 }
549 
550 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
551 {
552 	preempt_disable();
553 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
554 		struct flush_tlb_data fd = {
555 			.vma = vma,
556 			.addr1 = page,
557 		};
558 
559 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
560 	} else {
561 		unsigned int cpu;
562 
563 		for_each_online_cpu(cpu) {
564 			/*
565 			 * flush_cache_page() only does partial flushes, so
566 			 * invalidate ASID without it appearing to
567 			 * has_valid_asid() as if mm has been completely unused
568 			 * by that CPU.
569 			 */
570 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
571 				cpu_context(cpu, vma->vm_mm) = 1;
572 		}
573 	}
574 	local_flush_tlb_page(vma, page);
575 	preempt_enable();
576 }
577 
578 static void flush_tlb_one_ipi(void *info)
579 {
580 	unsigned long vaddr = (unsigned long) info;
581 
582 	local_flush_tlb_one(vaddr);
583 }
584 
585 void flush_tlb_one(unsigned long vaddr)
586 {
587 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
588 }
589 
590 EXPORT_SYMBOL(flush_tlb_page);
591 EXPORT_SYMBOL(flush_tlb_one);
592 
593 #if defined(CONFIG_KEXEC)
594 void (*dump_ipi_function_ptr)(void *) = NULL;
595 void dump_send_ipi(void (*dump_ipi_callback)(void *))
596 {
597 	int i;
598 	int cpu = smp_processor_id();
599 
600 	dump_ipi_function_ptr = dump_ipi_callback;
601 	smp_mb();
602 	for_each_online_cpu(i)
603 		if (i != cpu)
604 			mp_ops->send_ipi_single(i, SMP_DUMP);
605 
606 }
607 EXPORT_SYMBOL(dump_send_ipi);
608 #endif
609 
610 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
611 
612 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
613 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
614 
615 void tick_broadcast(const struct cpumask *mask)
616 {
617 	atomic_t *count;
618 	struct call_single_data *csd;
619 	int cpu;
620 
621 	for_each_cpu(cpu, mask) {
622 		count = &per_cpu(tick_broadcast_count, cpu);
623 		csd = &per_cpu(tick_broadcast_csd, cpu);
624 
625 		if (atomic_inc_return(count) == 1)
626 			smp_call_function_single_async(cpu, csd);
627 	}
628 }
629 
630 static void tick_broadcast_callee(void *info)
631 {
632 	int cpu = smp_processor_id();
633 	tick_receive_broadcast();
634 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
635 }
636 
637 static int __init tick_broadcast_init(void)
638 {
639 	struct call_single_data *csd;
640 	int cpu;
641 
642 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
643 		csd = &per_cpu(tick_broadcast_csd, cpu);
644 		csd->func = tick_broadcast_callee;
645 	}
646 
647 	return 0;
648 }
649 early_initcall(tick_broadcast_init);
650 
651 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
652