1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/module.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 36 #include <asm/atomic.h> 37 #include <asm/cpu.h> 38 #include <asm/processor.h> 39 #include <asm/r4k-timer.h> 40 #include <asm/system.h> 41 #include <asm/mmu_context.h> 42 #include <asm/time.h> 43 44 #ifdef CONFIG_MIPS_MT_SMTC 45 #include <asm/mipsmtregs.h> 46 #endif /* CONFIG_MIPS_MT_SMTC */ 47 48 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 49 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 50 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 51 52 /* Number of TCs (or siblings in Intel speak) per CPU core */ 53 int smp_num_siblings = 1; 54 EXPORT_SYMBOL(smp_num_siblings); 55 56 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 57 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 58 EXPORT_SYMBOL(cpu_sibling_map); 59 60 /* representing cpus for which sibling maps can be computed */ 61 static cpumask_t cpu_sibling_setup_map; 62 63 static inline void set_cpu_sibling_map(int cpu) 64 { 65 int i; 66 67 cpu_set(cpu, cpu_sibling_setup_map); 68 69 if (smp_num_siblings > 1) { 70 for_each_cpu_mask(i, cpu_sibling_setup_map) { 71 if (cpu_data[cpu].core == cpu_data[i].core) { 72 cpu_set(i, cpu_sibling_map[cpu]); 73 cpu_set(cpu, cpu_sibling_map[i]); 74 } 75 } 76 } else 77 cpu_set(cpu, cpu_sibling_map[cpu]); 78 } 79 80 struct plat_smp_ops *mp_ops; 81 82 __cpuinit void register_smp_ops(struct plat_smp_ops *ops) 83 { 84 if (mp_ops) 85 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 86 87 mp_ops = ops; 88 } 89 90 /* 91 * First C code run on the secondary CPUs after being started up by 92 * the master. 93 */ 94 asmlinkage __cpuinit void start_secondary(void) 95 { 96 unsigned int cpu; 97 98 #ifdef CONFIG_MIPS_MT_SMTC 99 /* Only do cpu_probe for first TC of CPU */ 100 if ((read_c0_tcbind() & TCBIND_CURTC) == 0) 101 #endif /* CONFIG_MIPS_MT_SMTC */ 102 cpu_probe(); 103 cpu_report(); 104 per_cpu_trap_init(); 105 mips_clockevent_init(); 106 mp_ops->init_secondary(); 107 108 /* 109 * XXX parity protection should be folded in here when it's converted 110 * to an option instead of something based on .cputype 111 */ 112 113 calibrate_delay(); 114 preempt_disable(); 115 cpu = smp_processor_id(); 116 cpu_data[cpu].udelay_val = loops_per_jiffy; 117 118 notify_cpu_starting(cpu); 119 120 mp_ops->smp_finish(); 121 set_cpu_sibling_map(cpu); 122 123 cpu_set(cpu, cpu_callin_map); 124 125 synchronise_count_slave(); 126 127 cpu_idle(); 128 } 129 130 /* 131 * Call into both interrupt handlers, as we share the IPI for them 132 */ 133 void smp_call_function_interrupt(void) 134 { 135 irq_enter(); 136 generic_smp_call_function_single_interrupt(); 137 generic_smp_call_function_interrupt(); 138 irq_exit(); 139 } 140 141 static void stop_this_cpu(void *dummy) 142 { 143 /* 144 * Remove this CPU: 145 */ 146 cpu_clear(smp_processor_id(), cpu_online_map); 147 for (;;) { 148 if (cpu_wait) 149 (*cpu_wait)(); /* Wait if available. */ 150 } 151 } 152 153 void smp_send_stop(void) 154 { 155 smp_call_function(stop_this_cpu, NULL, 0); 156 } 157 158 void __init smp_cpus_done(unsigned int max_cpus) 159 { 160 mp_ops->cpus_done(); 161 synchronise_count_master(); 162 } 163 164 /* called from main before smp_init() */ 165 void __init smp_prepare_cpus(unsigned int max_cpus) 166 { 167 init_new_context(current, &init_mm); 168 current_thread_info()->cpu = 0; 169 mp_ops->prepare_cpus(max_cpus); 170 set_cpu_sibling_map(0); 171 #ifndef CONFIG_HOTPLUG_CPU 172 init_cpu_present(&cpu_possible_map); 173 #endif 174 } 175 176 /* preload SMP state for boot cpu */ 177 void __devinit smp_prepare_boot_cpu(void) 178 { 179 set_cpu_possible(0, true); 180 set_cpu_online(0, true); 181 cpu_set(0, cpu_callin_map); 182 } 183 184 /* 185 * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu 186 * and keep control until "cpu_online(cpu)" is set. Note: cpu is 187 * physical, not logical. 188 */ 189 static struct task_struct *cpu_idle_thread[NR_CPUS]; 190 191 int __cpuinit __cpu_up(unsigned int cpu) 192 { 193 struct task_struct *idle; 194 195 /* 196 * Processor goes to start_secondary(), sets online flag 197 * The following code is purely to make sure 198 * Linux can schedule processes on this slave. 199 */ 200 if (!cpu_idle_thread[cpu]) { 201 idle = fork_idle(cpu); 202 cpu_idle_thread[cpu] = idle; 203 204 if (IS_ERR(idle)) 205 panic(KERN_ERR "Fork failed for CPU %d", cpu); 206 } else { 207 idle = cpu_idle_thread[cpu]; 208 init_idle(idle, cpu); 209 } 210 211 mp_ops->boot_secondary(cpu, idle); 212 213 /* 214 * Trust is futile. We should really have timeouts ... 215 */ 216 while (!cpu_isset(cpu, cpu_callin_map)) 217 udelay(100); 218 219 cpu_set(cpu, cpu_online_map); 220 221 return 0; 222 } 223 224 /* Not really SMP stuff ... */ 225 int setup_profiling_timer(unsigned int multiplier) 226 { 227 return 0; 228 } 229 230 static void flush_tlb_all_ipi(void *info) 231 { 232 local_flush_tlb_all(); 233 } 234 235 void flush_tlb_all(void) 236 { 237 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 238 } 239 240 static void flush_tlb_mm_ipi(void *mm) 241 { 242 local_flush_tlb_mm((struct mm_struct *)mm); 243 } 244 245 /* 246 * Special Variant of smp_call_function for use by TLB functions: 247 * 248 * o No return value 249 * o collapses to normal function call on UP kernels 250 * o collapses to normal function call on systems with a single shared 251 * primary cache. 252 * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core. 253 */ 254 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 255 { 256 #ifndef CONFIG_MIPS_MT_SMTC 257 smp_call_function(func, info, 1); 258 #endif 259 } 260 261 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 262 { 263 preempt_disable(); 264 265 smp_on_other_tlbs(func, info); 266 func(info); 267 268 preempt_enable(); 269 } 270 271 /* 272 * The following tlb flush calls are invoked when old translations are 273 * being torn down, or pte attributes are changing. For single threaded 274 * address spaces, a new context is obtained on the current cpu, and tlb 275 * context on other cpus are invalidated to force a new context allocation 276 * at switch_mm time, should the mm ever be used on other cpus. For 277 * multithreaded address spaces, intercpu interrupts have to be sent. 278 * Another case where intercpu interrupts are required is when the target 279 * mm might be active on another cpu (eg debuggers doing the flushes on 280 * behalf of debugees, kswapd stealing pages from another process etc). 281 * Kanoj 07/00. 282 */ 283 284 void flush_tlb_mm(struct mm_struct *mm) 285 { 286 preempt_disable(); 287 288 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 289 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 290 } else { 291 cpumask_t mask = cpu_online_map; 292 unsigned int cpu; 293 294 cpu_clear(smp_processor_id(), mask); 295 for_each_cpu_mask(cpu, mask) 296 if (cpu_context(cpu, mm)) 297 cpu_context(cpu, mm) = 0; 298 } 299 local_flush_tlb_mm(mm); 300 301 preempt_enable(); 302 } 303 304 struct flush_tlb_data { 305 struct vm_area_struct *vma; 306 unsigned long addr1; 307 unsigned long addr2; 308 }; 309 310 static void flush_tlb_range_ipi(void *info) 311 { 312 struct flush_tlb_data *fd = info; 313 314 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 315 } 316 317 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 318 { 319 struct mm_struct *mm = vma->vm_mm; 320 321 preempt_disable(); 322 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 323 struct flush_tlb_data fd = { 324 .vma = vma, 325 .addr1 = start, 326 .addr2 = end, 327 }; 328 329 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 330 } else { 331 cpumask_t mask = cpu_online_map; 332 unsigned int cpu; 333 334 cpu_clear(smp_processor_id(), mask); 335 for_each_cpu_mask(cpu, mask) 336 if (cpu_context(cpu, mm)) 337 cpu_context(cpu, mm) = 0; 338 } 339 local_flush_tlb_range(vma, start, end); 340 preempt_enable(); 341 } 342 343 static void flush_tlb_kernel_range_ipi(void *info) 344 { 345 struct flush_tlb_data *fd = info; 346 347 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 348 } 349 350 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 351 { 352 struct flush_tlb_data fd = { 353 .addr1 = start, 354 .addr2 = end, 355 }; 356 357 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 358 } 359 360 static void flush_tlb_page_ipi(void *info) 361 { 362 struct flush_tlb_data *fd = info; 363 364 local_flush_tlb_page(fd->vma, fd->addr1); 365 } 366 367 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 368 { 369 preempt_disable(); 370 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 371 struct flush_tlb_data fd = { 372 .vma = vma, 373 .addr1 = page, 374 }; 375 376 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 377 } else { 378 cpumask_t mask = cpu_online_map; 379 unsigned int cpu; 380 381 cpu_clear(smp_processor_id(), mask); 382 for_each_cpu_mask(cpu, mask) 383 if (cpu_context(cpu, vma->vm_mm)) 384 cpu_context(cpu, vma->vm_mm) = 0; 385 } 386 local_flush_tlb_page(vma, page); 387 preempt_enable(); 388 } 389 390 static void flush_tlb_one_ipi(void *info) 391 { 392 unsigned long vaddr = (unsigned long) info; 393 394 local_flush_tlb_one(vaddr); 395 } 396 397 void flush_tlb_one(unsigned long vaddr) 398 { 399 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 400 } 401 402 EXPORT_SYMBOL(flush_tlb_page); 403 EXPORT_SYMBOL(flush_tlb_one); 404