xref: /linux/arch/mips/kernel/smp.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 
36 #include <asm/atomic.h>
37 #include <asm/cpu.h>
38 #include <asm/processor.h>
39 #include <asm/r4k-timer.h>
40 #include <asm/system.h>
41 #include <asm/mmu_context.h>
42 #include <asm/time.h>
43 
44 #ifdef CONFIG_MIPS_MT_SMTC
45 #include <asm/mipsmtregs.h>
46 #endif /* CONFIG_MIPS_MT_SMTC */
47 
48 volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
49 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
50 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
51 
52 /* Number of TCs (or siblings in Intel speak) per CPU core */
53 int smp_num_siblings = 1;
54 EXPORT_SYMBOL(smp_num_siblings);
55 
56 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
57 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
58 EXPORT_SYMBOL(cpu_sibling_map);
59 
60 /* representing cpus for which sibling maps can be computed */
61 static cpumask_t cpu_sibling_setup_map;
62 
63 static inline void set_cpu_sibling_map(int cpu)
64 {
65 	int i;
66 
67 	cpu_set(cpu, cpu_sibling_setup_map);
68 
69 	if (smp_num_siblings > 1) {
70 		for_each_cpu_mask(i, cpu_sibling_setup_map) {
71 			if (cpu_data[cpu].core == cpu_data[i].core) {
72 				cpu_set(i, cpu_sibling_map[cpu]);
73 				cpu_set(cpu, cpu_sibling_map[i]);
74 			}
75 		}
76 	} else
77 		cpu_set(cpu, cpu_sibling_map[cpu]);
78 }
79 
80 struct plat_smp_ops *mp_ops;
81 
82 __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
83 {
84 	if (mp_ops)
85 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
86 
87 	mp_ops = ops;
88 }
89 
90 /*
91  * First C code run on the secondary CPUs after being started up by
92  * the master.
93  */
94 asmlinkage __cpuinit void start_secondary(void)
95 {
96 	unsigned int cpu;
97 
98 #ifdef CONFIG_MIPS_MT_SMTC
99 	/* Only do cpu_probe for first TC of CPU */
100 	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
101 #endif /* CONFIG_MIPS_MT_SMTC */
102 	cpu_probe();
103 	cpu_report();
104 	per_cpu_trap_init();
105 	mips_clockevent_init();
106 	mp_ops->init_secondary();
107 
108 	/*
109 	 * XXX parity protection should be folded in here when it's converted
110 	 * to an option instead of something based on .cputype
111 	 */
112 
113 	calibrate_delay();
114 	preempt_disable();
115 	cpu = smp_processor_id();
116 	cpu_data[cpu].udelay_val = loops_per_jiffy;
117 
118 	notify_cpu_starting(cpu);
119 
120 	mp_ops->smp_finish();
121 	set_cpu_sibling_map(cpu);
122 
123 	cpu_set(cpu, cpu_callin_map);
124 
125 	synchronise_count_slave();
126 
127 	cpu_idle();
128 }
129 
130 /*
131  * Call into both interrupt handlers, as we share the IPI for them
132  */
133 void smp_call_function_interrupt(void)
134 {
135 	irq_enter();
136 	generic_smp_call_function_single_interrupt();
137 	generic_smp_call_function_interrupt();
138 	irq_exit();
139 }
140 
141 static void stop_this_cpu(void *dummy)
142 {
143 	/*
144 	 * Remove this CPU:
145 	 */
146 	cpu_clear(smp_processor_id(), cpu_online_map);
147 	for (;;) {
148 		if (cpu_wait)
149 			(*cpu_wait)();		/* Wait if available. */
150 	}
151 }
152 
153 void smp_send_stop(void)
154 {
155 	smp_call_function(stop_this_cpu, NULL, 0);
156 }
157 
158 void __init smp_cpus_done(unsigned int max_cpus)
159 {
160 	mp_ops->cpus_done();
161 	synchronise_count_master();
162 }
163 
164 /* called from main before smp_init() */
165 void __init smp_prepare_cpus(unsigned int max_cpus)
166 {
167 	init_new_context(current, &init_mm);
168 	current_thread_info()->cpu = 0;
169 	mp_ops->prepare_cpus(max_cpus);
170 	set_cpu_sibling_map(0);
171 #ifndef CONFIG_HOTPLUG_CPU
172 	init_cpu_present(&cpu_possible_map);
173 #endif
174 }
175 
176 /* preload SMP state for boot cpu */
177 void __devinit smp_prepare_boot_cpu(void)
178 {
179 	set_cpu_possible(0, true);
180 	set_cpu_online(0, true);
181 	cpu_set(0, cpu_callin_map);
182 }
183 
184 /*
185  * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu
186  * and keep control until "cpu_online(cpu)" is set.  Note: cpu is
187  * physical, not logical.
188  */
189 static struct task_struct *cpu_idle_thread[NR_CPUS];
190 
191 int __cpuinit __cpu_up(unsigned int cpu)
192 {
193 	struct task_struct *idle;
194 
195 	/*
196 	 * Processor goes to start_secondary(), sets online flag
197 	 * The following code is purely to make sure
198 	 * Linux can schedule processes on this slave.
199 	 */
200 	if (!cpu_idle_thread[cpu]) {
201 		idle = fork_idle(cpu);
202 		cpu_idle_thread[cpu] = idle;
203 
204 		if (IS_ERR(idle))
205 			panic(KERN_ERR "Fork failed for CPU %d", cpu);
206 	} else {
207 		idle = cpu_idle_thread[cpu];
208 		init_idle(idle, cpu);
209 	}
210 
211 	mp_ops->boot_secondary(cpu, idle);
212 
213 	/*
214 	 * Trust is futile.  We should really have timeouts ...
215 	 */
216 	while (!cpu_isset(cpu, cpu_callin_map))
217 		udelay(100);
218 
219 	cpu_set(cpu, cpu_online_map);
220 
221 	return 0;
222 }
223 
224 /* Not really SMP stuff ... */
225 int setup_profiling_timer(unsigned int multiplier)
226 {
227 	return 0;
228 }
229 
230 static void flush_tlb_all_ipi(void *info)
231 {
232 	local_flush_tlb_all();
233 }
234 
235 void flush_tlb_all(void)
236 {
237 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
238 }
239 
240 static void flush_tlb_mm_ipi(void *mm)
241 {
242 	local_flush_tlb_mm((struct mm_struct *)mm);
243 }
244 
245 /*
246  * Special Variant of smp_call_function for use by TLB functions:
247  *
248  *  o No return value
249  *  o collapses to normal function call on UP kernels
250  *  o collapses to normal function call on systems with a single shared
251  *    primary cache.
252  *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
253  */
254 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
255 {
256 #ifndef CONFIG_MIPS_MT_SMTC
257 	smp_call_function(func, info, 1);
258 #endif
259 }
260 
261 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
262 {
263 	preempt_disable();
264 
265 	smp_on_other_tlbs(func, info);
266 	func(info);
267 
268 	preempt_enable();
269 }
270 
271 /*
272  * The following tlb flush calls are invoked when old translations are
273  * being torn down, or pte attributes are changing. For single threaded
274  * address spaces, a new context is obtained on the current cpu, and tlb
275  * context on other cpus are invalidated to force a new context allocation
276  * at switch_mm time, should the mm ever be used on other cpus. For
277  * multithreaded address spaces, intercpu interrupts have to be sent.
278  * Another case where intercpu interrupts are required is when the target
279  * mm might be active on another cpu (eg debuggers doing the flushes on
280  * behalf of debugees, kswapd stealing pages from another process etc).
281  * Kanoj 07/00.
282  */
283 
284 void flush_tlb_mm(struct mm_struct *mm)
285 {
286 	preempt_disable();
287 
288 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
289 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
290 	} else {
291 		cpumask_t mask = cpu_online_map;
292 		unsigned int cpu;
293 
294 		cpu_clear(smp_processor_id(), mask);
295 		for_each_cpu_mask(cpu, mask)
296 			if (cpu_context(cpu, mm))
297 				cpu_context(cpu, mm) = 0;
298 	}
299 	local_flush_tlb_mm(mm);
300 
301 	preempt_enable();
302 }
303 
304 struct flush_tlb_data {
305 	struct vm_area_struct *vma;
306 	unsigned long addr1;
307 	unsigned long addr2;
308 };
309 
310 static void flush_tlb_range_ipi(void *info)
311 {
312 	struct flush_tlb_data *fd = info;
313 
314 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
315 }
316 
317 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
318 {
319 	struct mm_struct *mm = vma->vm_mm;
320 
321 	preempt_disable();
322 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
323 		struct flush_tlb_data fd = {
324 			.vma = vma,
325 			.addr1 = start,
326 			.addr2 = end,
327 		};
328 
329 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
330 	} else {
331 		cpumask_t mask = cpu_online_map;
332 		unsigned int cpu;
333 
334 		cpu_clear(smp_processor_id(), mask);
335 		for_each_cpu_mask(cpu, mask)
336 			if (cpu_context(cpu, mm))
337 				cpu_context(cpu, mm) = 0;
338 	}
339 	local_flush_tlb_range(vma, start, end);
340 	preempt_enable();
341 }
342 
343 static void flush_tlb_kernel_range_ipi(void *info)
344 {
345 	struct flush_tlb_data *fd = info;
346 
347 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
348 }
349 
350 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
351 {
352 	struct flush_tlb_data fd = {
353 		.addr1 = start,
354 		.addr2 = end,
355 	};
356 
357 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
358 }
359 
360 static void flush_tlb_page_ipi(void *info)
361 {
362 	struct flush_tlb_data *fd = info;
363 
364 	local_flush_tlb_page(fd->vma, fd->addr1);
365 }
366 
367 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
368 {
369 	preempt_disable();
370 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
371 		struct flush_tlb_data fd = {
372 			.vma = vma,
373 			.addr1 = page,
374 		};
375 
376 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
377 	} else {
378 		cpumask_t mask = cpu_online_map;
379 		unsigned int cpu;
380 
381 		cpu_clear(smp_processor_id(), mask);
382 		for_each_cpu_mask(cpu, mask)
383 			if (cpu_context(cpu, vma->vm_mm))
384 				cpu_context(cpu, vma->vm_mm) = 0;
385 	}
386 	local_flush_tlb_page(vma, page);
387 	preempt_enable();
388 }
389 
390 static void flush_tlb_one_ipi(void *info)
391 {
392 	unsigned long vaddr = (unsigned long) info;
393 
394 	local_flush_tlb_one(vaddr);
395 }
396 
397 void flush_tlb_one(unsigned long vaddr)
398 {
399 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
400 }
401 
402 EXPORT_SYMBOL(flush_tlb_page);
403 EXPORT_SYMBOL(flush_tlb_one);
404