1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/module.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 #include <linux/ftrace.h> 36 37 #include <linux/atomic.h> 38 #include <asm/cpu.h> 39 #include <asm/processor.h> 40 #include <asm/idle.h> 41 #include <asm/r4k-timer.h> 42 #include <asm/mmu_context.h> 43 #include <asm/time.h> 44 #include <asm/setup.h> 45 46 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 47 48 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 49 EXPORT_SYMBOL(__cpu_number_map); 50 51 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 52 EXPORT_SYMBOL(__cpu_logical_map); 53 54 /* Number of TCs (or siblings in Intel speak) per CPU core */ 55 int smp_num_siblings = 1; 56 EXPORT_SYMBOL(smp_num_siblings); 57 58 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 59 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 60 EXPORT_SYMBOL(cpu_sibling_map); 61 62 /* representing the core map of multi-core chips of each logical CPU */ 63 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 64 EXPORT_SYMBOL(cpu_core_map); 65 66 /* representing cpus for which sibling maps can be computed */ 67 static cpumask_t cpu_sibling_setup_map; 68 69 /* representing cpus for which core maps can be computed */ 70 static cpumask_t cpu_core_setup_map; 71 72 cpumask_t cpu_coherent_mask; 73 74 static inline void set_cpu_sibling_map(int cpu) 75 { 76 int i; 77 78 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 79 80 if (smp_num_siblings > 1) { 81 for_each_cpu(i, &cpu_sibling_setup_map) { 82 if (cpu_data[cpu].package == cpu_data[i].package && 83 cpu_data[cpu].core == cpu_data[i].core) { 84 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 85 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 86 } 87 } 88 } else 89 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 90 } 91 92 static inline void set_cpu_core_map(int cpu) 93 { 94 int i; 95 96 cpumask_set_cpu(cpu, &cpu_core_setup_map); 97 98 for_each_cpu(i, &cpu_core_setup_map) { 99 if (cpu_data[cpu].package == cpu_data[i].package) { 100 cpumask_set_cpu(i, &cpu_core_map[cpu]); 101 cpumask_set_cpu(cpu, &cpu_core_map[i]); 102 } 103 } 104 } 105 106 struct plat_smp_ops *mp_ops; 107 EXPORT_SYMBOL(mp_ops); 108 109 void register_smp_ops(struct plat_smp_ops *ops) 110 { 111 if (mp_ops) 112 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 113 114 mp_ops = ops; 115 } 116 117 /* 118 * First C code run on the secondary CPUs after being started up by 119 * the master. 120 */ 121 asmlinkage void start_secondary(void) 122 { 123 unsigned int cpu; 124 125 cpu_probe(); 126 per_cpu_trap_init(false); 127 mips_clockevent_init(); 128 mp_ops->init_secondary(); 129 cpu_report(); 130 131 /* 132 * XXX parity protection should be folded in here when it's converted 133 * to an option instead of something based on .cputype 134 */ 135 136 calibrate_delay(); 137 preempt_disable(); 138 cpu = smp_processor_id(); 139 cpu_data[cpu].udelay_val = loops_per_jiffy; 140 141 cpumask_set_cpu(cpu, &cpu_coherent_mask); 142 notify_cpu_starting(cpu); 143 144 set_cpu_online(cpu, true); 145 146 set_cpu_sibling_map(cpu); 147 set_cpu_core_map(cpu); 148 149 cpumask_set_cpu(cpu, &cpu_callin_map); 150 151 synchronise_count_slave(cpu); 152 153 /* 154 * irq will be enabled in ->smp_finish(), enabling it too early 155 * is dangerous. 156 */ 157 WARN_ON_ONCE(!irqs_disabled()); 158 mp_ops->smp_finish(); 159 160 cpu_startup_entry(CPUHP_ONLINE); 161 } 162 163 /* 164 * Call into both interrupt handlers, as we share the IPI for them 165 */ 166 void __irq_entry smp_call_function_interrupt(void) 167 { 168 irq_enter(); 169 generic_smp_call_function_interrupt(); 170 irq_exit(); 171 } 172 173 static void stop_this_cpu(void *dummy) 174 { 175 /* 176 * Remove this CPU: 177 */ 178 set_cpu_online(smp_processor_id(), false); 179 local_irq_disable(); 180 while (1); 181 } 182 183 void smp_send_stop(void) 184 { 185 smp_call_function(stop_this_cpu, NULL, 0); 186 } 187 188 void __init smp_cpus_done(unsigned int max_cpus) 189 { 190 } 191 192 /* called from main before smp_init() */ 193 void __init smp_prepare_cpus(unsigned int max_cpus) 194 { 195 init_new_context(current, &init_mm); 196 current_thread_info()->cpu = 0; 197 mp_ops->prepare_cpus(max_cpus); 198 set_cpu_sibling_map(0); 199 set_cpu_core_map(0); 200 #ifndef CONFIG_HOTPLUG_CPU 201 init_cpu_present(cpu_possible_mask); 202 #endif 203 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 204 } 205 206 /* preload SMP state for boot cpu */ 207 void smp_prepare_boot_cpu(void) 208 { 209 set_cpu_possible(0, true); 210 set_cpu_online(0, true); 211 cpumask_set_cpu(0, &cpu_callin_map); 212 } 213 214 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 215 { 216 mp_ops->boot_secondary(cpu, tidle); 217 218 /* 219 * Trust is futile. We should really have timeouts ... 220 */ 221 while (!cpumask_test_cpu(cpu, &cpu_callin_map)) 222 udelay(100); 223 224 synchronise_count_master(cpu); 225 return 0; 226 } 227 228 /* Not really SMP stuff ... */ 229 int setup_profiling_timer(unsigned int multiplier) 230 { 231 return 0; 232 } 233 234 static void flush_tlb_all_ipi(void *info) 235 { 236 local_flush_tlb_all(); 237 } 238 239 void flush_tlb_all(void) 240 { 241 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 242 } 243 244 static void flush_tlb_mm_ipi(void *mm) 245 { 246 local_flush_tlb_mm((struct mm_struct *)mm); 247 } 248 249 /* 250 * Special Variant of smp_call_function for use by TLB functions: 251 * 252 * o No return value 253 * o collapses to normal function call on UP kernels 254 * o collapses to normal function call on systems with a single shared 255 * primary cache. 256 */ 257 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 258 { 259 smp_call_function(func, info, 1); 260 } 261 262 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 263 { 264 preempt_disable(); 265 266 smp_on_other_tlbs(func, info); 267 func(info); 268 269 preempt_enable(); 270 } 271 272 /* 273 * The following tlb flush calls are invoked when old translations are 274 * being torn down, or pte attributes are changing. For single threaded 275 * address spaces, a new context is obtained on the current cpu, and tlb 276 * context on other cpus are invalidated to force a new context allocation 277 * at switch_mm time, should the mm ever be used on other cpus. For 278 * multithreaded address spaces, intercpu interrupts have to be sent. 279 * Another case where intercpu interrupts are required is when the target 280 * mm might be active on another cpu (eg debuggers doing the flushes on 281 * behalf of debugees, kswapd stealing pages from another process etc). 282 * Kanoj 07/00. 283 */ 284 285 void flush_tlb_mm(struct mm_struct *mm) 286 { 287 preempt_disable(); 288 289 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 290 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 291 } else { 292 unsigned int cpu; 293 294 for_each_online_cpu(cpu) { 295 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 296 cpu_context(cpu, mm) = 0; 297 } 298 } 299 local_flush_tlb_mm(mm); 300 301 preempt_enable(); 302 } 303 304 struct flush_tlb_data { 305 struct vm_area_struct *vma; 306 unsigned long addr1; 307 unsigned long addr2; 308 }; 309 310 static void flush_tlb_range_ipi(void *info) 311 { 312 struct flush_tlb_data *fd = info; 313 314 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 315 } 316 317 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 318 { 319 struct mm_struct *mm = vma->vm_mm; 320 321 preempt_disable(); 322 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 323 struct flush_tlb_data fd = { 324 .vma = vma, 325 .addr1 = start, 326 .addr2 = end, 327 }; 328 329 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 330 } else { 331 unsigned int cpu; 332 333 for_each_online_cpu(cpu) { 334 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 335 cpu_context(cpu, mm) = 0; 336 } 337 } 338 local_flush_tlb_range(vma, start, end); 339 preempt_enable(); 340 } 341 342 static void flush_tlb_kernel_range_ipi(void *info) 343 { 344 struct flush_tlb_data *fd = info; 345 346 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 347 } 348 349 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 350 { 351 struct flush_tlb_data fd = { 352 .addr1 = start, 353 .addr2 = end, 354 }; 355 356 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 357 } 358 359 static void flush_tlb_page_ipi(void *info) 360 { 361 struct flush_tlb_data *fd = info; 362 363 local_flush_tlb_page(fd->vma, fd->addr1); 364 } 365 366 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 367 { 368 preempt_disable(); 369 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 370 struct flush_tlb_data fd = { 371 .vma = vma, 372 .addr1 = page, 373 }; 374 375 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 376 } else { 377 unsigned int cpu; 378 379 for_each_online_cpu(cpu) { 380 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 381 cpu_context(cpu, vma->vm_mm) = 0; 382 } 383 } 384 local_flush_tlb_page(vma, page); 385 preempt_enable(); 386 } 387 388 static void flush_tlb_one_ipi(void *info) 389 { 390 unsigned long vaddr = (unsigned long) info; 391 392 local_flush_tlb_one(vaddr); 393 } 394 395 void flush_tlb_one(unsigned long vaddr) 396 { 397 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 398 } 399 400 EXPORT_SYMBOL(flush_tlb_page); 401 EXPORT_SYMBOL(flush_tlb_one); 402 403 #if defined(CONFIG_KEXEC) 404 void (*dump_ipi_function_ptr)(void *) = NULL; 405 void dump_send_ipi(void (*dump_ipi_callback)(void *)) 406 { 407 int i; 408 int cpu = smp_processor_id(); 409 410 dump_ipi_function_ptr = dump_ipi_callback; 411 smp_mb(); 412 for_each_online_cpu(i) 413 if (i != cpu) 414 mp_ops->send_ipi_single(i, SMP_DUMP); 415 416 } 417 EXPORT_SYMBOL(dump_send_ipi); 418 #endif 419 420 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 421 422 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); 423 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd); 424 425 void tick_broadcast(const struct cpumask *mask) 426 { 427 atomic_t *count; 428 struct call_single_data *csd; 429 int cpu; 430 431 for_each_cpu(cpu, mask) { 432 count = &per_cpu(tick_broadcast_count, cpu); 433 csd = &per_cpu(tick_broadcast_csd, cpu); 434 435 if (atomic_inc_return(count) == 1) 436 smp_call_function_single_async(cpu, csd); 437 } 438 } 439 440 static void tick_broadcast_callee(void *info) 441 { 442 int cpu = smp_processor_id(); 443 tick_receive_broadcast(); 444 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); 445 } 446 447 static int __init tick_broadcast_init(void) 448 { 449 struct call_single_data *csd; 450 int cpu; 451 452 for (cpu = 0; cpu < NR_CPUS; cpu++) { 453 csd = &per_cpu(tick_broadcast_csd, cpu); 454 csd->func = tick_broadcast_callee; 455 } 456 457 return 0; 458 } 459 early_initcall(tick_broadcast_init); 460 461 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 462