xref: /linux/arch/mips/kernel/smp.c (revision 63d6e721527e175edbbe8513cba8e4a0caf94da5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2000, 2001 Kanoj Sarcar
5  * Copyright (C) 2000, 2001 Ralf Baechle
6  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8  */
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/smp.h>
14 #include <linux/spinlock.h>
15 #include <linux/threads.h>
16 #include <linux/export.h>
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/sched/mm.h>
20 #include <linux/cpumask.h>
21 #include <linux/cpu.h>
22 #include <linux/err.h>
23 #include <linux/ftrace.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 
28 #include <linux/atomic.h>
29 #include <asm/cpu.h>
30 #include <asm/ginvt.h>
31 #include <asm/processor.h>
32 #include <asm/idle.h>
33 #include <asm/r4k-timer.h>
34 #include <asm/mips-cps.h>
35 #include <asm/mmu_context.h>
36 #include <asm/time.h>
37 #include <asm/setup.h>
38 #include <asm/maar.h>
39 
40 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
41 EXPORT_SYMBOL(__cpu_number_map);
42 
43 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
44 EXPORT_SYMBOL(__cpu_logical_map);
45 
46 /* Number of TCs (or siblings in Intel speak) per CPU core */
47 int smp_num_siblings = 1;
48 EXPORT_SYMBOL(smp_num_siblings);
49 
50 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
52 EXPORT_SYMBOL(cpu_sibling_map);
53 
54 /* representing the core map of multi-core chips of each logical CPU */
55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
56 EXPORT_SYMBOL(cpu_core_map);
57 
58 static DECLARE_COMPLETION(cpu_starting);
59 static DECLARE_COMPLETION(cpu_running);
60 
61 /*
62  * A logcal cpu mask containing only one VPE per core to
63  * reduce the number of IPIs on large MT systems.
64  */
65 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
66 EXPORT_SYMBOL(cpu_foreign_map);
67 
68 /* representing cpus for which sibling maps can be computed */
69 static cpumask_t cpu_sibling_setup_map;
70 
71 /* representing cpus for which core maps can be computed */
72 static cpumask_t cpu_core_setup_map;
73 
74 cpumask_t cpu_coherent_mask;
75 
76 #ifdef CONFIG_GENERIC_IRQ_IPI
77 static struct irq_desc *call_desc;
78 static struct irq_desc *sched_desc;
79 #endif
80 
81 static inline void set_cpu_sibling_map(int cpu)
82 {
83 	int i;
84 
85 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
86 
87 	if (smp_num_siblings > 1) {
88 		for_each_cpu(i, &cpu_sibling_setup_map) {
89 			if (cpus_are_siblings(cpu, i)) {
90 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
91 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
92 			}
93 		}
94 	} else
95 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
96 }
97 
98 static inline void set_cpu_core_map(int cpu)
99 {
100 	int i;
101 
102 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
103 
104 	for_each_cpu(i, &cpu_core_setup_map) {
105 		if (cpu_data[cpu].package == cpu_data[i].package) {
106 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
107 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
108 		}
109 	}
110 }
111 
112 /*
113  * Calculate a new cpu_foreign_map mask whenever a
114  * new cpu appears or disappears.
115  */
116 void calculate_cpu_foreign_map(void)
117 {
118 	int i, k, core_present;
119 	cpumask_t temp_foreign_map;
120 
121 	/* Re-calculate the mask */
122 	cpumask_clear(&temp_foreign_map);
123 	for_each_online_cpu(i) {
124 		core_present = 0;
125 		for_each_cpu(k, &temp_foreign_map)
126 			if (cpus_are_siblings(i, k))
127 				core_present = 1;
128 		if (!core_present)
129 			cpumask_set_cpu(i, &temp_foreign_map);
130 	}
131 
132 	for_each_online_cpu(i)
133 		cpumask_andnot(&cpu_foreign_map[i],
134 			       &temp_foreign_map, &cpu_sibling_map[i]);
135 }
136 
137 const struct plat_smp_ops *mp_ops;
138 EXPORT_SYMBOL(mp_ops);
139 
140 void register_smp_ops(const struct plat_smp_ops *ops)
141 {
142 	if (mp_ops)
143 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
144 
145 	mp_ops = ops;
146 }
147 
148 #ifdef CONFIG_GENERIC_IRQ_IPI
149 void mips_smp_send_ipi_single(int cpu, unsigned int action)
150 {
151 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
152 }
153 
154 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
155 {
156 	unsigned long flags;
157 	unsigned int core;
158 	int cpu;
159 
160 	local_irq_save(flags);
161 
162 	switch (action) {
163 	case SMP_CALL_FUNCTION:
164 		__ipi_send_mask(call_desc, mask);
165 		break;
166 
167 	case SMP_RESCHEDULE_YOURSELF:
168 		__ipi_send_mask(sched_desc, mask);
169 		break;
170 
171 	default:
172 		BUG();
173 	}
174 
175 	if (mips_cpc_present()) {
176 		for_each_cpu(cpu, mask) {
177 			if (cpus_are_siblings(cpu, smp_processor_id()))
178 				continue;
179 
180 			core = cpu_core(&cpu_data[cpu]);
181 
182 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
183 				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
184 				mips_cpc_lock_other(core);
185 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
186 				mips_cpc_unlock_other();
187 				mips_cm_unlock_other();
188 			}
189 		}
190 	}
191 
192 	local_irq_restore(flags);
193 }
194 
195 
196 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
197 {
198 	scheduler_ipi();
199 
200 	return IRQ_HANDLED;
201 }
202 
203 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
204 {
205 	generic_smp_call_function_interrupt();
206 
207 	return IRQ_HANDLED;
208 }
209 
210 static struct irqaction irq_resched = {
211 	.handler	= ipi_resched_interrupt,
212 	.flags		= IRQF_PERCPU,
213 	.name		= "IPI resched"
214 };
215 
216 static struct irqaction irq_call = {
217 	.handler	= ipi_call_interrupt,
218 	.flags		= IRQF_PERCPU,
219 	.name		= "IPI call"
220 };
221 
222 static void smp_ipi_init_one(unsigned int virq,
223 				    struct irqaction *action)
224 {
225 	int ret;
226 
227 	irq_set_handler(virq, handle_percpu_irq);
228 	ret = setup_irq(virq, action);
229 	BUG_ON(ret);
230 }
231 
232 static unsigned int call_virq, sched_virq;
233 
234 int mips_smp_ipi_allocate(const struct cpumask *mask)
235 {
236 	int virq;
237 	struct irq_domain *ipidomain;
238 	struct device_node *node;
239 
240 	node = of_irq_find_parent(of_root);
241 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
242 
243 	/*
244 	 * Some platforms have half DT setup. So if we found irq node but
245 	 * didn't find an ipidomain, try to search for one that is not in the
246 	 * DT.
247 	 */
248 	if (node && !ipidomain)
249 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
250 
251 	/*
252 	 * There are systems which use IPI IRQ domains, but only have one
253 	 * registered when some runtime condition is met. For example a Malta
254 	 * kernel may include support for GIC & CPU interrupt controller IPI
255 	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
256 	 * neither will be supported or registered.
257 	 *
258 	 * We only have a problem if we're actually using multiple CPUs so fail
259 	 * loudly if that is the case. Otherwise simply return, skipping IPI
260 	 * setup, if we're running with only a single CPU.
261 	 */
262 	if (!ipidomain) {
263 		BUG_ON(num_present_cpus() > 1);
264 		return 0;
265 	}
266 
267 	virq = irq_reserve_ipi(ipidomain, mask);
268 	BUG_ON(!virq);
269 	if (!call_virq)
270 		call_virq = virq;
271 
272 	virq = irq_reserve_ipi(ipidomain, mask);
273 	BUG_ON(!virq);
274 	if (!sched_virq)
275 		sched_virq = virq;
276 
277 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
278 		int cpu;
279 
280 		for_each_cpu(cpu, mask) {
281 			smp_ipi_init_one(call_virq + cpu, &irq_call);
282 			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
283 		}
284 	} else {
285 		smp_ipi_init_one(call_virq, &irq_call);
286 		smp_ipi_init_one(sched_virq, &irq_resched);
287 	}
288 
289 	return 0;
290 }
291 
292 int mips_smp_ipi_free(const struct cpumask *mask)
293 {
294 	struct irq_domain *ipidomain;
295 	struct device_node *node;
296 
297 	node = of_irq_find_parent(of_root);
298 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
299 
300 	/*
301 	 * Some platforms have half DT setup. So if we found irq node but
302 	 * didn't find an ipidomain, try to search for one that is not in the
303 	 * DT.
304 	 */
305 	if (node && !ipidomain)
306 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
307 
308 	BUG_ON(!ipidomain);
309 
310 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
311 		int cpu;
312 
313 		for_each_cpu(cpu, mask) {
314 			remove_irq(call_virq + cpu, &irq_call);
315 			remove_irq(sched_virq + cpu, &irq_resched);
316 		}
317 	}
318 	irq_destroy_ipi(call_virq, mask);
319 	irq_destroy_ipi(sched_virq, mask);
320 	return 0;
321 }
322 
323 
324 static int __init mips_smp_ipi_init(void)
325 {
326 	if (num_possible_cpus() == 1)
327 		return 0;
328 
329 	mips_smp_ipi_allocate(cpu_possible_mask);
330 
331 	call_desc = irq_to_desc(call_virq);
332 	sched_desc = irq_to_desc(sched_virq);
333 
334 	return 0;
335 }
336 early_initcall(mips_smp_ipi_init);
337 #endif
338 
339 /*
340  * First C code run on the secondary CPUs after being started up by
341  * the master.
342  */
343 asmlinkage void start_secondary(void)
344 {
345 	unsigned int cpu;
346 
347 	cpu_probe();
348 	per_cpu_trap_init(false);
349 	mips_clockevent_init();
350 	mp_ops->init_secondary();
351 	cpu_report();
352 	maar_init();
353 
354 	/*
355 	 * XXX parity protection should be folded in here when it's converted
356 	 * to an option instead of something based on .cputype
357 	 */
358 
359 	calibrate_delay();
360 	preempt_disable();
361 	cpu = smp_processor_id();
362 	cpu_data[cpu].udelay_val = loops_per_jiffy;
363 
364 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
365 	notify_cpu_starting(cpu);
366 
367 	/* Notify boot CPU that we're starting & ready to sync counters */
368 	complete(&cpu_starting);
369 
370 	synchronise_count_slave(cpu);
371 
372 	/* The CPU is running and counters synchronised, now mark it online */
373 	set_cpu_online(cpu, true);
374 
375 	set_cpu_sibling_map(cpu);
376 	set_cpu_core_map(cpu);
377 
378 	calculate_cpu_foreign_map();
379 
380 	/*
381 	 * Notify boot CPU that we're up & online and it can safely return
382 	 * from __cpu_up
383 	 */
384 	complete(&cpu_running);
385 
386 	/*
387 	 * irq will be enabled in ->smp_finish(), enabling it too early
388 	 * is dangerous.
389 	 */
390 	WARN_ON_ONCE(!irqs_disabled());
391 	mp_ops->smp_finish();
392 
393 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
394 }
395 
396 static void stop_this_cpu(void *dummy)
397 {
398 	/*
399 	 * Remove this CPU:
400 	 */
401 
402 	set_cpu_online(smp_processor_id(), false);
403 	calculate_cpu_foreign_map();
404 	local_irq_disable();
405 	while (1);
406 }
407 
408 void smp_send_stop(void)
409 {
410 	smp_call_function(stop_this_cpu, NULL, 0);
411 }
412 
413 void __init smp_cpus_done(unsigned int max_cpus)
414 {
415 }
416 
417 /* called from main before smp_init() */
418 void __init smp_prepare_cpus(unsigned int max_cpus)
419 {
420 	init_new_context(current, &init_mm);
421 	current_thread_info()->cpu = 0;
422 	mp_ops->prepare_cpus(max_cpus);
423 	set_cpu_sibling_map(0);
424 	set_cpu_core_map(0);
425 	calculate_cpu_foreign_map();
426 #ifndef CONFIG_HOTPLUG_CPU
427 	init_cpu_present(cpu_possible_mask);
428 #endif
429 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
430 }
431 
432 /* preload SMP state for boot cpu */
433 void smp_prepare_boot_cpu(void)
434 {
435 	if (mp_ops->prepare_boot_cpu)
436 		mp_ops->prepare_boot_cpu();
437 	set_cpu_possible(0, true);
438 	set_cpu_online(0, true);
439 }
440 
441 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
442 {
443 	int err;
444 
445 	err = mp_ops->boot_secondary(cpu, tidle);
446 	if (err)
447 		return err;
448 
449 	/* Wait for CPU to start and be ready to sync counters */
450 	if (!wait_for_completion_timeout(&cpu_starting,
451 					 msecs_to_jiffies(1000))) {
452 		pr_crit("CPU%u: failed to start\n", cpu);
453 		return -EIO;
454 	}
455 
456 	synchronise_count_master(cpu);
457 
458 	/* Wait for CPU to finish startup & mark itself online before return */
459 	wait_for_completion(&cpu_running);
460 	return 0;
461 }
462 
463 /* Not really SMP stuff ... */
464 int setup_profiling_timer(unsigned int multiplier)
465 {
466 	return 0;
467 }
468 
469 static void flush_tlb_all_ipi(void *info)
470 {
471 	local_flush_tlb_all();
472 }
473 
474 void flush_tlb_all(void)
475 {
476 	if (cpu_has_mmid) {
477 		htw_stop();
478 		ginvt_full();
479 		sync_ginv();
480 		instruction_hazard();
481 		htw_start();
482 		return;
483 	}
484 
485 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
486 }
487 
488 static void flush_tlb_mm_ipi(void *mm)
489 {
490 	drop_mmu_context((struct mm_struct *)mm);
491 }
492 
493 /*
494  * Special Variant of smp_call_function for use by TLB functions:
495  *
496  *  o No return value
497  *  o collapses to normal function call on UP kernels
498  *  o collapses to normal function call on systems with a single shared
499  *    primary cache.
500  */
501 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
502 {
503 	smp_call_function(func, info, 1);
504 }
505 
506 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
507 {
508 	preempt_disable();
509 
510 	smp_on_other_tlbs(func, info);
511 	func(info);
512 
513 	preempt_enable();
514 }
515 
516 /*
517  * The following tlb flush calls are invoked when old translations are
518  * being torn down, or pte attributes are changing. For single threaded
519  * address spaces, a new context is obtained on the current cpu, and tlb
520  * context on other cpus are invalidated to force a new context allocation
521  * at switch_mm time, should the mm ever be used on other cpus. For
522  * multithreaded address spaces, intercpu interrupts have to be sent.
523  * Another case where intercpu interrupts are required is when the target
524  * mm might be active on another cpu (eg debuggers doing the flushes on
525  * behalf of debugees, kswapd stealing pages from another process etc).
526  * Kanoj 07/00.
527  */
528 
529 void flush_tlb_mm(struct mm_struct *mm)
530 {
531 	preempt_disable();
532 
533 	if (cpu_has_mmid) {
534 		/*
535 		 * No need to worry about other CPUs - the ginvt in
536 		 * drop_mmu_context() will be globalized.
537 		 */
538 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
539 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
540 	} else {
541 		unsigned int cpu;
542 
543 		for_each_online_cpu(cpu) {
544 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
545 				set_cpu_context(cpu, mm, 0);
546 		}
547 	}
548 	drop_mmu_context(mm);
549 
550 	preempt_enable();
551 }
552 
553 struct flush_tlb_data {
554 	struct vm_area_struct *vma;
555 	unsigned long addr1;
556 	unsigned long addr2;
557 };
558 
559 static void flush_tlb_range_ipi(void *info)
560 {
561 	struct flush_tlb_data *fd = info;
562 
563 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
564 }
565 
566 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
567 {
568 	struct mm_struct *mm = vma->vm_mm;
569 	unsigned long addr;
570 	u32 old_mmid;
571 
572 	preempt_disable();
573 	if (cpu_has_mmid) {
574 		htw_stop();
575 		old_mmid = read_c0_memorymapid();
576 		write_c0_memorymapid(cpu_asid(0, mm));
577 		mtc0_tlbw_hazard();
578 		addr = round_down(start, PAGE_SIZE * 2);
579 		end = round_up(end, PAGE_SIZE * 2);
580 		do {
581 			ginvt_va_mmid(addr);
582 			sync_ginv();
583 			addr += PAGE_SIZE * 2;
584 		} while (addr < end);
585 		write_c0_memorymapid(old_mmid);
586 		instruction_hazard();
587 		htw_start();
588 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
589 		struct flush_tlb_data fd = {
590 			.vma = vma,
591 			.addr1 = start,
592 			.addr2 = end,
593 		};
594 
595 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
596 		local_flush_tlb_range(vma, start, end);
597 	} else {
598 		unsigned int cpu;
599 		int exec = vma->vm_flags & VM_EXEC;
600 
601 		for_each_online_cpu(cpu) {
602 			/*
603 			 * flush_cache_range() will only fully flush icache if
604 			 * the VMA is executable, otherwise we must invalidate
605 			 * ASID without it appearing to has_valid_asid() as if
606 			 * mm has been completely unused by that CPU.
607 			 */
608 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
609 				set_cpu_context(cpu, mm, !exec);
610 		}
611 		local_flush_tlb_range(vma, start, end);
612 	}
613 	preempt_enable();
614 }
615 
616 static void flush_tlb_kernel_range_ipi(void *info)
617 {
618 	struct flush_tlb_data *fd = info;
619 
620 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
621 }
622 
623 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
624 {
625 	struct flush_tlb_data fd = {
626 		.addr1 = start,
627 		.addr2 = end,
628 	};
629 
630 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
631 }
632 
633 static void flush_tlb_page_ipi(void *info)
634 {
635 	struct flush_tlb_data *fd = info;
636 
637 	local_flush_tlb_page(fd->vma, fd->addr1);
638 }
639 
640 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
641 {
642 	u32 old_mmid;
643 
644 	preempt_disable();
645 	if (cpu_has_mmid) {
646 		htw_stop();
647 		old_mmid = read_c0_memorymapid();
648 		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
649 		mtc0_tlbw_hazard();
650 		ginvt_va_mmid(page);
651 		sync_ginv();
652 		write_c0_memorymapid(old_mmid);
653 		instruction_hazard();
654 		htw_start();
655 	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
656 		   (current->mm != vma->vm_mm)) {
657 		struct flush_tlb_data fd = {
658 			.vma = vma,
659 			.addr1 = page,
660 		};
661 
662 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
663 		local_flush_tlb_page(vma, page);
664 	} else {
665 		unsigned int cpu;
666 
667 		for_each_online_cpu(cpu) {
668 			/*
669 			 * flush_cache_page() only does partial flushes, so
670 			 * invalidate ASID without it appearing to
671 			 * has_valid_asid() as if mm has been completely unused
672 			 * by that CPU.
673 			 */
674 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
675 				set_cpu_context(cpu, vma->vm_mm, 1);
676 		}
677 		local_flush_tlb_page(vma, page);
678 	}
679 	preempt_enable();
680 }
681 
682 static void flush_tlb_one_ipi(void *info)
683 {
684 	unsigned long vaddr = (unsigned long) info;
685 
686 	local_flush_tlb_one(vaddr);
687 }
688 
689 void flush_tlb_one(unsigned long vaddr)
690 {
691 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
692 }
693 
694 EXPORT_SYMBOL(flush_tlb_page);
695 EXPORT_SYMBOL(flush_tlb_one);
696 
697 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
698 
699 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
700 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
701 
702 void tick_broadcast(const struct cpumask *mask)
703 {
704 	atomic_t *count;
705 	call_single_data_t *csd;
706 	int cpu;
707 
708 	for_each_cpu(cpu, mask) {
709 		count = &per_cpu(tick_broadcast_count, cpu);
710 		csd = &per_cpu(tick_broadcast_csd, cpu);
711 
712 		if (atomic_inc_return(count) == 1)
713 			smp_call_function_single_async(cpu, csd);
714 	}
715 }
716 
717 static void tick_broadcast_callee(void *info)
718 {
719 	int cpu = smp_processor_id();
720 	tick_receive_broadcast();
721 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
722 }
723 
724 static int __init tick_broadcast_init(void)
725 {
726 	call_single_data_t *csd;
727 	int cpu;
728 
729 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
730 		csd = &per_cpu(tick_broadcast_csd, cpu);
731 		csd->func = tick_broadcast_callee;
732 	}
733 
734 	return 0;
735 }
736 early_initcall(tick_broadcast_init);
737 
738 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
739