1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/module.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 36 #include <asm/atomic.h> 37 #include <asm/cpu.h> 38 #include <asm/processor.h> 39 #include <asm/r4k-timer.h> 40 #include <asm/system.h> 41 #include <asm/mmu_context.h> 42 #include <asm/time.h> 43 44 #ifdef CONFIG_MIPS_MT_SMTC 45 #include <asm/mipsmtregs.h> 46 #endif /* CONFIG_MIPS_MT_SMTC */ 47 48 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 49 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 50 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 51 52 extern void cpu_idle(void); 53 54 /* Number of TCs (or siblings in Intel speak) per CPU core */ 55 int smp_num_siblings = 1; 56 EXPORT_SYMBOL(smp_num_siblings); 57 58 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 59 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 60 EXPORT_SYMBOL(cpu_sibling_map); 61 62 /* representing cpus for which sibling maps can be computed */ 63 static cpumask_t cpu_sibling_setup_map; 64 65 static inline void set_cpu_sibling_map(int cpu) 66 { 67 int i; 68 69 cpu_set(cpu, cpu_sibling_setup_map); 70 71 if (smp_num_siblings > 1) { 72 for_each_cpu_mask(i, cpu_sibling_setup_map) { 73 if (cpu_data[cpu].core == cpu_data[i].core) { 74 cpu_set(i, cpu_sibling_map[cpu]); 75 cpu_set(cpu, cpu_sibling_map[i]); 76 } 77 } 78 } else 79 cpu_set(cpu, cpu_sibling_map[cpu]); 80 } 81 82 struct plat_smp_ops *mp_ops; 83 84 __cpuinit void register_smp_ops(struct plat_smp_ops *ops) 85 { 86 if (mp_ops) 87 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 88 89 mp_ops = ops; 90 } 91 92 /* 93 * First C code run on the secondary CPUs after being started up by 94 * the master. 95 */ 96 asmlinkage __cpuinit void start_secondary(void) 97 { 98 unsigned int cpu; 99 100 #ifdef CONFIG_MIPS_MT_SMTC 101 /* Only do cpu_probe for first TC of CPU */ 102 if ((read_c0_tcbind() & TCBIND_CURTC) == 0) 103 #endif /* CONFIG_MIPS_MT_SMTC */ 104 cpu_probe(); 105 cpu_report(); 106 per_cpu_trap_init(); 107 mips_clockevent_init(); 108 mp_ops->init_secondary(); 109 110 /* 111 * XXX parity protection should be folded in here when it's converted 112 * to an option instead of something based on .cputype 113 */ 114 115 calibrate_delay(); 116 preempt_disable(); 117 cpu = smp_processor_id(); 118 cpu_data[cpu].udelay_val = loops_per_jiffy; 119 120 notify_cpu_starting(cpu); 121 122 mp_ops->smp_finish(); 123 set_cpu_sibling_map(cpu); 124 125 cpu_set(cpu, cpu_callin_map); 126 127 synchronise_count_slave(); 128 129 cpu_idle(); 130 } 131 132 void arch_send_call_function_ipi(cpumask_t mask) 133 { 134 mp_ops->send_ipi_mask(mask, SMP_CALL_FUNCTION); 135 } 136 137 /* 138 * We reuse the same vector for the single IPI 139 */ 140 void arch_send_call_function_single_ipi(int cpu) 141 { 142 mp_ops->send_ipi_mask(cpumask_of_cpu(cpu), SMP_CALL_FUNCTION); 143 } 144 145 /* 146 * Call into both interrupt handlers, as we share the IPI for them 147 */ 148 void smp_call_function_interrupt(void) 149 { 150 irq_enter(); 151 generic_smp_call_function_single_interrupt(); 152 generic_smp_call_function_interrupt(); 153 irq_exit(); 154 } 155 156 static void stop_this_cpu(void *dummy) 157 { 158 /* 159 * Remove this CPU: 160 */ 161 cpu_clear(smp_processor_id(), cpu_online_map); 162 for (;;) { 163 if (cpu_wait) 164 (*cpu_wait)(); /* Wait if available. */ 165 } 166 } 167 168 void smp_send_stop(void) 169 { 170 smp_call_function(stop_this_cpu, NULL, 0); 171 } 172 173 void __init smp_cpus_done(unsigned int max_cpus) 174 { 175 mp_ops->cpus_done(); 176 synchronise_count_master(); 177 } 178 179 /* called from main before smp_init() */ 180 void __init smp_prepare_cpus(unsigned int max_cpus) 181 { 182 init_new_context(current, &init_mm); 183 current_thread_info()->cpu = 0; 184 mp_ops->prepare_cpus(max_cpus); 185 set_cpu_sibling_map(0); 186 #ifndef CONFIG_HOTPLUG_CPU 187 cpu_present_map = cpu_possible_map; 188 #endif 189 } 190 191 /* preload SMP state for boot cpu */ 192 void __devinit smp_prepare_boot_cpu(void) 193 { 194 cpu_set(0, cpu_possible_map); 195 cpu_set(0, cpu_online_map); 196 cpu_set(0, cpu_callin_map); 197 } 198 199 /* 200 * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu 201 * and keep control until "cpu_online(cpu)" is set. Note: cpu is 202 * physical, not logical. 203 */ 204 static struct task_struct *cpu_idle_thread[NR_CPUS]; 205 206 int __cpuinit __cpu_up(unsigned int cpu) 207 { 208 struct task_struct *idle; 209 210 /* 211 * Processor goes to start_secondary(), sets online flag 212 * The following code is purely to make sure 213 * Linux can schedule processes on this slave. 214 */ 215 if (!cpu_idle_thread[cpu]) { 216 idle = fork_idle(cpu); 217 cpu_idle_thread[cpu] = idle; 218 219 if (IS_ERR(idle)) 220 panic(KERN_ERR "Fork failed for CPU %d", cpu); 221 } else { 222 idle = cpu_idle_thread[cpu]; 223 init_idle(idle, cpu); 224 } 225 226 mp_ops->boot_secondary(cpu, idle); 227 228 /* 229 * Trust is futile. We should really have timeouts ... 230 */ 231 while (!cpu_isset(cpu, cpu_callin_map)) 232 udelay(100); 233 234 cpu_set(cpu, cpu_online_map); 235 236 return 0; 237 } 238 239 /* Not really SMP stuff ... */ 240 int setup_profiling_timer(unsigned int multiplier) 241 { 242 return 0; 243 } 244 245 static void flush_tlb_all_ipi(void *info) 246 { 247 local_flush_tlb_all(); 248 } 249 250 void flush_tlb_all(void) 251 { 252 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 253 } 254 255 static void flush_tlb_mm_ipi(void *mm) 256 { 257 local_flush_tlb_mm((struct mm_struct *)mm); 258 } 259 260 /* 261 * Special Variant of smp_call_function for use by TLB functions: 262 * 263 * o No return value 264 * o collapses to normal function call on UP kernels 265 * o collapses to normal function call on systems with a single shared 266 * primary cache. 267 * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core. 268 */ 269 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 270 { 271 #ifndef CONFIG_MIPS_MT_SMTC 272 smp_call_function(func, info, 1); 273 #endif 274 } 275 276 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 277 { 278 preempt_disable(); 279 280 smp_on_other_tlbs(func, info); 281 func(info); 282 283 preempt_enable(); 284 } 285 286 /* 287 * The following tlb flush calls are invoked when old translations are 288 * being torn down, or pte attributes are changing. For single threaded 289 * address spaces, a new context is obtained on the current cpu, and tlb 290 * context on other cpus are invalidated to force a new context allocation 291 * at switch_mm time, should the mm ever be used on other cpus. For 292 * multithreaded address spaces, intercpu interrupts have to be sent. 293 * Another case where intercpu interrupts are required is when the target 294 * mm might be active on another cpu (eg debuggers doing the flushes on 295 * behalf of debugees, kswapd stealing pages from another process etc). 296 * Kanoj 07/00. 297 */ 298 299 void flush_tlb_mm(struct mm_struct *mm) 300 { 301 preempt_disable(); 302 303 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 304 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 305 } else { 306 cpumask_t mask = cpu_online_map; 307 unsigned int cpu; 308 309 cpu_clear(smp_processor_id(), mask); 310 for_each_cpu_mask(cpu, mask) 311 if (cpu_context(cpu, mm)) 312 cpu_context(cpu, mm) = 0; 313 } 314 local_flush_tlb_mm(mm); 315 316 preempt_enable(); 317 } 318 319 struct flush_tlb_data { 320 struct vm_area_struct *vma; 321 unsigned long addr1; 322 unsigned long addr2; 323 }; 324 325 static void flush_tlb_range_ipi(void *info) 326 { 327 struct flush_tlb_data *fd = info; 328 329 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 330 } 331 332 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 333 { 334 struct mm_struct *mm = vma->vm_mm; 335 336 preempt_disable(); 337 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 338 struct flush_tlb_data fd = { 339 .vma = vma, 340 .addr1 = start, 341 .addr2 = end, 342 }; 343 344 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 345 } else { 346 cpumask_t mask = cpu_online_map; 347 unsigned int cpu; 348 349 cpu_clear(smp_processor_id(), mask); 350 for_each_cpu_mask(cpu, mask) 351 if (cpu_context(cpu, mm)) 352 cpu_context(cpu, mm) = 0; 353 } 354 local_flush_tlb_range(vma, start, end); 355 preempt_enable(); 356 } 357 358 static void flush_tlb_kernel_range_ipi(void *info) 359 { 360 struct flush_tlb_data *fd = info; 361 362 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 363 } 364 365 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 366 { 367 struct flush_tlb_data fd = { 368 .addr1 = start, 369 .addr2 = end, 370 }; 371 372 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 373 } 374 375 static void flush_tlb_page_ipi(void *info) 376 { 377 struct flush_tlb_data *fd = info; 378 379 local_flush_tlb_page(fd->vma, fd->addr1); 380 } 381 382 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 383 { 384 preempt_disable(); 385 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 386 struct flush_tlb_data fd = { 387 .vma = vma, 388 .addr1 = page, 389 }; 390 391 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 392 } else { 393 cpumask_t mask = cpu_online_map; 394 unsigned int cpu; 395 396 cpu_clear(smp_processor_id(), mask); 397 for_each_cpu_mask(cpu, mask) 398 if (cpu_context(cpu, vma->vm_mm)) 399 cpu_context(cpu, vma->vm_mm) = 0; 400 } 401 local_flush_tlb_page(vma, page); 402 preempt_enable(); 403 } 404 405 static void flush_tlb_one_ipi(void *info) 406 { 407 unsigned long vaddr = (unsigned long) info; 408 409 local_flush_tlb_one(vaddr); 410 } 411 412 void flush_tlb_one(unsigned long vaddr) 413 { 414 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 415 } 416 417 EXPORT_SYMBOL(flush_tlb_page); 418 EXPORT_SYMBOL(flush_tlb_one); 419