xref: /linux/arch/mips/kernel/smp.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2000, 2001 Kanoj Sarcar
5  * Copyright (C) 2000, 2001 Ralf Baechle
6  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8  */
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/profile.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/threads.h>
17 #include <linux/export.h>
18 #include <linux/time.h>
19 #include <linux/timex.h>
20 #include <linux/sched/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/err.h>
24 #include <linux/ftrace.h>
25 #include <linux/irqdomain.h>
26 #include <linux/of.h>
27 #include <linux/of_irq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/cpu.h>
31 #include <asm/ginvt.h>
32 #include <asm/processor.h>
33 #include <asm/idle.h>
34 #include <asm/r4k-timer.h>
35 #include <asm/mips-cps.h>
36 #include <asm/mmu_context.h>
37 #include <asm/time.h>
38 #include <asm/setup.h>
39 #include <asm/maar.h>
40 
41 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
42 EXPORT_SYMBOL(__cpu_number_map);
43 
44 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
45 EXPORT_SYMBOL(__cpu_logical_map);
46 
47 /* Number of TCs (or siblings in Intel speak) per CPU core */
48 int smp_num_siblings = 1;
49 EXPORT_SYMBOL(smp_num_siblings);
50 
51 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
52 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
53 EXPORT_SYMBOL(cpu_sibling_map);
54 
55 /* representing the core map of multi-core chips of each logical CPU */
56 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
57 EXPORT_SYMBOL(cpu_core_map);
58 
59 static DECLARE_COMPLETION(cpu_starting);
60 static DECLARE_COMPLETION(cpu_running);
61 
62 /*
63  * A logical cpu mask containing only one VPE per core to
64  * reduce the number of IPIs on large MT systems.
65  */
66 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
67 EXPORT_SYMBOL(cpu_foreign_map);
68 
69 /* representing cpus for which sibling maps can be computed */
70 static cpumask_t cpu_sibling_setup_map;
71 
72 /* representing cpus for which core maps can be computed */
73 static cpumask_t cpu_core_setup_map;
74 
75 cpumask_t cpu_coherent_mask;
76 
77 unsigned int smp_max_threads __initdata = UINT_MAX;
78 
79 static int __init early_nosmt(char *s)
80 {
81 	smp_max_threads = 1;
82 	return 0;
83 }
84 early_param("nosmt", early_nosmt);
85 
86 static int __init early_smt(char *s)
87 {
88 	get_option(&s, &smp_max_threads);
89 	/* Ensure at least one thread is available */
90 	smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX);
91 	return 0;
92 }
93 early_param("smt", early_smt);
94 
95 #ifdef CONFIG_GENERIC_IRQ_IPI
96 static struct irq_desc *call_desc;
97 static struct irq_desc *sched_desc;
98 #endif
99 
100 static inline void set_cpu_sibling_map(int cpu)
101 {
102 	int i;
103 
104 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
105 
106 	if (smp_num_siblings > 1) {
107 		for_each_cpu(i, &cpu_sibling_setup_map) {
108 			if (cpus_are_siblings(cpu, i)) {
109 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
110 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
111 			}
112 		}
113 	} else
114 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
115 }
116 
117 static inline void set_cpu_core_map(int cpu)
118 {
119 	int i;
120 
121 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
122 
123 	for_each_cpu(i, &cpu_core_setup_map) {
124 		if (cpu_data[cpu].package == cpu_data[i].package) {
125 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
126 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
127 		}
128 	}
129 }
130 
131 /*
132  * Calculate a new cpu_foreign_map mask whenever a
133  * new cpu appears or disappears.
134  */
135 void calculate_cpu_foreign_map(void)
136 {
137 	int i, k, core_present;
138 	cpumask_t temp_foreign_map;
139 
140 	/* Re-calculate the mask */
141 	cpumask_clear(&temp_foreign_map);
142 	for_each_online_cpu(i) {
143 		core_present = 0;
144 		for_each_cpu(k, &temp_foreign_map)
145 			if (cpus_are_siblings(i, k))
146 				core_present = 1;
147 		if (!core_present)
148 			cpumask_set_cpu(i, &temp_foreign_map);
149 	}
150 
151 	for_each_online_cpu(i)
152 		cpumask_andnot(&cpu_foreign_map[i],
153 			       &temp_foreign_map, &cpu_sibling_map[i]);
154 }
155 
156 const struct plat_smp_ops *mp_ops;
157 EXPORT_SYMBOL(mp_ops);
158 
159 void register_smp_ops(const struct plat_smp_ops *ops)
160 {
161 	if (mp_ops)
162 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
163 
164 	mp_ops = ops;
165 }
166 
167 #ifdef CONFIG_GENERIC_IRQ_IPI
168 void mips_smp_send_ipi_single(int cpu, unsigned int action)
169 {
170 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
171 }
172 
173 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
174 {
175 	unsigned long flags;
176 	unsigned int core;
177 	int cpu;
178 
179 	local_irq_save(flags);
180 
181 	switch (action) {
182 	case SMP_CALL_FUNCTION:
183 		__ipi_send_mask(call_desc, mask);
184 		break;
185 
186 	case SMP_RESCHEDULE_YOURSELF:
187 		__ipi_send_mask(sched_desc, mask);
188 		break;
189 
190 	default:
191 		BUG();
192 	}
193 
194 	if (mips_cpc_present()) {
195 		for_each_cpu(cpu, mask) {
196 			if (cpus_are_siblings(cpu, smp_processor_id()))
197 				continue;
198 
199 			core = cpu_core(&cpu_data[cpu]);
200 
201 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
202 				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
203 				mips_cpc_lock_other(core);
204 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
205 				mips_cpc_unlock_other();
206 				mips_cm_unlock_other();
207 			}
208 		}
209 	}
210 
211 	local_irq_restore(flags);
212 }
213 
214 
215 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
216 {
217 	scheduler_ipi();
218 
219 	return IRQ_HANDLED;
220 }
221 
222 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
223 {
224 	generic_smp_call_function_interrupt();
225 
226 	return IRQ_HANDLED;
227 }
228 
229 static void smp_ipi_init_one(unsigned int virq, const char *name,
230 			     irq_handler_t handler)
231 {
232 	int ret;
233 
234 	irq_set_handler(virq, handle_percpu_irq);
235 	ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
236 	BUG_ON(ret);
237 }
238 
239 static unsigned int call_virq, sched_virq;
240 
241 int mips_smp_ipi_allocate(const struct cpumask *mask)
242 {
243 	int virq;
244 	struct irq_domain *ipidomain;
245 	struct device_node *node;
246 
247 	node = of_irq_find_parent(of_root);
248 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
249 
250 	/*
251 	 * Some platforms have half DT setup. So if we found irq node but
252 	 * didn't find an ipidomain, try to search for one that is not in the
253 	 * DT.
254 	 */
255 	if (node && !ipidomain)
256 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
257 
258 	/*
259 	 * There are systems which use IPI IRQ domains, but only have one
260 	 * registered when some runtime condition is met. For example a Malta
261 	 * kernel may include support for GIC & CPU interrupt controller IPI
262 	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
263 	 * neither will be supported or registered.
264 	 *
265 	 * We only have a problem if we're actually using multiple CPUs so fail
266 	 * loudly if that is the case. Otherwise simply return, skipping IPI
267 	 * setup, if we're running with only a single CPU.
268 	 */
269 	if (!ipidomain) {
270 		BUG_ON(num_present_cpus() > 1);
271 		return 0;
272 	}
273 
274 	virq = irq_reserve_ipi(ipidomain, mask);
275 	BUG_ON(!virq);
276 	if (!call_virq)
277 		call_virq = virq;
278 
279 	virq = irq_reserve_ipi(ipidomain, mask);
280 	BUG_ON(!virq);
281 	if (!sched_virq)
282 		sched_virq = virq;
283 
284 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
285 		int cpu;
286 
287 		for_each_cpu(cpu, mask) {
288 			smp_ipi_init_one(call_virq + cpu, "IPI call",
289 					 ipi_call_interrupt);
290 			smp_ipi_init_one(sched_virq + cpu, "IPI resched",
291 					 ipi_resched_interrupt);
292 		}
293 	} else {
294 		smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
295 		smp_ipi_init_one(sched_virq, "IPI resched",
296 				 ipi_resched_interrupt);
297 	}
298 
299 	return 0;
300 }
301 
302 int mips_smp_ipi_free(const struct cpumask *mask)
303 {
304 	struct irq_domain *ipidomain;
305 	struct device_node *node;
306 
307 	node = of_irq_find_parent(of_root);
308 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
309 
310 	/*
311 	 * Some platforms have half DT setup. So if we found irq node but
312 	 * didn't find an ipidomain, try to search for one that is not in the
313 	 * DT.
314 	 */
315 	if (node && !ipidomain)
316 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
317 
318 	BUG_ON(!ipidomain);
319 
320 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
321 		int cpu;
322 
323 		for_each_cpu(cpu, mask) {
324 			free_irq(call_virq + cpu, NULL);
325 			free_irq(sched_virq + cpu, NULL);
326 		}
327 	}
328 	irq_destroy_ipi(call_virq, mask);
329 	irq_destroy_ipi(sched_virq, mask);
330 	return 0;
331 }
332 
333 
334 static int __init mips_smp_ipi_init(void)
335 {
336 	if (num_possible_cpus() == 1)
337 		return 0;
338 
339 	mips_smp_ipi_allocate(cpu_possible_mask);
340 
341 	call_desc = irq_to_desc(call_virq);
342 	sched_desc = irq_to_desc(sched_virq);
343 
344 	return 0;
345 }
346 early_initcall(mips_smp_ipi_init);
347 #endif
348 
349 /*
350  * First C code run on the secondary CPUs after being started up by
351  * the master.
352  */
353 asmlinkage void start_secondary(void)
354 {
355 	unsigned int cpu = raw_smp_processor_id();
356 
357 	cpu_probe();
358 	per_cpu_trap_init(false);
359 	rcutree_report_cpu_starting(cpu);
360 	mips_clockevent_init();
361 	mp_ops->init_secondary();
362 	cpu_report();
363 	maar_init();
364 
365 	/*
366 	 * XXX parity protection should be folded in here when it's converted
367 	 * to an option instead of something based on .cputype
368 	 */
369 
370 	calibrate_delay();
371 	cpu_data[cpu].udelay_val = loops_per_jiffy;
372 
373 	set_cpu_sibling_map(cpu);
374 	set_cpu_core_map(cpu);
375 
376 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
377 	notify_cpu_starting(cpu);
378 
379 	/* Notify boot CPU that we're starting & ready to sync counters */
380 	complete(&cpu_starting);
381 
382 	synchronise_count_slave(cpu);
383 
384 	/* The CPU is running and counters synchronised, now mark it online */
385 	set_cpu_online(cpu, true);
386 
387 	calculate_cpu_foreign_map();
388 
389 	/*
390 	 * Notify boot CPU that we're up & online and it can safely return
391 	 * from __cpu_up
392 	 */
393 	complete(&cpu_running);
394 
395 	/*
396 	 * irq will be enabled in ->smp_finish(), enabling it too early
397 	 * is dangerous.
398 	 */
399 	WARN_ON_ONCE(!irqs_disabled());
400 	mp_ops->smp_finish();
401 
402 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
403 }
404 
405 static void stop_this_cpu(void *dummy)
406 {
407 	/*
408 	 * Remove this CPU:
409 	 */
410 
411 	set_cpu_online(smp_processor_id(), false);
412 	calculate_cpu_foreign_map();
413 	local_irq_disable();
414 	while (1);
415 }
416 
417 void smp_send_stop(void)
418 {
419 	smp_call_function(stop_this_cpu, NULL, 0);
420 }
421 
422 void __init smp_cpus_done(unsigned int max_cpus)
423 {
424 }
425 
426 /* called from main before smp_init() */
427 void __init smp_prepare_cpus(unsigned int max_cpus)
428 {
429 	init_new_context(current, &init_mm);
430 	current_thread_info()->cpu = 0;
431 	mp_ops->prepare_cpus(max_cpus);
432 	set_cpu_sibling_map(0);
433 	set_cpu_core_map(0);
434 	calculate_cpu_foreign_map();
435 #ifndef CONFIG_HOTPLUG_CPU
436 	init_cpu_present(cpu_possible_mask);
437 #endif
438 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
439 }
440 
441 /* preload SMP state for boot cpu */
442 void __init smp_prepare_boot_cpu(void)
443 {
444 	if (mp_ops->prepare_boot_cpu)
445 		mp_ops->prepare_boot_cpu();
446 	set_cpu_possible(0, true);
447 	set_cpu_online(0, true);
448 }
449 
450 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
451 {
452 	int err;
453 
454 	err = mp_ops->boot_secondary(cpu, tidle);
455 	if (err)
456 		return err;
457 
458 	/* Wait for CPU to start and be ready to sync counters */
459 	if (!wait_for_completion_timeout(&cpu_starting,
460 					 msecs_to_jiffies(1000))) {
461 		pr_crit("CPU%u: failed to start\n", cpu);
462 		return -EIO;
463 	}
464 
465 	/* Wait for CPU to finish startup & mark itself online before return */
466 	wait_for_completion(&cpu_running);
467 	return 0;
468 }
469 
470 #ifdef CONFIG_PROFILING
471 /* Not really SMP stuff ... */
472 int setup_profiling_timer(unsigned int multiplier)
473 {
474 	return 0;
475 }
476 #endif
477 
478 static void flush_tlb_all_ipi(void *info)
479 {
480 	local_flush_tlb_all();
481 }
482 
483 void flush_tlb_all(void)
484 {
485 	if (cpu_has_mmid) {
486 		htw_stop();
487 		ginvt_full();
488 		sync_ginv();
489 		instruction_hazard();
490 		htw_start();
491 		return;
492 	}
493 
494 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
495 }
496 
497 static void flush_tlb_mm_ipi(void *mm)
498 {
499 	drop_mmu_context((struct mm_struct *)mm);
500 }
501 
502 /*
503  * Special Variant of smp_call_function for use by TLB functions:
504  *
505  *  o No return value
506  *  o collapses to normal function call on UP kernels
507  *  o collapses to normal function call on systems with a single shared
508  *    primary cache.
509  */
510 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
511 {
512 	smp_call_function(func, info, 1);
513 }
514 
515 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
516 {
517 	preempt_disable();
518 
519 	smp_on_other_tlbs(func, info);
520 	func(info);
521 
522 	preempt_enable();
523 }
524 
525 /*
526  * The following tlb flush calls are invoked when old translations are
527  * being torn down, or pte attributes are changing. For single threaded
528  * address spaces, a new context is obtained on the current cpu, and tlb
529  * context on other cpus are invalidated to force a new context allocation
530  * at switch_mm time, should the mm ever be used on other cpus. For
531  * multithreaded address spaces, inter-CPU interrupts have to be sent.
532  * Another case where inter-CPU interrupts are required is when the target
533  * mm might be active on another cpu (eg debuggers doing the flushes on
534  * behalf of debugees, kswapd stealing pages from another process etc).
535  * Kanoj 07/00.
536  */
537 
538 void flush_tlb_mm(struct mm_struct *mm)
539 {
540 	if (!mm)
541 		return;
542 
543 	if (atomic_read(&mm->mm_users) == 0)
544 		return;		/* happens as a result of exit_mmap() */
545 
546 	preempt_disable();
547 
548 	if (cpu_has_mmid) {
549 		/*
550 		 * No need to worry about other CPUs - the ginvt in
551 		 * drop_mmu_context() will be globalized.
552 		 */
553 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
554 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
555 	} else {
556 		unsigned int cpu;
557 
558 		for_each_online_cpu(cpu) {
559 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
560 				set_cpu_context(cpu, mm, 0);
561 		}
562 	}
563 	drop_mmu_context(mm);
564 
565 	preempt_enable();
566 }
567 
568 struct flush_tlb_data {
569 	struct vm_area_struct *vma;
570 	unsigned long addr1;
571 	unsigned long addr2;
572 };
573 
574 static void flush_tlb_range_ipi(void *info)
575 {
576 	struct flush_tlb_data *fd = info;
577 
578 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
579 }
580 
581 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
582 {
583 	struct mm_struct *mm = vma->vm_mm;
584 	unsigned long addr;
585 	u32 old_mmid;
586 
587 	preempt_disable();
588 	if (cpu_has_mmid) {
589 		htw_stop();
590 		old_mmid = read_c0_memorymapid();
591 		write_c0_memorymapid(cpu_asid(0, mm));
592 		mtc0_tlbw_hazard();
593 		addr = round_down(start, PAGE_SIZE * 2);
594 		end = round_up(end, PAGE_SIZE * 2);
595 		do {
596 			ginvt_va_mmid(addr);
597 			sync_ginv();
598 			addr += PAGE_SIZE * 2;
599 		} while (addr < end);
600 		write_c0_memorymapid(old_mmid);
601 		instruction_hazard();
602 		htw_start();
603 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
604 		struct flush_tlb_data fd = {
605 			.vma = vma,
606 			.addr1 = start,
607 			.addr2 = end,
608 		};
609 
610 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
611 		local_flush_tlb_range(vma, start, end);
612 	} else {
613 		unsigned int cpu;
614 		int exec = vma->vm_flags & VM_EXEC;
615 
616 		for_each_online_cpu(cpu) {
617 			/*
618 			 * flush_cache_range() will only fully flush icache if
619 			 * the VMA is executable, otherwise we must invalidate
620 			 * ASID without it appearing to has_valid_asid() as if
621 			 * mm has been completely unused by that CPU.
622 			 */
623 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
624 				set_cpu_context(cpu, mm, !exec);
625 		}
626 		local_flush_tlb_range(vma, start, end);
627 	}
628 	preempt_enable();
629 }
630 
631 static void flush_tlb_kernel_range_ipi(void *info)
632 {
633 	struct flush_tlb_data *fd = info;
634 
635 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
636 }
637 
638 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
639 {
640 	struct flush_tlb_data fd = {
641 		.addr1 = start,
642 		.addr2 = end,
643 	};
644 
645 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
646 }
647 
648 static void flush_tlb_page_ipi(void *info)
649 {
650 	struct flush_tlb_data *fd = info;
651 
652 	local_flush_tlb_page(fd->vma, fd->addr1);
653 }
654 
655 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
656 {
657 	u32 old_mmid;
658 
659 	preempt_disable();
660 	if (cpu_has_mmid) {
661 		htw_stop();
662 		old_mmid = read_c0_memorymapid();
663 		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
664 		mtc0_tlbw_hazard();
665 		ginvt_va_mmid(page);
666 		sync_ginv();
667 		write_c0_memorymapid(old_mmid);
668 		instruction_hazard();
669 		htw_start();
670 	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
671 		   (current->mm != vma->vm_mm)) {
672 		struct flush_tlb_data fd = {
673 			.vma = vma,
674 			.addr1 = page,
675 		};
676 
677 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
678 		local_flush_tlb_page(vma, page);
679 	} else {
680 		unsigned int cpu;
681 
682 		for_each_online_cpu(cpu) {
683 			/*
684 			 * flush_cache_page() only does partial flushes, so
685 			 * invalidate ASID without it appearing to
686 			 * has_valid_asid() as if mm has been completely unused
687 			 * by that CPU.
688 			 */
689 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
690 				set_cpu_context(cpu, vma->vm_mm, 1);
691 		}
692 		local_flush_tlb_page(vma, page);
693 	}
694 	preempt_enable();
695 }
696 
697 static void flush_tlb_one_ipi(void *info)
698 {
699 	unsigned long vaddr = (unsigned long) info;
700 
701 	local_flush_tlb_one(vaddr);
702 }
703 
704 void flush_tlb_one(unsigned long vaddr)
705 {
706 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
707 }
708 
709 EXPORT_SYMBOL(flush_tlb_page);
710 EXPORT_SYMBOL(flush_tlb_one);
711 
712 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
713 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
714 {
715 	if (mp_ops->cleanup_dead_cpu)
716 		mp_ops->cleanup_dead_cpu(cpu);
717 }
718 #endif
719 
720 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
721 
722 static void tick_broadcast_callee(void *info)
723 {
724 	tick_receive_broadcast();
725 }
726 
727 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
728 	CSD_INIT(tick_broadcast_callee, NULL);
729 
730 void tick_broadcast(const struct cpumask *mask)
731 {
732 	call_single_data_t *csd;
733 	int cpu;
734 
735 	for_each_cpu(cpu, mask) {
736 		csd = &per_cpu(tick_broadcast_csd, cpu);
737 		smp_call_function_single_async(cpu, csd);
738 	}
739 }
740 
741 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
742