1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Copyright (C) 2000, 2001 Kanoj Sarcar 5 * Copyright (C) 2000, 2001 Ralf Baechle 6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 8 */ 9 #include <linux/cache.h> 10 #include <linux/delay.h> 11 #include <linux/init.h> 12 #include <linux/interrupt.h> 13 #include <linux/profile.h> 14 #include <linux/smp.h> 15 #include <linux/spinlock.h> 16 #include <linux/threads.h> 17 #include <linux/export.h> 18 #include <linux/time.h> 19 #include <linux/timex.h> 20 #include <linux/sched/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/cpu.h> 23 #include <linux/err.h> 24 #include <linux/ftrace.h> 25 #include <linux/irqdomain.h> 26 #include <linux/of.h> 27 #include <linux/of_irq.h> 28 29 #include <linux/atomic.h> 30 #include <asm/cpu.h> 31 #include <asm/ginvt.h> 32 #include <asm/processor.h> 33 #include <asm/idle.h> 34 #include <asm/r4k-timer.h> 35 #include <asm/mips-cps.h> 36 #include <asm/mmu_context.h> 37 #include <asm/time.h> 38 #include <asm/setup.h> 39 #include <asm/maar.h> 40 41 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */ 42 EXPORT_SYMBOL(__cpu_number_map); 43 44 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 45 EXPORT_SYMBOL(__cpu_logical_map); 46 47 /* Number of TCs (or siblings in Intel speak) per CPU core */ 48 int smp_num_siblings = 1; 49 EXPORT_SYMBOL(smp_num_siblings); 50 51 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 52 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 53 EXPORT_SYMBOL(cpu_sibling_map); 54 55 /* representing the core map of multi-core chips of each logical CPU */ 56 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 57 EXPORT_SYMBOL(cpu_core_map); 58 59 static DECLARE_COMPLETION(cpu_starting); 60 static DECLARE_COMPLETION(cpu_running); 61 62 /* 63 * A logical cpu mask containing only one VPE per core to 64 * reduce the number of IPIs on large MT systems. 65 */ 66 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 67 EXPORT_SYMBOL(cpu_foreign_map); 68 69 /* representing cpus for which sibling maps can be computed */ 70 static cpumask_t cpu_sibling_setup_map; 71 72 /* representing cpus for which core maps can be computed */ 73 static cpumask_t cpu_core_setup_map; 74 75 cpumask_t cpu_coherent_mask; 76 77 unsigned int smp_max_threads __initdata = UINT_MAX; 78 79 static int __init early_nosmt(char *s) 80 { 81 smp_max_threads = 1; 82 return 0; 83 } 84 early_param("nosmt", early_nosmt); 85 86 static int __init early_smt(char *s) 87 { 88 get_option(&s, &smp_max_threads); 89 /* Ensure at least one thread is available */ 90 smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX); 91 return 0; 92 } 93 early_param("smt", early_smt); 94 95 #ifdef CONFIG_GENERIC_IRQ_IPI 96 static struct irq_desc *call_desc; 97 static struct irq_desc *sched_desc; 98 #endif 99 100 static inline void set_cpu_sibling_map(int cpu) 101 { 102 int i; 103 104 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 105 106 if (smp_num_siblings > 1) { 107 for_each_cpu(i, &cpu_sibling_setup_map) { 108 if (cpus_are_siblings(cpu, i)) { 109 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 110 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 111 } 112 } 113 } else 114 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 115 } 116 117 static inline void set_cpu_core_map(int cpu) 118 { 119 int i; 120 121 cpumask_set_cpu(cpu, &cpu_core_setup_map); 122 123 for_each_cpu(i, &cpu_core_setup_map) { 124 if (cpu_data[cpu].package == cpu_data[i].package) { 125 cpumask_set_cpu(i, &cpu_core_map[cpu]); 126 cpumask_set_cpu(cpu, &cpu_core_map[i]); 127 } 128 } 129 } 130 131 /* 132 * Calculate a new cpu_foreign_map mask whenever a 133 * new cpu appears or disappears. 134 */ 135 void calculate_cpu_foreign_map(void) 136 { 137 int i, k, core_present; 138 cpumask_t temp_foreign_map; 139 140 /* Re-calculate the mask */ 141 cpumask_clear(&temp_foreign_map); 142 for_each_online_cpu(i) { 143 core_present = 0; 144 for_each_cpu(k, &temp_foreign_map) 145 if (cpus_are_siblings(i, k)) 146 core_present = 1; 147 if (!core_present) 148 cpumask_set_cpu(i, &temp_foreign_map); 149 } 150 151 for_each_online_cpu(i) 152 cpumask_andnot(&cpu_foreign_map[i], 153 &temp_foreign_map, &cpu_sibling_map[i]); 154 } 155 156 const struct plat_smp_ops *mp_ops; 157 EXPORT_SYMBOL(mp_ops); 158 159 void register_smp_ops(const struct plat_smp_ops *ops) 160 { 161 if (mp_ops) 162 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 163 164 mp_ops = ops; 165 } 166 167 #ifdef CONFIG_GENERIC_IRQ_IPI 168 void mips_smp_send_ipi_single(int cpu, unsigned int action) 169 { 170 mips_smp_send_ipi_mask(cpumask_of(cpu), action); 171 } 172 173 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) 174 { 175 unsigned long flags; 176 unsigned int core; 177 int cpu; 178 179 local_irq_save(flags); 180 181 switch (action) { 182 case SMP_CALL_FUNCTION: 183 __ipi_send_mask(call_desc, mask); 184 break; 185 186 case SMP_RESCHEDULE_YOURSELF: 187 __ipi_send_mask(sched_desc, mask); 188 break; 189 190 default: 191 BUG(); 192 } 193 194 if (mips_cpc_present()) { 195 for_each_cpu(cpu, mask) { 196 if (cpus_are_siblings(cpu, smp_processor_id())) 197 continue; 198 199 core = cpu_core(&cpu_data[cpu]); 200 201 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { 202 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL); 203 mips_cpc_lock_other(core); 204 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); 205 mips_cpc_unlock_other(); 206 mips_cm_unlock_other(); 207 } 208 } 209 } 210 211 local_irq_restore(flags); 212 } 213 214 215 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) 216 { 217 scheduler_ipi(); 218 219 return IRQ_HANDLED; 220 } 221 222 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) 223 { 224 generic_smp_call_function_interrupt(); 225 226 return IRQ_HANDLED; 227 } 228 229 static void smp_ipi_init_one(unsigned int virq, const char *name, 230 irq_handler_t handler) 231 { 232 int ret; 233 234 irq_set_handler(virq, handle_percpu_irq); 235 ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL); 236 BUG_ON(ret); 237 } 238 239 static unsigned int call_virq, sched_virq; 240 241 int mips_smp_ipi_allocate(const struct cpumask *mask) 242 { 243 int virq; 244 struct irq_domain *ipidomain; 245 struct device_node *node; 246 247 node = of_irq_find_parent(of_root); 248 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 249 250 /* 251 * Some platforms have half DT setup. So if we found irq node but 252 * didn't find an ipidomain, try to search for one that is not in the 253 * DT. 254 */ 255 if (node && !ipidomain) 256 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 257 258 /* 259 * There are systems which use IPI IRQ domains, but only have one 260 * registered when some runtime condition is met. For example a Malta 261 * kernel may include support for GIC & CPU interrupt controller IPI 262 * IRQ domains, but if run on a system with no GIC & no MT ASE then 263 * neither will be supported or registered. 264 * 265 * We only have a problem if we're actually using multiple CPUs so fail 266 * loudly if that is the case. Otherwise simply return, skipping IPI 267 * setup, if we're running with only a single CPU. 268 */ 269 if (!ipidomain) { 270 BUG_ON(num_present_cpus() > 1); 271 return 0; 272 } 273 274 virq = irq_reserve_ipi(ipidomain, mask); 275 BUG_ON(!virq); 276 if (!call_virq) 277 call_virq = virq; 278 279 virq = irq_reserve_ipi(ipidomain, mask); 280 BUG_ON(!virq); 281 if (!sched_virq) 282 sched_virq = virq; 283 284 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 285 int cpu; 286 287 for_each_cpu(cpu, mask) { 288 smp_ipi_init_one(call_virq + cpu, "IPI call", 289 ipi_call_interrupt); 290 smp_ipi_init_one(sched_virq + cpu, "IPI resched", 291 ipi_resched_interrupt); 292 } 293 } else { 294 smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt); 295 smp_ipi_init_one(sched_virq, "IPI resched", 296 ipi_resched_interrupt); 297 } 298 299 return 0; 300 } 301 302 int mips_smp_ipi_free(const struct cpumask *mask) 303 { 304 struct irq_domain *ipidomain; 305 struct device_node *node; 306 307 node = of_irq_find_parent(of_root); 308 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 309 310 /* 311 * Some platforms have half DT setup. So if we found irq node but 312 * didn't find an ipidomain, try to search for one that is not in the 313 * DT. 314 */ 315 if (node && !ipidomain) 316 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 317 318 BUG_ON(!ipidomain); 319 320 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 321 int cpu; 322 323 for_each_cpu(cpu, mask) { 324 free_irq(call_virq + cpu, NULL); 325 free_irq(sched_virq + cpu, NULL); 326 } 327 } 328 irq_destroy_ipi(call_virq, mask); 329 irq_destroy_ipi(sched_virq, mask); 330 return 0; 331 } 332 333 334 static int __init mips_smp_ipi_init(void) 335 { 336 if (num_possible_cpus() == 1) 337 return 0; 338 339 mips_smp_ipi_allocate(cpu_possible_mask); 340 341 call_desc = irq_to_desc(call_virq); 342 sched_desc = irq_to_desc(sched_virq); 343 344 return 0; 345 } 346 early_initcall(mips_smp_ipi_init); 347 #endif 348 349 /* 350 * First C code run on the secondary CPUs after being started up by 351 * the master. 352 */ 353 asmlinkage void start_secondary(void) 354 { 355 unsigned int cpu = raw_smp_processor_id(); 356 357 cpu_probe(); 358 per_cpu_trap_init(false); 359 rcutree_report_cpu_starting(cpu); 360 mips_clockevent_init(); 361 mp_ops->init_secondary(); 362 cpu_report(); 363 maar_init(); 364 365 /* 366 * XXX parity protection should be folded in here when it's converted 367 * to an option instead of something based on .cputype 368 */ 369 370 calibrate_delay(); 371 cpu_data[cpu].udelay_val = loops_per_jiffy; 372 373 set_cpu_sibling_map(cpu); 374 set_cpu_core_map(cpu); 375 376 cpumask_set_cpu(cpu, &cpu_coherent_mask); 377 notify_cpu_starting(cpu); 378 379 /* Notify boot CPU that we're starting & ready to sync counters */ 380 complete(&cpu_starting); 381 382 synchronise_count_slave(cpu); 383 384 /* The CPU is running and counters synchronised, now mark it online */ 385 set_cpu_online(cpu, true); 386 387 calculate_cpu_foreign_map(); 388 389 /* 390 * Notify boot CPU that we're up & online and it can safely return 391 * from __cpu_up 392 */ 393 complete(&cpu_running); 394 395 /* 396 * irq will be enabled in ->smp_finish(), enabling it too early 397 * is dangerous. 398 */ 399 WARN_ON_ONCE(!irqs_disabled()); 400 mp_ops->smp_finish(); 401 402 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 403 } 404 405 static void stop_this_cpu(void *dummy) 406 { 407 /* 408 * Remove this CPU: 409 */ 410 411 set_cpu_online(smp_processor_id(), false); 412 calculate_cpu_foreign_map(); 413 local_irq_disable(); 414 while (1); 415 } 416 417 void smp_send_stop(void) 418 { 419 smp_call_function(stop_this_cpu, NULL, 0); 420 } 421 422 void __init smp_cpus_done(unsigned int max_cpus) 423 { 424 } 425 426 /* called from main before smp_init() */ 427 void __init smp_prepare_cpus(unsigned int max_cpus) 428 { 429 init_new_context(current, &init_mm); 430 current_thread_info()->cpu = 0; 431 mp_ops->prepare_cpus(max_cpus); 432 set_cpu_sibling_map(0); 433 set_cpu_core_map(0); 434 calculate_cpu_foreign_map(); 435 #ifndef CONFIG_HOTPLUG_CPU 436 init_cpu_present(cpu_possible_mask); 437 #endif 438 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 439 } 440 441 /* preload SMP state for boot cpu */ 442 void __init smp_prepare_boot_cpu(void) 443 { 444 if (mp_ops->prepare_boot_cpu) 445 mp_ops->prepare_boot_cpu(); 446 set_cpu_possible(0, true); 447 set_cpu_online(0, true); 448 } 449 450 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 451 { 452 int err; 453 454 err = mp_ops->boot_secondary(cpu, tidle); 455 if (err) 456 return err; 457 458 /* Wait for CPU to start and be ready to sync counters */ 459 if (!wait_for_completion_timeout(&cpu_starting, 460 msecs_to_jiffies(1000))) { 461 pr_crit("CPU%u: failed to start\n", cpu); 462 return -EIO; 463 } 464 465 /* Wait for CPU to finish startup & mark itself online before return */ 466 wait_for_completion(&cpu_running); 467 return 0; 468 } 469 470 #ifdef CONFIG_PROFILING 471 /* Not really SMP stuff ... */ 472 int setup_profiling_timer(unsigned int multiplier) 473 { 474 return 0; 475 } 476 #endif 477 478 static void flush_tlb_all_ipi(void *info) 479 { 480 local_flush_tlb_all(); 481 } 482 483 void flush_tlb_all(void) 484 { 485 if (cpu_has_mmid) { 486 htw_stop(); 487 ginvt_full(); 488 sync_ginv(); 489 instruction_hazard(); 490 htw_start(); 491 return; 492 } 493 494 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 495 } 496 497 static void flush_tlb_mm_ipi(void *mm) 498 { 499 drop_mmu_context((struct mm_struct *)mm); 500 } 501 502 /* 503 * Special Variant of smp_call_function for use by TLB functions: 504 * 505 * o No return value 506 * o collapses to normal function call on UP kernels 507 * o collapses to normal function call on systems with a single shared 508 * primary cache. 509 */ 510 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 511 { 512 smp_call_function(func, info, 1); 513 } 514 515 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 516 { 517 preempt_disable(); 518 519 smp_on_other_tlbs(func, info); 520 func(info); 521 522 preempt_enable(); 523 } 524 525 /* 526 * The following tlb flush calls are invoked when old translations are 527 * being torn down, or pte attributes are changing. For single threaded 528 * address spaces, a new context is obtained on the current cpu, and tlb 529 * context on other cpus are invalidated to force a new context allocation 530 * at switch_mm time, should the mm ever be used on other cpus. For 531 * multithreaded address spaces, inter-CPU interrupts have to be sent. 532 * Another case where inter-CPU interrupts are required is when the target 533 * mm might be active on another cpu (eg debuggers doing the flushes on 534 * behalf of debugees, kswapd stealing pages from another process etc). 535 * Kanoj 07/00. 536 */ 537 538 void flush_tlb_mm(struct mm_struct *mm) 539 { 540 if (!mm) 541 return; 542 543 if (atomic_read(&mm->mm_users) == 0) 544 return; /* happens as a result of exit_mmap() */ 545 546 preempt_disable(); 547 548 if (cpu_has_mmid) { 549 /* 550 * No need to worry about other CPUs - the ginvt in 551 * drop_mmu_context() will be globalized. 552 */ 553 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 554 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 555 } else { 556 unsigned int cpu; 557 558 for_each_online_cpu(cpu) { 559 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 560 set_cpu_context(cpu, mm, 0); 561 } 562 } 563 drop_mmu_context(mm); 564 565 preempt_enable(); 566 } 567 568 struct flush_tlb_data { 569 struct vm_area_struct *vma; 570 unsigned long addr1; 571 unsigned long addr2; 572 }; 573 574 static void flush_tlb_range_ipi(void *info) 575 { 576 struct flush_tlb_data *fd = info; 577 578 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 579 } 580 581 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 582 { 583 struct mm_struct *mm = vma->vm_mm; 584 unsigned long addr; 585 u32 old_mmid; 586 587 preempt_disable(); 588 if (cpu_has_mmid) { 589 htw_stop(); 590 old_mmid = read_c0_memorymapid(); 591 write_c0_memorymapid(cpu_asid(0, mm)); 592 mtc0_tlbw_hazard(); 593 addr = round_down(start, PAGE_SIZE * 2); 594 end = round_up(end, PAGE_SIZE * 2); 595 do { 596 ginvt_va_mmid(addr); 597 sync_ginv(); 598 addr += PAGE_SIZE * 2; 599 } while (addr < end); 600 write_c0_memorymapid(old_mmid); 601 instruction_hazard(); 602 htw_start(); 603 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 604 struct flush_tlb_data fd = { 605 .vma = vma, 606 .addr1 = start, 607 .addr2 = end, 608 }; 609 610 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 611 local_flush_tlb_range(vma, start, end); 612 } else { 613 unsigned int cpu; 614 int exec = vma->vm_flags & VM_EXEC; 615 616 for_each_online_cpu(cpu) { 617 /* 618 * flush_cache_range() will only fully flush icache if 619 * the VMA is executable, otherwise we must invalidate 620 * ASID without it appearing to has_valid_asid() as if 621 * mm has been completely unused by that CPU. 622 */ 623 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 624 set_cpu_context(cpu, mm, !exec); 625 } 626 local_flush_tlb_range(vma, start, end); 627 } 628 preempt_enable(); 629 } 630 631 static void flush_tlb_kernel_range_ipi(void *info) 632 { 633 struct flush_tlb_data *fd = info; 634 635 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 636 } 637 638 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 639 { 640 struct flush_tlb_data fd = { 641 .addr1 = start, 642 .addr2 = end, 643 }; 644 645 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 646 } 647 648 static void flush_tlb_page_ipi(void *info) 649 { 650 struct flush_tlb_data *fd = info; 651 652 local_flush_tlb_page(fd->vma, fd->addr1); 653 } 654 655 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 656 { 657 u32 old_mmid; 658 659 preempt_disable(); 660 if (cpu_has_mmid) { 661 htw_stop(); 662 old_mmid = read_c0_memorymapid(); 663 write_c0_memorymapid(cpu_asid(0, vma->vm_mm)); 664 mtc0_tlbw_hazard(); 665 ginvt_va_mmid(page); 666 sync_ginv(); 667 write_c0_memorymapid(old_mmid); 668 instruction_hazard(); 669 htw_start(); 670 } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) || 671 (current->mm != vma->vm_mm)) { 672 struct flush_tlb_data fd = { 673 .vma = vma, 674 .addr1 = page, 675 }; 676 677 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 678 local_flush_tlb_page(vma, page); 679 } else { 680 unsigned int cpu; 681 682 for_each_online_cpu(cpu) { 683 /* 684 * flush_cache_page() only does partial flushes, so 685 * invalidate ASID without it appearing to 686 * has_valid_asid() as if mm has been completely unused 687 * by that CPU. 688 */ 689 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 690 set_cpu_context(cpu, vma->vm_mm, 1); 691 } 692 local_flush_tlb_page(vma, page); 693 } 694 preempt_enable(); 695 } 696 697 static void flush_tlb_one_ipi(void *info) 698 { 699 unsigned long vaddr = (unsigned long) info; 700 701 local_flush_tlb_one(vaddr); 702 } 703 704 void flush_tlb_one(unsigned long vaddr) 705 { 706 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 707 } 708 709 EXPORT_SYMBOL(flush_tlb_page); 710 EXPORT_SYMBOL(flush_tlb_one); 711 712 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 713 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 714 { 715 if (mp_ops->cleanup_dead_cpu) 716 mp_ops->cleanup_dead_cpu(cpu); 717 } 718 #endif 719 720 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 721 722 static void tick_broadcast_callee(void *info) 723 { 724 tick_receive_broadcast(); 725 } 726 727 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) = 728 CSD_INIT(tick_broadcast_callee, NULL); 729 730 void tick_broadcast(const struct cpumask *mask) 731 { 732 call_single_data_t *csd; 733 int cpu; 734 735 for_each_cpu(cpu, mask) { 736 csd = &per_cpu(tick_broadcast_csd, cpu); 737 smp_call_function_single_async(cpu, csd); 738 } 739 } 740 741 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 742