1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/threads.h> 27 #include <linux/module.h> 28 #include <linux/time.h> 29 #include <linux/timex.h> 30 #include <linux/sched.h> 31 #include <linux/cpumask.h> 32 33 #include <asm/atomic.h> 34 #include <asm/cpu.h> 35 #include <asm/processor.h> 36 #include <asm/system.h> 37 #include <asm/mmu_context.h> 38 #include <asm/smp.h> 39 40 cpumask_t phys_cpu_present_map; /* Bitmask of available CPUs */ 41 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 42 cpumask_t cpu_online_map; /* Bitmask of currently online CPUs */ 43 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 44 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 45 46 EXPORT_SYMBOL(phys_cpu_present_map); 47 EXPORT_SYMBOL(cpu_online_map); 48 49 static void smp_tune_scheduling (void) 50 { 51 struct cache_desc *cd = ¤t_cpu_data.scache; 52 unsigned long cachesize; /* kB */ 53 unsigned long bandwidth = 350; /* MB/s */ 54 unsigned long cpu_khz; 55 56 /* 57 * Crude estimate until we actually meassure ... 58 */ 59 cpu_khz = loops_per_jiffy * 2 * HZ / 1000; 60 61 /* 62 * Rough estimation for SMP scheduling, this is the number of 63 * cycles it takes for a fully memory-limited process to flush 64 * the SMP-local cache. 65 * 66 * (For a P5 this pretty much means we will choose another idle 67 * CPU almost always at wakeup time (this is due to the small 68 * L1 cache), on PIIs it's around 50-100 usecs, depending on 69 * the cache size) 70 */ 71 if (!cpu_khz) 72 return; 73 74 cachesize = cd->linesz * cd->sets * cd->ways; 75 } 76 77 extern void __init calibrate_delay(void); 78 extern ATTRIB_NORET void cpu_idle(void); 79 80 /* 81 * First C code run on the secondary CPUs after being started up by 82 * the master. 83 */ 84 asmlinkage void start_secondary(void) 85 { 86 unsigned int cpu = smp_processor_id(); 87 88 cpu_probe(); 89 cpu_report(); 90 per_cpu_trap_init(); 91 prom_init_secondary(); 92 93 /* 94 * XXX parity protection should be folded in here when it's converted 95 * to an option instead of something based on .cputype 96 */ 97 98 calibrate_delay(); 99 cpu_data[cpu].udelay_val = loops_per_jiffy; 100 101 prom_smp_finish(); 102 103 cpu_set(cpu, cpu_callin_map); 104 105 cpu_idle(); 106 } 107 108 DEFINE_SPINLOCK(smp_call_lock); 109 110 struct call_data_struct *call_data; 111 112 /* 113 * Run a function on all other CPUs. 114 * <func> The function to run. This must be fast and non-blocking. 115 * <info> An arbitrary pointer to pass to the function. 116 * <retry> If true, keep retrying until ready. 117 * <wait> If true, wait until function has completed on other CPUs. 118 * [RETURNS] 0 on success, else a negative status code. 119 * 120 * Does not return until remote CPUs are nearly ready to execute <func> 121 * or are or have executed. 122 * 123 * You must not call this function with disabled interrupts or from a 124 * hardware interrupt handler or from a bottom half handler. 125 */ 126 int smp_call_function (void (*func) (void *info), void *info, int retry, 127 int wait) 128 { 129 struct call_data_struct data; 130 int i, cpus = num_online_cpus() - 1; 131 int cpu = smp_processor_id(); 132 133 if (!cpus) 134 return 0; 135 136 /* Can deadlock when called with interrupts disabled */ 137 WARN_ON(irqs_disabled()); 138 139 data.func = func; 140 data.info = info; 141 atomic_set(&data.started, 0); 142 data.wait = wait; 143 if (wait) 144 atomic_set(&data.finished, 0); 145 146 spin_lock(&smp_call_lock); 147 call_data = &data; 148 mb(); 149 150 /* Send a message to all other CPUs and wait for them to respond */ 151 for (i = 0; i < NR_CPUS; i++) 152 if (cpu_online(i) && i != cpu) 153 core_send_ipi(i, SMP_CALL_FUNCTION); 154 155 /* Wait for response */ 156 /* FIXME: lock-up detection, backtrace on lock-up */ 157 while (atomic_read(&data.started) != cpus) 158 barrier(); 159 160 if (wait) 161 while (atomic_read(&data.finished) != cpus) 162 barrier(); 163 spin_unlock(&smp_call_lock); 164 165 return 0; 166 } 167 168 void smp_call_function_interrupt(void) 169 { 170 void (*func) (void *info) = call_data->func; 171 void *info = call_data->info; 172 int wait = call_data->wait; 173 174 /* 175 * Notify initiating CPU that I've grabbed the data and am 176 * about to execute the function. 177 */ 178 mb(); 179 atomic_inc(&call_data->started); 180 181 /* 182 * At this point the info structure may be out of scope unless wait==1. 183 */ 184 irq_enter(); 185 (*func)(info); 186 irq_exit(); 187 188 if (wait) { 189 mb(); 190 atomic_inc(&call_data->finished); 191 } 192 } 193 194 static void stop_this_cpu(void *dummy) 195 { 196 /* 197 * Remove this CPU: 198 */ 199 cpu_clear(smp_processor_id(), cpu_online_map); 200 local_irq_enable(); /* May need to service _machine_restart IPI */ 201 for (;;); /* Wait if available. */ 202 } 203 204 void smp_send_stop(void) 205 { 206 smp_call_function(stop_this_cpu, NULL, 1, 0); 207 } 208 209 void __init smp_cpus_done(unsigned int max_cpus) 210 { 211 prom_cpus_done(); 212 } 213 214 /* called from main before smp_init() */ 215 void __init smp_prepare_cpus(unsigned int max_cpus) 216 { 217 cpu_data[0].udelay_val = loops_per_jiffy; 218 init_new_context(current, &init_mm); 219 current_thread_info()->cpu = 0; 220 smp_tune_scheduling(); 221 prom_prepare_cpus(max_cpus); 222 } 223 224 /* preload SMP state for boot cpu */ 225 void __devinit smp_prepare_boot_cpu(void) 226 { 227 /* 228 * This assumes that bootup is always handled by the processor 229 * with the logic and physical number 0. 230 */ 231 __cpu_number_map[0] = 0; 232 __cpu_logical_map[0] = 0; 233 cpu_set(0, phys_cpu_present_map); 234 cpu_set(0, cpu_online_map); 235 cpu_set(0, cpu_callin_map); 236 } 237 238 /* 239 * Startup the CPU with this logical number 240 */ 241 static int __init do_boot_cpu(int cpu) 242 { 243 struct task_struct *idle; 244 245 /* 246 * The following code is purely to make sure 247 * Linux can schedule processes on this slave. 248 */ 249 idle = fork_idle(cpu); 250 if (IS_ERR(idle)) 251 panic("failed fork for CPU %d\n", cpu); 252 253 prom_boot_secondary(cpu, idle); 254 255 /* XXXKW timeout */ 256 while (!cpu_isset(cpu, cpu_callin_map)) 257 udelay(100); 258 259 cpu_set(cpu, cpu_online_map); 260 261 return 0; 262 } 263 264 /* 265 * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu 266 * and keep control until "cpu_online(cpu)" is set. Note: cpu is 267 * physical, not logical. 268 */ 269 int __devinit __cpu_up(unsigned int cpu) 270 { 271 int ret; 272 273 /* Processor goes to start_secondary(), sets online flag */ 274 ret = do_boot_cpu(cpu); 275 if (ret < 0) 276 return ret; 277 278 return 0; 279 } 280 281 /* Not really SMP stuff ... */ 282 int setup_profiling_timer(unsigned int multiplier) 283 { 284 return 0; 285 } 286 287 static void flush_tlb_all_ipi(void *info) 288 { 289 local_flush_tlb_all(); 290 } 291 292 void flush_tlb_all(void) 293 { 294 on_each_cpu(flush_tlb_all_ipi, 0, 1, 1); 295 } 296 297 static void flush_tlb_mm_ipi(void *mm) 298 { 299 local_flush_tlb_mm((struct mm_struct *)mm); 300 } 301 302 /* 303 * The following tlb flush calls are invoked when old translations are 304 * being torn down, or pte attributes are changing. For single threaded 305 * address spaces, a new context is obtained on the current cpu, and tlb 306 * context on other cpus are invalidated to force a new context allocation 307 * at switch_mm time, should the mm ever be used on other cpus. For 308 * multithreaded address spaces, intercpu interrupts have to be sent. 309 * Another case where intercpu interrupts are required is when the target 310 * mm might be active on another cpu (eg debuggers doing the flushes on 311 * behalf of debugees, kswapd stealing pages from another process etc). 312 * Kanoj 07/00. 313 */ 314 315 void flush_tlb_mm(struct mm_struct *mm) 316 { 317 preempt_disable(); 318 319 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 320 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1); 321 } else { 322 int i; 323 for (i = 0; i < num_online_cpus(); i++) 324 if (smp_processor_id() != i) 325 cpu_context(i, mm) = 0; 326 } 327 local_flush_tlb_mm(mm); 328 329 preempt_enable(); 330 } 331 332 struct flush_tlb_data { 333 struct vm_area_struct *vma; 334 unsigned long addr1; 335 unsigned long addr2; 336 }; 337 338 static void flush_tlb_range_ipi(void *info) 339 { 340 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 341 342 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 343 } 344 345 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 346 { 347 struct mm_struct *mm = vma->vm_mm; 348 349 preempt_disable(); 350 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 351 struct flush_tlb_data fd; 352 353 fd.vma = vma; 354 fd.addr1 = start; 355 fd.addr2 = end; 356 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1); 357 } else { 358 int i; 359 for (i = 0; i < num_online_cpus(); i++) 360 if (smp_processor_id() != i) 361 cpu_context(i, mm) = 0; 362 } 363 local_flush_tlb_range(vma, start, end); 364 preempt_enable(); 365 } 366 367 static void flush_tlb_kernel_range_ipi(void *info) 368 { 369 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 370 371 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 372 } 373 374 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 375 { 376 struct flush_tlb_data fd; 377 378 fd.addr1 = start; 379 fd.addr2 = end; 380 on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1, 1); 381 } 382 383 static void flush_tlb_page_ipi(void *info) 384 { 385 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 386 387 local_flush_tlb_page(fd->vma, fd->addr1); 388 } 389 390 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 391 { 392 preempt_disable(); 393 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 394 struct flush_tlb_data fd; 395 396 fd.vma = vma; 397 fd.addr1 = page; 398 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1); 399 } else { 400 int i; 401 for (i = 0; i < num_online_cpus(); i++) 402 if (smp_processor_id() != i) 403 cpu_context(i, vma->vm_mm) = 0; 404 } 405 local_flush_tlb_page(vma, page); 406 preempt_enable(); 407 } 408 409 static void flush_tlb_one_ipi(void *info) 410 { 411 unsigned long vaddr = (unsigned long) info; 412 413 local_flush_tlb_one(vaddr); 414 } 415 416 void flush_tlb_one(unsigned long vaddr) 417 { 418 smp_call_function(flush_tlb_one_ipi, (void *) vaddr, 1, 1); 419 local_flush_tlb_one(vaddr); 420 } 421 422 EXPORT_SYMBOL(flush_tlb_page); 423 EXPORT_SYMBOL(flush_tlb_one); 424 EXPORT_SYMBOL(cpu_data); 425 EXPORT_SYMBOL(synchronize_irq); 426