xref: /linux/arch/mips/kernel/smp.c (revision 3eeebf17f31c583f83e081b17b3076477cb96886)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/threads.h>
27 #include <linux/module.h>
28 #include <linux/time.h>
29 #include <linux/timex.h>
30 #include <linux/sched.h>
31 #include <linux/cpumask.h>
32 #include <linux/cpu.h>
33 #include <linux/err.h>
34 
35 #include <asm/atomic.h>
36 #include <asm/cpu.h>
37 #include <asm/processor.h>
38 #include <asm/r4k-timer.h>
39 #include <asm/system.h>
40 #include <asm/mmu_context.h>
41 #include <asm/time.h>
42 
43 #ifdef CONFIG_MIPS_MT_SMTC
44 #include <asm/mipsmtregs.h>
45 #endif /* CONFIG_MIPS_MT_SMTC */
46 
47 cpumask_t phys_cpu_present_map;		/* Bitmask of available CPUs */
48 volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
49 cpumask_t cpu_online_map;		/* Bitmask of currently online CPUs */
50 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
51 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
52 
53 EXPORT_SYMBOL(phys_cpu_present_map);
54 EXPORT_SYMBOL(cpu_online_map);
55 
56 extern void cpu_idle(void);
57 
58 /* Number of TCs (or siblings in Intel speak) per CPU core */
59 int smp_num_siblings = 1;
60 EXPORT_SYMBOL(smp_num_siblings);
61 
62 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
63 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
64 EXPORT_SYMBOL(cpu_sibling_map);
65 
66 /* representing cpus for which sibling maps can be computed */
67 static cpumask_t cpu_sibling_setup_map;
68 
69 static inline void set_cpu_sibling_map(int cpu)
70 {
71 	int i;
72 
73 	cpu_set(cpu, cpu_sibling_setup_map);
74 
75 	if (smp_num_siblings > 1) {
76 		for_each_cpu_mask(i, cpu_sibling_setup_map) {
77 			if (cpu_data[cpu].core == cpu_data[i].core) {
78 				cpu_set(i, cpu_sibling_map[cpu]);
79 				cpu_set(cpu, cpu_sibling_map[i]);
80 			}
81 		}
82 	} else
83 		cpu_set(cpu, cpu_sibling_map[cpu]);
84 }
85 
86 struct plat_smp_ops *mp_ops;
87 
88 __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
89 {
90 	if (mp_ops)
91 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
92 
93 	mp_ops = ops;
94 }
95 
96 /*
97  * First C code run on the secondary CPUs after being started up by
98  * the master.
99  */
100 asmlinkage __cpuinit void start_secondary(void)
101 {
102 	unsigned int cpu;
103 
104 #ifdef CONFIG_MIPS_MT_SMTC
105 	/* Only do cpu_probe for first TC of CPU */
106 	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
107 #endif /* CONFIG_MIPS_MT_SMTC */
108 	cpu_probe();
109 	cpu_report();
110 	per_cpu_trap_init();
111 	mips_clockevent_init();
112 	mp_ops->init_secondary();
113 
114 	/*
115 	 * XXX parity protection should be folded in here when it's converted
116 	 * to an option instead of something based on .cputype
117 	 */
118 
119 	calibrate_delay();
120 	preempt_disable();
121 	cpu = smp_processor_id();
122 	cpu_data[cpu].udelay_val = loops_per_jiffy;
123 
124 	notify_cpu_starting(cpu);
125 
126 	mp_ops->smp_finish();
127 	set_cpu_sibling_map(cpu);
128 
129 	cpu_set(cpu, cpu_callin_map);
130 
131 	synchronise_count_slave();
132 
133 	cpu_idle();
134 }
135 
136 void arch_send_call_function_ipi(cpumask_t mask)
137 {
138 	mp_ops->send_ipi_mask(mask, SMP_CALL_FUNCTION);
139 }
140 
141 /*
142  * We reuse the same vector for the single IPI
143  */
144 void arch_send_call_function_single_ipi(int cpu)
145 {
146 	mp_ops->send_ipi_mask(cpumask_of_cpu(cpu), SMP_CALL_FUNCTION);
147 }
148 
149 /*
150  * Call into both interrupt handlers, as we share the IPI for them
151  */
152 void smp_call_function_interrupt(void)
153 {
154 	irq_enter();
155 	generic_smp_call_function_single_interrupt();
156 	generic_smp_call_function_interrupt();
157 	irq_exit();
158 }
159 
160 static void stop_this_cpu(void *dummy)
161 {
162 	/*
163 	 * Remove this CPU:
164 	 */
165 	cpu_clear(smp_processor_id(), cpu_online_map);
166 	for (;;) {
167 		if (cpu_wait)
168 			(*cpu_wait)();		/* Wait if available. */
169 	}
170 }
171 
172 void smp_send_stop(void)
173 {
174 	smp_call_function(stop_this_cpu, NULL, 0);
175 }
176 
177 void __init smp_cpus_done(unsigned int max_cpus)
178 {
179 	mp_ops->cpus_done();
180 	synchronise_count_master();
181 }
182 
183 /* called from main before smp_init() */
184 void __init smp_prepare_cpus(unsigned int max_cpus)
185 {
186 	init_new_context(current, &init_mm);
187 	current_thread_info()->cpu = 0;
188 	mp_ops->prepare_cpus(max_cpus);
189 	set_cpu_sibling_map(0);
190 #ifndef CONFIG_HOTPLUG_CPU
191 	cpu_present_map = cpu_possible_map;
192 #endif
193 }
194 
195 /* preload SMP state for boot cpu */
196 void __devinit smp_prepare_boot_cpu(void)
197 {
198 	/*
199 	 * This assumes that bootup is always handled by the processor
200 	 * with the logic and physical number 0.
201 	 */
202 	__cpu_number_map[0] = 0;
203 	__cpu_logical_map[0] = 0;
204 	cpu_set(0, phys_cpu_present_map);
205 	cpu_set(0, cpu_online_map);
206 	cpu_set(0, cpu_callin_map);
207 }
208 
209 /*
210  * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu
211  * and keep control until "cpu_online(cpu)" is set.  Note: cpu is
212  * physical, not logical.
213  */
214 int __cpuinit __cpu_up(unsigned int cpu)
215 {
216 	struct task_struct *idle;
217 
218 	/*
219 	 * Processor goes to start_secondary(), sets online flag
220 	 * The following code is purely to make sure
221 	 * Linux can schedule processes on this slave.
222 	 */
223 	idle = fork_idle(cpu);
224 	if (IS_ERR(idle))
225 		panic(KERN_ERR "Fork failed for CPU %d", cpu);
226 
227 	mp_ops->boot_secondary(cpu, idle);
228 
229 	/*
230 	 * Trust is futile.  We should really have timeouts ...
231 	 */
232 	while (!cpu_isset(cpu, cpu_callin_map))
233 		udelay(100);
234 
235 	cpu_set(cpu, cpu_online_map);
236 
237 	return 0;
238 }
239 
240 /* Not really SMP stuff ... */
241 int setup_profiling_timer(unsigned int multiplier)
242 {
243 	return 0;
244 }
245 
246 static void flush_tlb_all_ipi(void *info)
247 {
248 	local_flush_tlb_all();
249 }
250 
251 void flush_tlb_all(void)
252 {
253 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
254 }
255 
256 static void flush_tlb_mm_ipi(void *mm)
257 {
258 	local_flush_tlb_mm((struct mm_struct *)mm);
259 }
260 
261 /*
262  * Special Variant of smp_call_function for use by TLB functions:
263  *
264  *  o No return value
265  *  o collapses to normal function call on UP kernels
266  *  o collapses to normal function call on systems with a single shared
267  *    primary cache.
268  *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
269  */
270 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
271 {
272 #ifndef CONFIG_MIPS_MT_SMTC
273 	smp_call_function(func, info, 1);
274 #endif
275 }
276 
277 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
278 {
279 	preempt_disable();
280 
281 	smp_on_other_tlbs(func, info);
282 	func(info);
283 
284 	preempt_enable();
285 }
286 
287 /*
288  * The following tlb flush calls are invoked when old translations are
289  * being torn down, or pte attributes are changing. For single threaded
290  * address spaces, a new context is obtained on the current cpu, and tlb
291  * context on other cpus are invalidated to force a new context allocation
292  * at switch_mm time, should the mm ever be used on other cpus. For
293  * multithreaded address spaces, intercpu interrupts have to be sent.
294  * Another case where intercpu interrupts are required is when the target
295  * mm might be active on another cpu (eg debuggers doing the flushes on
296  * behalf of debugees, kswapd stealing pages from another process etc).
297  * Kanoj 07/00.
298  */
299 
300 void flush_tlb_mm(struct mm_struct *mm)
301 {
302 	preempt_disable();
303 
304 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
305 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
306 	} else {
307 		cpumask_t mask = cpu_online_map;
308 		unsigned int cpu;
309 
310 		cpu_clear(smp_processor_id(), mask);
311 		for_each_cpu_mask(cpu, mask)
312 			if (cpu_context(cpu, mm))
313 				cpu_context(cpu, mm) = 0;
314 	}
315 	local_flush_tlb_mm(mm);
316 
317 	preempt_enable();
318 }
319 
320 struct flush_tlb_data {
321 	struct vm_area_struct *vma;
322 	unsigned long addr1;
323 	unsigned long addr2;
324 };
325 
326 static void flush_tlb_range_ipi(void *info)
327 {
328 	struct flush_tlb_data *fd = info;
329 
330 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
331 }
332 
333 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
334 {
335 	struct mm_struct *mm = vma->vm_mm;
336 
337 	preempt_disable();
338 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
339 		struct flush_tlb_data fd = {
340 			.vma = vma,
341 			.addr1 = start,
342 			.addr2 = end,
343 		};
344 
345 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
346 	} else {
347 		cpumask_t mask = cpu_online_map;
348 		unsigned int cpu;
349 
350 		cpu_clear(smp_processor_id(), mask);
351 		for_each_cpu_mask(cpu, mask)
352 			if (cpu_context(cpu, mm))
353 				cpu_context(cpu, mm) = 0;
354 	}
355 	local_flush_tlb_range(vma, start, end);
356 	preempt_enable();
357 }
358 
359 static void flush_tlb_kernel_range_ipi(void *info)
360 {
361 	struct flush_tlb_data *fd = info;
362 
363 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
364 }
365 
366 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
367 {
368 	struct flush_tlb_data fd = {
369 		.addr1 = start,
370 		.addr2 = end,
371 	};
372 
373 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
374 }
375 
376 static void flush_tlb_page_ipi(void *info)
377 {
378 	struct flush_tlb_data *fd = info;
379 
380 	local_flush_tlb_page(fd->vma, fd->addr1);
381 }
382 
383 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
384 {
385 	preempt_disable();
386 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
387 		struct flush_tlb_data fd = {
388 			.vma = vma,
389 			.addr1 = page,
390 		};
391 
392 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
393 	} else {
394 		cpumask_t mask = cpu_online_map;
395 		unsigned int cpu;
396 
397 		cpu_clear(smp_processor_id(), mask);
398 		for_each_cpu_mask(cpu, mask)
399 			if (cpu_context(cpu, vma->vm_mm))
400 				cpu_context(cpu, vma->vm_mm) = 0;
401 	}
402 	local_flush_tlb_page(vma, page);
403 	preempt_enable();
404 }
405 
406 static void flush_tlb_one_ipi(void *info)
407 {
408 	unsigned long vaddr = (unsigned long) info;
409 
410 	local_flush_tlb_one(vaddr);
411 }
412 
413 void flush_tlb_one(unsigned long vaddr)
414 {
415 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
416 }
417 
418 EXPORT_SYMBOL(flush_tlb_page);
419 EXPORT_SYMBOL(flush_tlb_one);
420