1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/threads.h> 27 #include <linux/module.h> 28 #include <linux/time.h> 29 #include <linux/timex.h> 30 #include <linux/sched.h> 31 #include <linux/cpumask.h> 32 #include <linux/cpu.h> 33 #include <linux/err.h> 34 35 #include <asm/atomic.h> 36 #include <asm/cpu.h> 37 #include <asm/processor.h> 38 #include <asm/r4k-timer.h> 39 #include <asm/system.h> 40 #include <asm/mmu_context.h> 41 #include <asm/time.h> 42 43 #ifdef CONFIG_MIPS_MT_SMTC 44 #include <asm/mipsmtregs.h> 45 #endif /* CONFIG_MIPS_MT_SMTC */ 46 47 cpumask_t phys_cpu_present_map; /* Bitmask of available CPUs */ 48 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 49 cpumask_t cpu_online_map; /* Bitmask of currently online CPUs */ 50 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 51 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 52 53 EXPORT_SYMBOL(phys_cpu_present_map); 54 EXPORT_SYMBOL(cpu_online_map); 55 56 extern void cpu_idle(void); 57 58 /* Number of TCs (or siblings in Intel speak) per CPU core */ 59 int smp_num_siblings = 1; 60 EXPORT_SYMBOL(smp_num_siblings); 61 62 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 63 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 64 EXPORT_SYMBOL(cpu_sibling_map); 65 66 /* representing cpus for which sibling maps can be computed */ 67 static cpumask_t cpu_sibling_setup_map; 68 69 static inline void set_cpu_sibling_map(int cpu) 70 { 71 int i; 72 73 cpu_set(cpu, cpu_sibling_setup_map); 74 75 if (smp_num_siblings > 1) { 76 for_each_cpu_mask(i, cpu_sibling_setup_map) { 77 if (cpu_data[cpu].core == cpu_data[i].core) { 78 cpu_set(i, cpu_sibling_map[cpu]); 79 cpu_set(cpu, cpu_sibling_map[i]); 80 } 81 } 82 } else 83 cpu_set(cpu, cpu_sibling_map[cpu]); 84 } 85 86 struct plat_smp_ops *mp_ops; 87 88 __cpuinit void register_smp_ops(struct plat_smp_ops *ops) 89 { 90 if (mp_ops) 91 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 92 93 mp_ops = ops; 94 } 95 96 /* 97 * First C code run on the secondary CPUs after being started up by 98 * the master. 99 */ 100 asmlinkage __cpuinit void start_secondary(void) 101 { 102 unsigned int cpu; 103 104 #ifdef CONFIG_MIPS_MT_SMTC 105 /* Only do cpu_probe for first TC of CPU */ 106 if ((read_c0_tcbind() & TCBIND_CURTC) == 0) 107 #endif /* CONFIG_MIPS_MT_SMTC */ 108 cpu_probe(); 109 cpu_report(); 110 per_cpu_trap_init(); 111 mips_clockevent_init(); 112 mp_ops->init_secondary(); 113 114 /* 115 * XXX parity protection should be folded in here when it's converted 116 * to an option instead of something based on .cputype 117 */ 118 119 calibrate_delay(); 120 preempt_disable(); 121 cpu = smp_processor_id(); 122 cpu_data[cpu].udelay_val = loops_per_jiffy; 123 124 notify_cpu_starting(cpu); 125 126 mp_ops->smp_finish(); 127 set_cpu_sibling_map(cpu); 128 129 cpu_set(cpu, cpu_callin_map); 130 131 synchronise_count_slave(); 132 133 cpu_idle(); 134 } 135 136 void arch_send_call_function_ipi(cpumask_t mask) 137 { 138 mp_ops->send_ipi_mask(mask, SMP_CALL_FUNCTION); 139 } 140 141 /* 142 * We reuse the same vector for the single IPI 143 */ 144 void arch_send_call_function_single_ipi(int cpu) 145 { 146 mp_ops->send_ipi_mask(cpumask_of_cpu(cpu), SMP_CALL_FUNCTION); 147 } 148 149 /* 150 * Call into both interrupt handlers, as we share the IPI for them 151 */ 152 void smp_call_function_interrupt(void) 153 { 154 irq_enter(); 155 generic_smp_call_function_single_interrupt(); 156 generic_smp_call_function_interrupt(); 157 irq_exit(); 158 } 159 160 static void stop_this_cpu(void *dummy) 161 { 162 /* 163 * Remove this CPU: 164 */ 165 cpu_clear(smp_processor_id(), cpu_online_map); 166 for (;;) { 167 if (cpu_wait) 168 (*cpu_wait)(); /* Wait if available. */ 169 } 170 } 171 172 void smp_send_stop(void) 173 { 174 smp_call_function(stop_this_cpu, NULL, 0); 175 } 176 177 void __init smp_cpus_done(unsigned int max_cpus) 178 { 179 mp_ops->cpus_done(); 180 synchronise_count_master(); 181 } 182 183 /* called from main before smp_init() */ 184 void __init smp_prepare_cpus(unsigned int max_cpus) 185 { 186 init_new_context(current, &init_mm); 187 current_thread_info()->cpu = 0; 188 mp_ops->prepare_cpus(max_cpus); 189 set_cpu_sibling_map(0); 190 #ifndef CONFIG_HOTPLUG_CPU 191 cpu_present_map = cpu_possible_map; 192 #endif 193 } 194 195 /* preload SMP state for boot cpu */ 196 void __devinit smp_prepare_boot_cpu(void) 197 { 198 /* 199 * This assumes that bootup is always handled by the processor 200 * with the logic and physical number 0. 201 */ 202 __cpu_number_map[0] = 0; 203 __cpu_logical_map[0] = 0; 204 cpu_set(0, phys_cpu_present_map); 205 cpu_set(0, cpu_online_map); 206 cpu_set(0, cpu_callin_map); 207 } 208 209 /* 210 * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu 211 * and keep control until "cpu_online(cpu)" is set. Note: cpu is 212 * physical, not logical. 213 */ 214 int __cpuinit __cpu_up(unsigned int cpu) 215 { 216 struct task_struct *idle; 217 218 /* 219 * Processor goes to start_secondary(), sets online flag 220 * The following code is purely to make sure 221 * Linux can schedule processes on this slave. 222 */ 223 idle = fork_idle(cpu); 224 if (IS_ERR(idle)) 225 panic(KERN_ERR "Fork failed for CPU %d", cpu); 226 227 mp_ops->boot_secondary(cpu, idle); 228 229 /* 230 * Trust is futile. We should really have timeouts ... 231 */ 232 while (!cpu_isset(cpu, cpu_callin_map)) 233 udelay(100); 234 235 cpu_set(cpu, cpu_online_map); 236 237 return 0; 238 } 239 240 /* Not really SMP stuff ... */ 241 int setup_profiling_timer(unsigned int multiplier) 242 { 243 return 0; 244 } 245 246 static void flush_tlb_all_ipi(void *info) 247 { 248 local_flush_tlb_all(); 249 } 250 251 void flush_tlb_all(void) 252 { 253 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 254 } 255 256 static void flush_tlb_mm_ipi(void *mm) 257 { 258 local_flush_tlb_mm((struct mm_struct *)mm); 259 } 260 261 /* 262 * Special Variant of smp_call_function for use by TLB functions: 263 * 264 * o No return value 265 * o collapses to normal function call on UP kernels 266 * o collapses to normal function call on systems with a single shared 267 * primary cache. 268 * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core. 269 */ 270 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 271 { 272 #ifndef CONFIG_MIPS_MT_SMTC 273 smp_call_function(func, info, 1); 274 #endif 275 } 276 277 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 278 { 279 preempt_disable(); 280 281 smp_on_other_tlbs(func, info); 282 func(info); 283 284 preempt_enable(); 285 } 286 287 /* 288 * The following tlb flush calls are invoked when old translations are 289 * being torn down, or pte attributes are changing. For single threaded 290 * address spaces, a new context is obtained on the current cpu, and tlb 291 * context on other cpus are invalidated to force a new context allocation 292 * at switch_mm time, should the mm ever be used on other cpus. For 293 * multithreaded address spaces, intercpu interrupts have to be sent. 294 * Another case where intercpu interrupts are required is when the target 295 * mm might be active on another cpu (eg debuggers doing the flushes on 296 * behalf of debugees, kswapd stealing pages from another process etc). 297 * Kanoj 07/00. 298 */ 299 300 void flush_tlb_mm(struct mm_struct *mm) 301 { 302 preempt_disable(); 303 304 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 305 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 306 } else { 307 cpumask_t mask = cpu_online_map; 308 unsigned int cpu; 309 310 cpu_clear(smp_processor_id(), mask); 311 for_each_cpu_mask(cpu, mask) 312 if (cpu_context(cpu, mm)) 313 cpu_context(cpu, mm) = 0; 314 } 315 local_flush_tlb_mm(mm); 316 317 preempt_enable(); 318 } 319 320 struct flush_tlb_data { 321 struct vm_area_struct *vma; 322 unsigned long addr1; 323 unsigned long addr2; 324 }; 325 326 static void flush_tlb_range_ipi(void *info) 327 { 328 struct flush_tlb_data *fd = info; 329 330 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 331 } 332 333 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 334 { 335 struct mm_struct *mm = vma->vm_mm; 336 337 preempt_disable(); 338 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 339 struct flush_tlb_data fd = { 340 .vma = vma, 341 .addr1 = start, 342 .addr2 = end, 343 }; 344 345 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 346 } else { 347 cpumask_t mask = cpu_online_map; 348 unsigned int cpu; 349 350 cpu_clear(smp_processor_id(), mask); 351 for_each_cpu_mask(cpu, mask) 352 if (cpu_context(cpu, mm)) 353 cpu_context(cpu, mm) = 0; 354 } 355 local_flush_tlb_range(vma, start, end); 356 preempt_enable(); 357 } 358 359 static void flush_tlb_kernel_range_ipi(void *info) 360 { 361 struct flush_tlb_data *fd = info; 362 363 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 364 } 365 366 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 367 { 368 struct flush_tlb_data fd = { 369 .addr1 = start, 370 .addr2 = end, 371 }; 372 373 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 374 } 375 376 static void flush_tlb_page_ipi(void *info) 377 { 378 struct flush_tlb_data *fd = info; 379 380 local_flush_tlb_page(fd->vma, fd->addr1); 381 } 382 383 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 384 { 385 preempt_disable(); 386 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 387 struct flush_tlb_data fd = { 388 .vma = vma, 389 .addr1 = page, 390 }; 391 392 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 393 } else { 394 cpumask_t mask = cpu_online_map; 395 unsigned int cpu; 396 397 cpu_clear(smp_processor_id(), mask); 398 for_each_cpu_mask(cpu, mask) 399 if (cpu_context(cpu, vma->vm_mm)) 400 cpu_context(cpu, vma->vm_mm) = 0; 401 } 402 local_flush_tlb_page(vma, page); 403 preempt_enable(); 404 } 405 406 static void flush_tlb_one_ipi(void *info) 407 { 408 unsigned long vaddr = (unsigned long) info; 409 410 local_flush_tlb_one(vaddr); 411 } 412 413 void flush_tlb_one(unsigned long vaddr) 414 { 415 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 416 } 417 418 EXPORT_SYMBOL(flush_tlb_page); 419 EXPORT_SYMBOL(flush_tlb_one); 420