xref: /linux/arch/mips/kernel/smp.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/smp.h>
36 
37 #include <asm/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/r4k-timer.h>
41 #include <asm/system.h>
42 #include <asm/mmu_context.h>
43 #include <asm/time.h>
44 
45 #ifdef CONFIG_MIPS_MT_SMTC
46 #include <asm/mipsmtregs.h>
47 #endif /* CONFIG_MIPS_MT_SMTC */
48 
49 volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
50 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
51 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
52 
53 /* Number of TCs (or siblings in Intel speak) per CPU core */
54 int smp_num_siblings = 1;
55 EXPORT_SYMBOL(smp_num_siblings);
56 
57 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
58 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
59 EXPORT_SYMBOL(cpu_sibling_map);
60 
61 /* representing cpus for which sibling maps can be computed */
62 static cpumask_t cpu_sibling_setup_map;
63 
64 static inline void set_cpu_sibling_map(int cpu)
65 {
66 	int i;
67 
68 	cpu_set(cpu, cpu_sibling_setup_map);
69 
70 	if (smp_num_siblings > 1) {
71 		for_each_cpu_mask(i, cpu_sibling_setup_map) {
72 			if (cpu_data[cpu].core == cpu_data[i].core) {
73 				cpu_set(i, cpu_sibling_map[cpu]);
74 				cpu_set(cpu, cpu_sibling_map[i]);
75 			}
76 		}
77 	} else
78 		cpu_set(cpu, cpu_sibling_map[cpu]);
79 }
80 
81 struct plat_smp_ops *mp_ops;
82 
83 __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
84 {
85 	if (mp_ops)
86 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
87 
88 	mp_ops = ops;
89 }
90 
91 /*
92  * First C code run on the secondary CPUs after being started up by
93  * the master.
94  */
95 asmlinkage __cpuinit void start_secondary(void)
96 {
97 	unsigned int cpu;
98 
99 #ifdef CONFIG_MIPS_MT_SMTC
100 	/* Only do cpu_probe for first TC of CPU */
101 	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
102 #endif /* CONFIG_MIPS_MT_SMTC */
103 	cpu_probe();
104 	cpu_report();
105 	per_cpu_trap_init();
106 	mips_clockevent_init();
107 	mp_ops->init_secondary();
108 
109 	/*
110 	 * XXX parity protection should be folded in here when it's converted
111 	 * to an option instead of something based on .cputype
112 	 */
113 
114 	calibrate_delay();
115 	preempt_disable();
116 	cpu = smp_processor_id();
117 	cpu_data[cpu].udelay_val = loops_per_jiffy;
118 
119 	notify_cpu_starting(cpu);
120 
121 	mp_ops->smp_finish();
122 	set_cpu_sibling_map(cpu);
123 
124 	cpu_set(cpu, cpu_callin_map);
125 
126 	synchronise_count_slave();
127 
128 	cpu_idle();
129 }
130 
131 void arch_send_call_function_ipi(cpumask_t mask)
132 {
133 	mp_ops->send_ipi_mask(mask, SMP_CALL_FUNCTION);
134 }
135 
136 /*
137  * We reuse the same vector for the single IPI
138  */
139 void arch_send_call_function_single_ipi(int cpu)
140 {
141 	mp_ops->send_ipi_mask(cpumask_of_cpu(cpu), SMP_CALL_FUNCTION);
142 }
143 
144 /*
145  * Call into both interrupt handlers, as we share the IPI for them
146  */
147 void smp_call_function_interrupt(void)
148 {
149 	irq_enter();
150 	generic_smp_call_function_single_interrupt();
151 	generic_smp_call_function_interrupt();
152 	irq_exit();
153 }
154 
155 static void stop_this_cpu(void *dummy)
156 {
157 	/*
158 	 * Remove this CPU:
159 	 */
160 	cpu_clear(smp_processor_id(), cpu_online_map);
161 	for (;;) {
162 		if (cpu_wait)
163 			(*cpu_wait)();		/* Wait if available. */
164 	}
165 }
166 
167 void smp_send_stop(void)
168 {
169 	smp_call_function(stop_this_cpu, NULL, 0);
170 }
171 
172 void __init smp_cpus_done(unsigned int max_cpus)
173 {
174 	mp_ops->cpus_done();
175 	synchronise_count_master();
176 }
177 
178 /* called from main before smp_init() */
179 void __init smp_prepare_cpus(unsigned int max_cpus)
180 {
181 	init_new_context(current, &init_mm);
182 	current_thread_info()->cpu = 0;
183 	mp_ops->prepare_cpus(max_cpus);
184 	set_cpu_sibling_map(0);
185 #ifndef CONFIG_HOTPLUG_CPU
186 	cpu_present_map = cpu_possible_map;
187 #endif
188 }
189 
190 /* preload SMP state for boot cpu */
191 void __devinit smp_prepare_boot_cpu(void)
192 {
193 	cpu_set(0, cpu_possible_map);
194 	cpu_set(0, cpu_online_map);
195 	cpu_set(0, cpu_callin_map);
196 }
197 
198 /*
199  * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu
200  * and keep control until "cpu_online(cpu)" is set.  Note: cpu is
201  * physical, not logical.
202  */
203 static struct task_struct *cpu_idle_thread[NR_CPUS];
204 
205 int __cpuinit __cpu_up(unsigned int cpu)
206 {
207 	struct task_struct *idle;
208 
209 	/*
210 	 * Processor goes to start_secondary(), sets online flag
211 	 * The following code is purely to make sure
212 	 * Linux can schedule processes on this slave.
213 	 */
214 	if (!cpu_idle_thread[cpu]) {
215 		idle = fork_idle(cpu);
216 		cpu_idle_thread[cpu] = idle;
217 
218 		if (IS_ERR(idle))
219 			panic(KERN_ERR "Fork failed for CPU %d", cpu);
220 	} else {
221 		idle = cpu_idle_thread[cpu];
222 		init_idle(idle, cpu);
223 	}
224 
225 	mp_ops->boot_secondary(cpu, idle);
226 
227 	/*
228 	 * Trust is futile.  We should really have timeouts ...
229 	 */
230 	while (!cpu_isset(cpu, cpu_callin_map))
231 		udelay(100);
232 
233 	cpu_set(cpu, cpu_online_map);
234 
235 	return 0;
236 }
237 
238 /* Not really SMP stuff ... */
239 int setup_profiling_timer(unsigned int multiplier)
240 {
241 	return 0;
242 }
243 
244 static void flush_tlb_all_ipi(void *info)
245 {
246 	local_flush_tlb_all();
247 }
248 
249 void flush_tlb_all(void)
250 {
251 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
252 }
253 
254 static void flush_tlb_mm_ipi(void *mm)
255 {
256 	local_flush_tlb_mm((struct mm_struct *)mm);
257 }
258 
259 /*
260  * Special Variant of smp_call_function for use by TLB functions:
261  *
262  *  o No return value
263  *  o collapses to normal function call on UP kernels
264  *  o collapses to normal function call on systems with a single shared
265  *    primary cache.
266  *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
267  */
268 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
269 {
270 #ifndef CONFIG_MIPS_MT_SMTC
271 	smp_call_function(func, info, 1);
272 #endif
273 }
274 
275 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
276 {
277 	preempt_disable();
278 
279 	smp_on_other_tlbs(func, info);
280 	func(info);
281 
282 	preempt_enable();
283 }
284 
285 /*
286  * The following tlb flush calls are invoked when old translations are
287  * being torn down, or pte attributes are changing. For single threaded
288  * address spaces, a new context is obtained on the current cpu, and tlb
289  * context on other cpus are invalidated to force a new context allocation
290  * at switch_mm time, should the mm ever be used on other cpus. For
291  * multithreaded address spaces, intercpu interrupts have to be sent.
292  * Another case where intercpu interrupts are required is when the target
293  * mm might be active on another cpu (eg debuggers doing the flushes on
294  * behalf of debugees, kswapd stealing pages from another process etc).
295  * Kanoj 07/00.
296  */
297 
298 void flush_tlb_mm(struct mm_struct *mm)
299 {
300 	preempt_disable();
301 
302 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
303 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
304 	} else {
305 		cpumask_t mask = cpu_online_map;
306 		unsigned int cpu;
307 
308 		cpu_clear(smp_processor_id(), mask);
309 		for_each_cpu_mask(cpu, mask)
310 			if (cpu_context(cpu, mm))
311 				cpu_context(cpu, mm) = 0;
312 	}
313 	local_flush_tlb_mm(mm);
314 
315 	preempt_enable();
316 }
317 
318 struct flush_tlb_data {
319 	struct vm_area_struct *vma;
320 	unsigned long addr1;
321 	unsigned long addr2;
322 };
323 
324 static void flush_tlb_range_ipi(void *info)
325 {
326 	struct flush_tlb_data *fd = info;
327 
328 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
329 }
330 
331 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
332 {
333 	struct mm_struct *mm = vma->vm_mm;
334 
335 	preempt_disable();
336 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
337 		struct flush_tlb_data fd = {
338 			.vma = vma,
339 			.addr1 = start,
340 			.addr2 = end,
341 		};
342 
343 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
344 	} else {
345 		cpumask_t mask = cpu_online_map;
346 		unsigned int cpu;
347 
348 		cpu_clear(smp_processor_id(), mask);
349 		for_each_cpu_mask(cpu, mask)
350 			if (cpu_context(cpu, mm))
351 				cpu_context(cpu, mm) = 0;
352 	}
353 	local_flush_tlb_range(vma, start, end);
354 	preempt_enable();
355 }
356 
357 static void flush_tlb_kernel_range_ipi(void *info)
358 {
359 	struct flush_tlb_data *fd = info;
360 
361 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
362 }
363 
364 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
365 {
366 	struct flush_tlb_data fd = {
367 		.addr1 = start,
368 		.addr2 = end,
369 	};
370 
371 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
372 }
373 
374 static void flush_tlb_page_ipi(void *info)
375 {
376 	struct flush_tlb_data *fd = info;
377 
378 	local_flush_tlb_page(fd->vma, fd->addr1);
379 }
380 
381 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
382 {
383 	preempt_disable();
384 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
385 		struct flush_tlb_data fd = {
386 			.vma = vma,
387 			.addr1 = page,
388 		};
389 
390 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
391 	} else {
392 		cpumask_t mask = cpu_online_map;
393 		unsigned int cpu;
394 
395 		cpu_clear(smp_processor_id(), mask);
396 		for_each_cpu_mask(cpu, mask)
397 			if (cpu_context(cpu, vma->vm_mm))
398 				cpu_context(cpu, vma->vm_mm) = 0;
399 	}
400 	local_flush_tlb_page(vma, page);
401 	preempt_enable();
402 }
403 
404 static void flush_tlb_one_ipi(void *info)
405 {
406 	unsigned long vaddr = (unsigned long) info;
407 
408 	local_flush_tlb_one(vaddr);
409 }
410 
411 void flush_tlb_one(unsigned long vaddr)
412 {
413 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
414 }
415 
416 EXPORT_SYMBOL(flush_tlb_page);
417 EXPORT_SYMBOL(flush_tlb_one);
418