1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/module.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 #include <linux/ftrace.h> 36 37 #include <linux/atomic.h> 38 #include <asm/cpu.h> 39 #include <asm/processor.h> 40 #include <asm/r4k-timer.h> 41 #include <asm/mmu_context.h> 42 #include <asm/time.h> 43 #include <asm/setup.h> 44 45 #ifdef CONFIG_MIPS_MT_SMTC 46 #include <asm/mipsmtregs.h> 47 #endif /* CONFIG_MIPS_MT_SMTC */ 48 49 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 50 51 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 52 EXPORT_SYMBOL(__cpu_number_map); 53 54 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 55 EXPORT_SYMBOL(__cpu_logical_map); 56 57 /* Number of TCs (or siblings in Intel speak) per CPU core */ 58 int smp_num_siblings = 1; 59 EXPORT_SYMBOL(smp_num_siblings); 60 61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 63 EXPORT_SYMBOL(cpu_sibling_map); 64 65 /* representing cpus for which sibling maps can be computed */ 66 static cpumask_t cpu_sibling_setup_map; 67 68 static inline void set_cpu_sibling_map(int cpu) 69 { 70 int i; 71 72 cpu_set(cpu, cpu_sibling_setup_map); 73 74 if (smp_num_siblings > 1) { 75 for_each_cpu_mask(i, cpu_sibling_setup_map) { 76 if (cpu_data[cpu].core == cpu_data[i].core) { 77 cpu_set(i, cpu_sibling_map[cpu]); 78 cpu_set(cpu, cpu_sibling_map[i]); 79 } 80 } 81 } else 82 cpu_set(cpu, cpu_sibling_map[cpu]); 83 } 84 85 struct plat_smp_ops *mp_ops; 86 87 __cpuinit void register_smp_ops(struct plat_smp_ops *ops) 88 { 89 if (mp_ops) 90 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 91 92 mp_ops = ops; 93 } 94 95 /* 96 * First C code run on the secondary CPUs after being started up by 97 * the master. 98 */ 99 asmlinkage __cpuinit void start_secondary(void) 100 { 101 unsigned int cpu; 102 103 #ifdef CONFIG_MIPS_MT_SMTC 104 /* Only do cpu_probe for first TC of CPU */ 105 if ((read_c0_tcbind() & TCBIND_CURTC) == 0) 106 #endif /* CONFIG_MIPS_MT_SMTC */ 107 cpu_probe(); 108 cpu_report(); 109 per_cpu_trap_init(false); 110 mips_clockevent_init(); 111 mp_ops->init_secondary(); 112 113 /* 114 * XXX parity protection should be folded in here when it's converted 115 * to an option instead of something based on .cputype 116 */ 117 118 calibrate_delay(); 119 preempt_disable(); 120 cpu = smp_processor_id(); 121 cpu_data[cpu].udelay_val = loops_per_jiffy; 122 123 notify_cpu_starting(cpu); 124 125 mp_ops->smp_finish(); 126 set_cpu_sibling_map(cpu); 127 128 cpu_set(cpu, cpu_callin_map); 129 130 synchronise_count_slave(); 131 132 cpu_idle(); 133 } 134 135 /* 136 * Call into both interrupt handlers, as we share the IPI for them 137 */ 138 void __irq_entry smp_call_function_interrupt(void) 139 { 140 irq_enter(); 141 generic_smp_call_function_single_interrupt(); 142 generic_smp_call_function_interrupt(); 143 irq_exit(); 144 } 145 146 static void stop_this_cpu(void *dummy) 147 { 148 /* 149 * Remove this CPU: 150 */ 151 set_cpu_online(smp_processor_id(), false); 152 for (;;) { 153 if (cpu_wait) 154 (*cpu_wait)(); /* Wait if available. */ 155 } 156 } 157 158 void smp_send_stop(void) 159 { 160 smp_call_function(stop_this_cpu, NULL, 0); 161 } 162 163 void __init smp_cpus_done(unsigned int max_cpus) 164 { 165 mp_ops->cpus_done(); 166 synchronise_count_master(); 167 } 168 169 /* called from main before smp_init() */ 170 void __init smp_prepare_cpus(unsigned int max_cpus) 171 { 172 init_new_context(current, &init_mm); 173 current_thread_info()->cpu = 0; 174 mp_ops->prepare_cpus(max_cpus); 175 set_cpu_sibling_map(0); 176 #ifndef CONFIG_HOTPLUG_CPU 177 init_cpu_present(cpu_possible_mask); 178 #endif 179 } 180 181 /* preload SMP state for boot cpu */ 182 void __devinit smp_prepare_boot_cpu(void) 183 { 184 set_cpu_possible(0, true); 185 set_cpu_online(0, true); 186 cpu_set(0, cpu_callin_map); 187 } 188 189 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle) 190 { 191 mp_ops->boot_secondary(cpu, tidle); 192 193 /* 194 * Trust is futile. We should really have timeouts ... 195 */ 196 while (!cpu_isset(cpu, cpu_callin_map)) 197 udelay(100); 198 199 set_cpu_online(cpu, true); 200 201 return 0; 202 } 203 204 /* Not really SMP stuff ... */ 205 int setup_profiling_timer(unsigned int multiplier) 206 { 207 return 0; 208 } 209 210 static void flush_tlb_all_ipi(void *info) 211 { 212 local_flush_tlb_all(); 213 } 214 215 void flush_tlb_all(void) 216 { 217 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 218 } 219 220 static void flush_tlb_mm_ipi(void *mm) 221 { 222 local_flush_tlb_mm((struct mm_struct *)mm); 223 } 224 225 /* 226 * Special Variant of smp_call_function for use by TLB functions: 227 * 228 * o No return value 229 * o collapses to normal function call on UP kernels 230 * o collapses to normal function call on systems with a single shared 231 * primary cache. 232 * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core. 233 */ 234 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 235 { 236 #ifndef CONFIG_MIPS_MT_SMTC 237 smp_call_function(func, info, 1); 238 #endif 239 } 240 241 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 242 { 243 preempt_disable(); 244 245 smp_on_other_tlbs(func, info); 246 func(info); 247 248 preempt_enable(); 249 } 250 251 /* 252 * The following tlb flush calls are invoked when old translations are 253 * being torn down, or pte attributes are changing. For single threaded 254 * address spaces, a new context is obtained on the current cpu, and tlb 255 * context on other cpus are invalidated to force a new context allocation 256 * at switch_mm time, should the mm ever be used on other cpus. For 257 * multithreaded address spaces, intercpu interrupts have to be sent. 258 * Another case where intercpu interrupts are required is when the target 259 * mm might be active on another cpu (eg debuggers doing the flushes on 260 * behalf of debugees, kswapd stealing pages from another process etc). 261 * Kanoj 07/00. 262 */ 263 264 void flush_tlb_mm(struct mm_struct *mm) 265 { 266 preempt_disable(); 267 268 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 269 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 270 } else { 271 unsigned int cpu; 272 273 for_each_online_cpu(cpu) { 274 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 275 cpu_context(cpu, mm) = 0; 276 } 277 } 278 local_flush_tlb_mm(mm); 279 280 preempt_enable(); 281 } 282 283 struct flush_tlb_data { 284 struct vm_area_struct *vma; 285 unsigned long addr1; 286 unsigned long addr2; 287 }; 288 289 static void flush_tlb_range_ipi(void *info) 290 { 291 struct flush_tlb_data *fd = info; 292 293 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 294 } 295 296 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 297 { 298 struct mm_struct *mm = vma->vm_mm; 299 300 preempt_disable(); 301 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 302 struct flush_tlb_data fd = { 303 .vma = vma, 304 .addr1 = start, 305 .addr2 = end, 306 }; 307 308 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 309 } else { 310 unsigned int cpu; 311 312 for_each_online_cpu(cpu) { 313 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 314 cpu_context(cpu, mm) = 0; 315 } 316 } 317 local_flush_tlb_range(vma, start, end); 318 preempt_enable(); 319 } 320 321 static void flush_tlb_kernel_range_ipi(void *info) 322 { 323 struct flush_tlb_data *fd = info; 324 325 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 326 } 327 328 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 329 { 330 struct flush_tlb_data fd = { 331 .addr1 = start, 332 .addr2 = end, 333 }; 334 335 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 336 } 337 338 static void flush_tlb_page_ipi(void *info) 339 { 340 struct flush_tlb_data *fd = info; 341 342 local_flush_tlb_page(fd->vma, fd->addr1); 343 } 344 345 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 346 { 347 preempt_disable(); 348 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 349 struct flush_tlb_data fd = { 350 .vma = vma, 351 .addr1 = page, 352 }; 353 354 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 355 } else { 356 unsigned int cpu; 357 358 for_each_online_cpu(cpu) { 359 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 360 cpu_context(cpu, vma->vm_mm) = 0; 361 } 362 } 363 local_flush_tlb_page(vma, page); 364 preempt_enable(); 365 } 366 367 static void flush_tlb_one_ipi(void *info) 368 { 369 unsigned long vaddr = (unsigned long) info; 370 371 local_flush_tlb_one(vaddr); 372 } 373 374 void flush_tlb_one(unsigned long vaddr) 375 { 376 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 377 } 378 379 EXPORT_SYMBOL(flush_tlb_page); 380 EXPORT_SYMBOL(flush_tlb_one); 381