1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/module.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 #include <linux/ftrace.h> 36 #include <linux/irqdomain.h> 37 #include <linux/of.h> 38 #include <linux/of_irq.h> 39 40 #include <linux/atomic.h> 41 #include <asm/cpu.h> 42 #include <asm/processor.h> 43 #include <asm/idle.h> 44 #include <asm/r4k-timer.h> 45 #include <asm/mips-cpc.h> 46 #include <asm/mmu_context.h> 47 #include <asm/time.h> 48 #include <asm/setup.h> 49 #include <asm/maar.h> 50 51 cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 52 53 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 54 EXPORT_SYMBOL(__cpu_number_map); 55 56 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 57 EXPORT_SYMBOL(__cpu_logical_map); 58 59 /* Number of TCs (or siblings in Intel speak) per CPU core */ 60 int smp_num_siblings = 1; 61 EXPORT_SYMBOL(smp_num_siblings); 62 63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 65 EXPORT_SYMBOL(cpu_sibling_map); 66 67 /* representing the core map of multi-core chips of each logical CPU */ 68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 69 EXPORT_SYMBOL(cpu_core_map); 70 71 /* 72 * A logcal cpu mask containing only one VPE per core to 73 * reduce the number of IPIs on large MT systems. 74 */ 75 cpumask_t cpu_foreign_map __read_mostly; 76 EXPORT_SYMBOL(cpu_foreign_map); 77 78 /* representing cpus for which sibling maps can be computed */ 79 static cpumask_t cpu_sibling_setup_map; 80 81 /* representing cpus for which core maps can be computed */ 82 static cpumask_t cpu_core_setup_map; 83 84 cpumask_t cpu_coherent_mask; 85 86 #ifdef CONFIG_GENERIC_IRQ_IPI 87 static struct irq_desc *call_desc; 88 static struct irq_desc *sched_desc; 89 #endif 90 91 static inline void set_cpu_sibling_map(int cpu) 92 { 93 int i; 94 95 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 96 97 if (smp_num_siblings > 1) { 98 for_each_cpu(i, &cpu_sibling_setup_map) { 99 if (cpu_data[cpu].package == cpu_data[i].package && 100 cpu_data[cpu].core == cpu_data[i].core) { 101 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 102 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 103 } 104 } 105 } else 106 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 107 } 108 109 static inline void set_cpu_core_map(int cpu) 110 { 111 int i; 112 113 cpumask_set_cpu(cpu, &cpu_core_setup_map); 114 115 for_each_cpu(i, &cpu_core_setup_map) { 116 if (cpu_data[cpu].package == cpu_data[i].package) { 117 cpumask_set_cpu(i, &cpu_core_map[cpu]); 118 cpumask_set_cpu(cpu, &cpu_core_map[i]); 119 } 120 } 121 } 122 123 /* 124 * Calculate a new cpu_foreign_map mask whenever a 125 * new cpu appears or disappears. 126 */ 127 static inline void calculate_cpu_foreign_map(void) 128 { 129 int i, k, core_present; 130 cpumask_t temp_foreign_map; 131 132 /* Re-calculate the mask */ 133 cpumask_clear(&temp_foreign_map); 134 for_each_online_cpu(i) { 135 core_present = 0; 136 for_each_cpu(k, &temp_foreign_map) 137 if (cpu_data[i].package == cpu_data[k].package && 138 cpu_data[i].core == cpu_data[k].core) 139 core_present = 1; 140 if (!core_present) 141 cpumask_set_cpu(i, &temp_foreign_map); 142 } 143 144 cpumask_copy(&cpu_foreign_map, &temp_foreign_map); 145 } 146 147 struct plat_smp_ops *mp_ops; 148 EXPORT_SYMBOL(mp_ops); 149 150 void register_smp_ops(struct plat_smp_ops *ops) 151 { 152 if (mp_ops) 153 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 154 155 mp_ops = ops; 156 } 157 158 #ifdef CONFIG_GENERIC_IRQ_IPI 159 void mips_smp_send_ipi_single(int cpu, unsigned int action) 160 { 161 mips_smp_send_ipi_mask(cpumask_of(cpu), action); 162 } 163 164 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) 165 { 166 unsigned long flags; 167 unsigned int core; 168 int cpu; 169 170 local_irq_save(flags); 171 172 switch (action) { 173 case SMP_CALL_FUNCTION: 174 __ipi_send_mask(call_desc, mask); 175 break; 176 177 case SMP_RESCHEDULE_YOURSELF: 178 __ipi_send_mask(sched_desc, mask); 179 break; 180 181 default: 182 BUG(); 183 } 184 185 if (mips_cpc_present()) { 186 for_each_cpu(cpu, mask) { 187 core = cpu_data[cpu].core; 188 189 if (core == current_cpu_data.core) 190 continue; 191 192 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { 193 mips_cpc_lock_other(core); 194 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); 195 mips_cpc_unlock_other(); 196 } 197 } 198 } 199 200 local_irq_restore(flags); 201 } 202 203 204 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) 205 { 206 scheduler_ipi(); 207 208 return IRQ_HANDLED; 209 } 210 211 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) 212 { 213 generic_smp_call_function_interrupt(); 214 215 return IRQ_HANDLED; 216 } 217 218 static struct irqaction irq_resched = { 219 .handler = ipi_resched_interrupt, 220 .flags = IRQF_PERCPU, 221 .name = "IPI resched" 222 }; 223 224 static struct irqaction irq_call = { 225 .handler = ipi_call_interrupt, 226 .flags = IRQF_PERCPU, 227 .name = "IPI call" 228 }; 229 230 static __init void smp_ipi_init_one(unsigned int virq, 231 struct irqaction *action) 232 { 233 int ret; 234 235 irq_set_handler(virq, handle_percpu_irq); 236 ret = setup_irq(virq, action); 237 BUG_ON(ret); 238 } 239 240 static int __init mips_smp_ipi_init(void) 241 { 242 unsigned int call_virq, sched_virq; 243 struct irq_domain *ipidomain; 244 struct device_node *node; 245 246 /* 247 * In some cases like qemu-malta, it is desired to try SMP with 248 * a single core. Qemu-malta has no GIC, so an attempt to set any IPIs 249 * would cause a BUG_ON() to be triggered since there's no ipidomain. 250 * 251 * Since for a single core system IPIs aren't required really, skip the 252 * initialisation which should generally keep any such configurations 253 * happy and only fail hard when trying to truely run SMP. 254 */ 255 if (cpumask_weight(cpu_possible_mask) == 1) 256 return 0; 257 258 node = of_irq_find_parent(of_root); 259 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 260 261 /* 262 * Some platforms have half DT setup. So if we found irq node but 263 * didn't find an ipidomain, try to search for one that is not in the 264 * DT. 265 */ 266 if (node && !ipidomain) 267 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 268 269 BUG_ON(!ipidomain); 270 271 call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask); 272 BUG_ON(!call_virq); 273 274 sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask); 275 BUG_ON(!sched_virq); 276 277 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 278 int cpu; 279 280 for_each_cpu(cpu, cpu_possible_mask) { 281 smp_ipi_init_one(call_virq + cpu, &irq_call); 282 smp_ipi_init_one(sched_virq + cpu, &irq_resched); 283 } 284 } else { 285 smp_ipi_init_one(call_virq, &irq_call); 286 smp_ipi_init_one(sched_virq, &irq_resched); 287 } 288 289 call_desc = irq_to_desc(call_virq); 290 sched_desc = irq_to_desc(sched_virq); 291 292 return 0; 293 } 294 early_initcall(mips_smp_ipi_init); 295 #endif 296 297 /* 298 * First C code run on the secondary CPUs after being started up by 299 * the master. 300 */ 301 asmlinkage void start_secondary(void) 302 { 303 unsigned int cpu; 304 305 cpu_probe(); 306 per_cpu_trap_init(false); 307 mips_clockevent_init(); 308 mp_ops->init_secondary(); 309 cpu_report(); 310 maar_init(); 311 312 /* 313 * XXX parity protection should be folded in here when it's converted 314 * to an option instead of something based on .cputype 315 */ 316 317 calibrate_delay(); 318 preempt_disable(); 319 cpu = smp_processor_id(); 320 cpu_data[cpu].udelay_val = loops_per_jiffy; 321 322 cpumask_set_cpu(cpu, &cpu_coherent_mask); 323 notify_cpu_starting(cpu); 324 325 set_cpu_online(cpu, true); 326 327 set_cpu_sibling_map(cpu); 328 set_cpu_core_map(cpu); 329 330 calculate_cpu_foreign_map(); 331 332 cpumask_set_cpu(cpu, &cpu_callin_map); 333 334 synchronise_count_slave(cpu); 335 336 /* 337 * irq will be enabled in ->smp_finish(), enabling it too early 338 * is dangerous. 339 */ 340 WARN_ON_ONCE(!irqs_disabled()); 341 mp_ops->smp_finish(); 342 343 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 344 } 345 346 static void stop_this_cpu(void *dummy) 347 { 348 /* 349 * Remove this CPU. Be a bit slow here and 350 * set the bits for every online CPU so we don't miss 351 * any IPI whilst taking this VPE down. 352 */ 353 354 cpumask_copy(&cpu_foreign_map, cpu_online_mask); 355 356 /* Make it visible to every other CPU */ 357 smp_mb(); 358 359 set_cpu_online(smp_processor_id(), false); 360 calculate_cpu_foreign_map(); 361 local_irq_disable(); 362 while (1); 363 } 364 365 void smp_send_stop(void) 366 { 367 smp_call_function(stop_this_cpu, NULL, 0); 368 } 369 370 void __init smp_cpus_done(unsigned int max_cpus) 371 { 372 } 373 374 /* called from main before smp_init() */ 375 void __init smp_prepare_cpus(unsigned int max_cpus) 376 { 377 init_new_context(current, &init_mm); 378 current_thread_info()->cpu = 0; 379 mp_ops->prepare_cpus(max_cpus); 380 set_cpu_sibling_map(0); 381 set_cpu_core_map(0); 382 calculate_cpu_foreign_map(); 383 #ifndef CONFIG_HOTPLUG_CPU 384 init_cpu_present(cpu_possible_mask); 385 #endif 386 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 387 } 388 389 /* preload SMP state for boot cpu */ 390 void smp_prepare_boot_cpu(void) 391 { 392 set_cpu_possible(0, true); 393 set_cpu_online(0, true); 394 cpumask_set_cpu(0, &cpu_callin_map); 395 } 396 397 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 398 { 399 mp_ops->boot_secondary(cpu, tidle); 400 401 /* 402 * Trust is futile. We should really have timeouts ... 403 */ 404 while (!cpumask_test_cpu(cpu, &cpu_callin_map)) { 405 udelay(100); 406 schedule(); 407 } 408 409 synchronise_count_master(cpu); 410 return 0; 411 } 412 413 /* Not really SMP stuff ... */ 414 int setup_profiling_timer(unsigned int multiplier) 415 { 416 return 0; 417 } 418 419 static void flush_tlb_all_ipi(void *info) 420 { 421 local_flush_tlb_all(); 422 } 423 424 void flush_tlb_all(void) 425 { 426 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 427 } 428 429 static void flush_tlb_mm_ipi(void *mm) 430 { 431 local_flush_tlb_mm((struct mm_struct *)mm); 432 } 433 434 /* 435 * Special Variant of smp_call_function for use by TLB functions: 436 * 437 * o No return value 438 * o collapses to normal function call on UP kernels 439 * o collapses to normal function call on systems with a single shared 440 * primary cache. 441 */ 442 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 443 { 444 smp_call_function(func, info, 1); 445 } 446 447 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 448 { 449 preempt_disable(); 450 451 smp_on_other_tlbs(func, info); 452 func(info); 453 454 preempt_enable(); 455 } 456 457 /* 458 * The following tlb flush calls are invoked when old translations are 459 * being torn down, or pte attributes are changing. For single threaded 460 * address spaces, a new context is obtained on the current cpu, and tlb 461 * context on other cpus are invalidated to force a new context allocation 462 * at switch_mm time, should the mm ever be used on other cpus. For 463 * multithreaded address spaces, intercpu interrupts have to be sent. 464 * Another case where intercpu interrupts are required is when the target 465 * mm might be active on another cpu (eg debuggers doing the flushes on 466 * behalf of debugees, kswapd stealing pages from another process etc). 467 * Kanoj 07/00. 468 */ 469 470 void flush_tlb_mm(struct mm_struct *mm) 471 { 472 preempt_disable(); 473 474 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 475 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 476 } else { 477 unsigned int cpu; 478 479 for_each_online_cpu(cpu) { 480 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 481 cpu_context(cpu, mm) = 0; 482 } 483 } 484 local_flush_tlb_mm(mm); 485 486 preempt_enable(); 487 } 488 489 struct flush_tlb_data { 490 struct vm_area_struct *vma; 491 unsigned long addr1; 492 unsigned long addr2; 493 }; 494 495 static void flush_tlb_range_ipi(void *info) 496 { 497 struct flush_tlb_data *fd = info; 498 499 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 500 } 501 502 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 503 { 504 struct mm_struct *mm = vma->vm_mm; 505 506 preempt_disable(); 507 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 508 struct flush_tlb_data fd = { 509 .vma = vma, 510 .addr1 = start, 511 .addr2 = end, 512 }; 513 514 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 515 } else { 516 unsigned int cpu; 517 518 for_each_online_cpu(cpu) { 519 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 520 cpu_context(cpu, mm) = 0; 521 } 522 } 523 local_flush_tlb_range(vma, start, end); 524 preempt_enable(); 525 } 526 527 static void flush_tlb_kernel_range_ipi(void *info) 528 { 529 struct flush_tlb_data *fd = info; 530 531 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 532 } 533 534 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 535 { 536 struct flush_tlb_data fd = { 537 .addr1 = start, 538 .addr2 = end, 539 }; 540 541 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 542 } 543 544 static void flush_tlb_page_ipi(void *info) 545 { 546 struct flush_tlb_data *fd = info; 547 548 local_flush_tlb_page(fd->vma, fd->addr1); 549 } 550 551 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 552 { 553 preempt_disable(); 554 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 555 struct flush_tlb_data fd = { 556 .vma = vma, 557 .addr1 = page, 558 }; 559 560 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 561 } else { 562 unsigned int cpu; 563 564 for_each_online_cpu(cpu) { 565 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 566 cpu_context(cpu, vma->vm_mm) = 0; 567 } 568 } 569 local_flush_tlb_page(vma, page); 570 preempt_enable(); 571 } 572 573 static void flush_tlb_one_ipi(void *info) 574 { 575 unsigned long vaddr = (unsigned long) info; 576 577 local_flush_tlb_one(vaddr); 578 } 579 580 void flush_tlb_one(unsigned long vaddr) 581 { 582 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 583 } 584 585 EXPORT_SYMBOL(flush_tlb_page); 586 EXPORT_SYMBOL(flush_tlb_one); 587 588 #if defined(CONFIG_KEXEC) 589 void (*dump_ipi_function_ptr)(void *) = NULL; 590 void dump_send_ipi(void (*dump_ipi_callback)(void *)) 591 { 592 int i; 593 int cpu = smp_processor_id(); 594 595 dump_ipi_function_ptr = dump_ipi_callback; 596 smp_mb(); 597 for_each_online_cpu(i) 598 if (i != cpu) 599 mp_ops->send_ipi_single(i, SMP_DUMP); 600 601 } 602 EXPORT_SYMBOL(dump_send_ipi); 603 #endif 604 605 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 606 607 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); 608 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd); 609 610 void tick_broadcast(const struct cpumask *mask) 611 { 612 atomic_t *count; 613 struct call_single_data *csd; 614 int cpu; 615 616 for_each_cpu(cpu, mask) { 617 count = &per_cpu(tick_broadcast_count, cpu); 618 csd = &per_cpu(tick_broadcast_csd, cpu); 619 620 if (atomic_inc_return(count) == 1) 621 smp_call_function_single_async(cpu, csd); 622 } 623 } 624 625 static void tick_broadcast_callee(void *info) 626 { 627 int cpu = smp_processor_id(); 628 tick_receive_broadcast(); 629 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); 630 } 631 632 static int __init tick_broadcast_init(void) 633 { 634 struct call_single_data *csd; 635 int cpu; 636 637 for (cpu = 0; cpu < NR_CPUS; cpu++) { 638 csd = &per_cpu(tick_broadcast_csd, cpu); 639 csd->func = tick_broadcast_callee; 640 } 641 642 return 0; 643 } 644 early_initcall(tick_broadcast_init); 645 646 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 647