1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Copyright (C) 2000, 2001 Kanoj Sarcar 5 * Copyright (C) 2000, 2001 Ralf Baechle 6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 8 */ 9 #include <linux/cache.h> 10 #include <linux/delay.h> 11 #include <linux/init.h> 12 #include <linux/interrupt.h> 13 #include <linux/profile.h> 14 #include <linux/smp.h> 15 #include <linux/spinlock.h> 16 #include <linux/threads.h> 17 #include <linux/export.h> 18 #include <linux/time.h> 19 #include <linux/timex.h> 20 #include <linux/sched/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/cpu.h> 23 #include <linux/err.h> 24 #include <linux/ftrace.h> 25 #include <linux/irqdomain.h> 26 #include <linux/of.h> 27 #include <linux/of_irq.h> 28 29 #include <linux/atomic.h> 30 #include <asm/cpu.h> 31 #include <asm/ginvt.h> 32 #include <asm/processor.h> 33 #include <asm/idle.h> 34 #include <asm/r4k-timer.h> 35 #include <asm/mips-cps.h> 36 #include <asm/mmu_context.h> 37 #include <asm/time.h> 38 #include <asm/setup.h> 39 #include <asm/maar.h> 40 41 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */ 42 EXPORT_SYMBOL(__cpu_number_map); 43 44 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 45 EXPORT_SYMBOL(__cpu_logical_map); 46 47 /* Number of TCs (or siblings in Intel speak) per CPU core */ 48 int smp_num_siblings = 1; 49 EXPORT_SYMBOL(smp_num_siblings); 50 51 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 52 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 53 EXPORT_SYMBOL(cpu_sibling_map); 54 55 /* representing the core map of multi-core chips of each logical CPU */ 56 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 57 EXPORT_SYMBOL(cpu_core_map); 58 59 #ifndef CONFIG_HOTPLUG_PARALLEL 60 static DECLARE_COMPLETION(cpu_starting); 61 static DECLARE_COMPLETION(cpu_running); 62 #endif 63 64 /* 65 * A logical cpu mask containing only one VPE per core to 66 * reduce the number of IPIs on large MT systems. 67 */ 68 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 69 EXPORT_SYMBOL(cpu_foreign_map); 70 71 /* representing cpus for which sibling maps can be computed */ 72 static cpumask_t cpu_sibling_setup_map; 73 74 /* representing cpus for which core maps can be computed */ 75 static cpumask_t cpu_core_setup_map; 76 77 cpumask_t cpu_coherent_mask; 78 79 struct cpumask __cpu_primary_thread_mask __read_mostly; 80 81 unsigned int smp_max_threads __initdata = UINT_MAX; 82 83 static int __init early_nosmt(char *s) 84 { 85 smp_max_threads = 1; 86 return 0; 87 } 88 early_param("nosmt", early_nosmt); 89 90 static int __init early_smt(char *s) 91 { 92 get_option(&s, &smp_max_threads); 93 /* Ensure at least one thread is available */ 94 smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX); 95 return 0; 96 } 97 early_param("smt", early_smt); 98 99 #ifdef CONFIG_GENERIC_IRQ_IPI 100 static struct irq_desc *call_desc; 101 static struct irq_desc *sched_desc; 102 #endif 103 104 static inline void set_cpu_sibling_map(int cpu) 105 { 106 int i; 107 108 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 109 110 if (smp_num_siblings > 1) { 111 for_each_cpu(i, &cpu_sibling_setup_map) { 112 if (cpus_are_siblings(cpu, i)) { 113 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 114 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 115 } 116 } 117 } else 118 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 119 } 120 121 static inline void set_cpu_core_map(int cpu) 122 { 123 int i; 124 125 cpumask_set_cpu(cpu, &cpu_core_setup_map); 126 127 for_each_cpu(i, &cpu_core_setup_map) { 128 if (cpu_data[cpu].package == cpu_data[i].package) { 129 cpumask_set_cpu(i, &cpu_core_map[cpu]); 130 cpumask_set_cpu(cpu, &cpu_core_map[i]); 131 } 132 } 133 } 134 135 /* 136 * Calculate a new cpu_foreign_map mask whenever a 137 * new cpu appears or disappears. 138 */ 139 void calculate_cpu_foreign_map(void) 140 { 141 int i, k, core_present; 142 cpumask_t temp_foreign_map; 143 144 /* Re-calculate the mask */ 145 cpumask_clear(&temp_foreign_map); 146 for_each_online_cpu(i) { 147 core_present = 0; 148 for_each_cpu(k, &temp_foreign_map) 149 if (cpus_are_siblings(i, k)) 150 core_present = 1; 151 if (!core_present) 152 cpumask_set_cpu(i, &temp_foreign_map); 153 } 154 155 for_each_online_cpu(i) 156 cpumask_andnot(&cpu_foreign_map[i], 157 &temp_foreign_map, &cpu_sibling_map[i]); 158 } 159 160 const struct plat_smp_ops *mp_ops; 161 EXPORT_SYMBOL(mp_ops); 162 163 void register_smp_ops(const struct plat_smp_ops *ops) 164 { 165 if (mp_ops) 166 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 167 168 mp_ops = ops; 169 } 170 171 #ifdef CONFIG_GENERIC_IRQ_IPI 172 void mips_smp_send_ipi_single(int cpu, unsigned int action) 173 { 174 mips_smp_send_ipi_mask(cpumask_of(cpu), action); 175 } 176 177 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) 178 { 179 unsigned long flags; 180 unsigned int core; 181 int cpu; 182 183 local_irq_save(flags); 184 185 switch (action) { 186 case SMP_CALL_FUNCTION: 187 __ipi_send_mask(call_desc, mask); 188 break; 189 190 case SMP_RESCHEDULE_YOURSELF: 191 __ipi_send_mask(sched_desc, mask); 192 break; 193 194 default: 195 BUG(); 196 } 197 198 if (mips_cpc_present()) { 199 for_each_cpu(cpu, mask) { 200 if (cpus_are_siblings(cpu, smp_processor_id())) 201 continue; 202 203 core = cpu_core(&cpu_data[cpu]); 204 205 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { 206 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL); 207 mips_cpc_lock_other(core); 208 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); 209 mips_cpc_unlock_other(); 210 mips_cm_unlock_other(); 211 } 212 } 213 } 214 215 local_irq_restore(flags); 216 } 217 218 219 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) 220 { 221 scheduler_ipi(); 222 223 return IRQ_HANDLED; 224 } 225 226 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) 227 { 228 generic_smp_call_function_interrupt(); 229 230 return IRQ_HANDLED; 231 } 232 233 static void smp_ipi_init_one(unsigned int virq, const char *name, 234 irq_handler_t handler) 235 { 236 int ret; 237 238 irq_set_handler(virq, handle_percpu_irq); 239 ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL); 240 BUG_ON(ret); 241 } 242 243 static unsigned int call_virq, sched_virq; 244 245 int mips_smp_ipi_allocate(const struct cpumask *mask) 246 { 247 int virq; 248 struct irq_domain *ipidomain; 249 struct device_node *node; 250 251 node = of_irq_find_parent(of_root); 252 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 253 254 /* 255 * Some platforms have half DT setup. So if we found irq node but 256 * didn't find an ipidomain, try to search for one that is not in the 257 * DT. 258 */ 259 if (node && !ipidomain) 260 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 261 262 /* 263 * There are systems which use IPI IRQ domains, but only have one 264 * registered when some runtime condition is met. For example a Malta 265 * kernel may include support for GIC & CPU interrupt controller IPI 266 * IRQ domains, but if run on a system with no GIC & no MT ASE then 267 * neither will be supported or registered. 268 * 269 * We only have a problem if we're actually using multiple CPUs so fail 270 * loudly if that is the case. Otherwise simply return, skipping IPI 271 * setup, if we're running with only a single CPU. 272 */ 273 if (!ipidomain) { 274 BUG_ON(num_present_cpus() > 1); 275 return 0; 276 } 277 278 virq = irq_reserve_ipi(ipidomain, mask); 279 BUG_ON(!virq); 280 if (!call_virq) 281 call_virq = virq; 282 283 virq = irq_reserve_ipi(ipidomain, mask); 284 BUG_ON(!virq); 285 if (!sched_virq) 286 sched_virq = virq; 287 288 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 289 int cpu; 290 291 for_each_cpu(cpu, mask) { 292 smp_ipi_init_one(call_virq + cpu, "IPI call", 293 ipi_call_interrupt); 294 smp_ipi_init_one(sched_virq + cpu, "IPI resched", 295 ipi_resched_interrupt); 296 } 297 } else { 298 smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt); 299 smp_ipi_init_one(sched_virq, "IPI resched", 300 ipi_resched_interrupt); 301 } 302 303 return 0; 304 } 305 306 int mips_smp_ipi_free(const struct cpumask *mask) 307 { 308 struct irq_domain *ipidomain; 309 struct device_node *node; 310 311 node = of_irq_find_parent(of_root); 312 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 313 314 /* 315 * Some platforms have half DT setup. So if we found irq node but 316 * didn't find an ipidomain, try to search for one that is not in the 317 * DT. 318 */ 319 if (node && !ipidomain) 320 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 321 322 BUG_ON(!ipidomain); 323 324 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 325 int cpu; 326 327 for_each_cpu(cpu, mask) { 328 free_irq(call_virq + cpu, NULL); 329 free_irq(sched_virq + cpu, NULL); 330 } 331 } 332 irq_destroy_ipi(call_virq, mask); 333 irq_destroy_ipi(sched_virq, mask); 334 return 0; 335 } 336 337 338 static int __init mips_smp_ipi_init(void) 339 { 340 if (num_possible_cpus() == 1) 341 return 0; 342 343 mips_smp_ipi_allocate(cpu_possible_mask); 344 345 call_desc = irq_to_desc(call_virq); 346 sched_desc = irq_to_desc(sched_virq); 347 348 return 0; 349 } 350 early_initcall(mips_smp_ipi_init); 351 #endif 352 353 /* 354 * First C code run on the secondary CPUs after being started up by 355 * the master. 356 */ 357 asmlinkage void start_secondary(void) 358 { 359 unsigned int cpu = raw_smp_processor_id(); 360 361 cpu_probe(); 362 per_cpu_trap_init(false); 363 rcutree_report_cpu_starting(cpu); 364 mips_clockevent_init(); 365 mp_ops->init_secondary(); 366 cpu_report(); 367 maar_init(); 368 369 /* 370 * XXX parity protection should be folded in here when it's converted 371 * to an option instead of something based on .cputype 372 */ 373 374 #ifdef CONFIG_HOTPLUG_PARALLEL 375 cpuhp_ap_sync_alive(); 376 #endif 377 calibrate_delay(); 378 cpu_data[cpu].udelay_val = loops_per_jiffy; 379 380 set_cpu_sibling_map(cpu); 381 set_cpu_core_map(cpu); 382 383 cpumask_set_cpu(cpu, &cpu_coherent_mask); 384 notify_cpu_starting(cpu); 385 386 #ifndef CONFIG_HOTPLUG_PARALLEL 387 /* Notify boot CPU that we're starting & ready to sync counters */ 388 complete(&cpu_starting); 389 #endif 390 391 synchronise_count_slave(cpu); 392 393 /* The CPU is running and counters synchronised, now mark it online */ 394 set_cpu_online(cpu, true); 395 396 calculate_cpu_foreign_map(); 397 398 #ifndef CONFIG_HOTPLUG_PARALLEL 399 /* 400 * Notify boot CPU that we're up & online and it can safely return 401 * from __cpu_up 402 */ 403 complete(&cpu_running); 404 #endif 405 406 /* 407 * irq will be enabled in ->smp_finish(), enabling it too early 408 * is dangerous. 409 */ 410 WARN_ON_ONCE(!irqs_disabled()); 411 mp_ops->smp_finish(); 412 413 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 414 } 415 416 static void stop_this_cpu(void *dummy) 417 { 418 /* 419 * Remove this CPU: 420 */ 421 422 set_cpu_online(smp_processor_id(), false); 423 calculate_cpu_foreign_map(); 424 local_irq_disable(); 425 while (1); 426 } 427 428 void smp_send_stop(void) 429 { 430 smp_call_function(stop_this_cpu, NULL, 0); 431 } 432 433 void __init smp_cpus_done(unsigned int max_cpus) 434 { 435 } 436 437 /* called from main before smp_init() */ 438 void __init smp_prepare_cpus(unsigned int max_cpus) 439 { 440 init_new_context(current, &init_mm); 441 current_thread_info()->cpu = 0; 442 mp_ops->prepare_cpus(max_cpus); 443 set_cpu_sibling_map(0); 444 set_cpu_core_map(0); 445 calculate_cpu_foreign_map(); 446 #ifndef CONFIG_HOTPLUG_CPU 447 init_cpu_present(cpu_possible_mask); 448 #endif 449 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 450 } 451 452 /* preload SMP state for boot cpu */ 453 void __init smp_prepare_boot_cpu(void) 454 { 455 if (mp_ops->prepare_boot_cpu) 456 mp_ops->prepare_boot_cpu(); 457 set_cpu_possible(0, true); 458 set_cpu_online(0, true); 459 } 460 461 #ifdef CONFIG_HOTPLUG_PARALLEL 462 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle) 463 { 464 return mp_ops->boot_secondary(cpu, tidle); 465 } 466 #else 467 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 468 { 469 int err; 470 471 err = mp_ops->boot_secondary(cpu, tidle); 472 if (err) 473 return err; 474 475 /* Wait for CPU to start and be ready to sync counters */ 476 if (!wait_for_completion_timeout(&cpu_starting, 477 msecs_to_jiffies(1000))) { 478 pr_crit("CPU%u: failed to start\n", cpu); 479 return -EIO; 480 } 481 482 /* Wait for CPU to finish startup & mark itself online before return */ 483 wait_for_completion(&cpu_running); 484 return 0; 485 } 486 #endif 487 488 #ifdef CONFIG_PROFILING 489 /* Not really SMP stuff ... */ 490 int setup_profiling_timer(unsigned int multiplier) 491 { 492 return 0; 493 } 494 #endif 495 496 static void flush_tlb_all_ipi(void *info) 497 { 498 local_flush_tlb_all(); 499 } 500 501 void flush_tlb_all(void) 502 { 503 if (cpu_has_mmid) { 504 htw_stop(); 505 ginvt_full(); 506 sync_ginv(); 507 instruction_hazard(); 508 htw_start(); 509 return; 510 } 511 512 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 513 } 514 515 static void flush_tlb_mm_ipi(void *mm) 516 { 517 drop_mmu_context((struct mm_struct *)mm); 518 } 519 520 /* 521 * Special Variant of smp_call_function for use by TLB functions: 522 * 523 * o No return value 524 * o collapses to normal function call on UP kernels 525 * o collapses to normal function call on systems with a single shared 526 * primary cache. 527 */ 528 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 529 { 530 smp_call_function(func, info, 1); 531 } 532 533 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 534 { 535 preempt_disable(); 536 537 smp_on_other_tlbs(func, info); 538 func(info); 539 540 preempt_enable(); 541 } 542 543 /* 544 * The following tlb flush calls are invoked when old translations are 545 * being torn down, or pte attributes are changing. For single threaded 546 * address spaces, a new context is obtained on the current cpu, and tlb 547 * context on other cpus are invalidated to force a new context allocation 548 * at switch_mm time, should the mm ever be used on other cpus. For 549 * multithreaded address spaces, inter-CPU interrupts have to be sent. 550 * Another case where inter-CPU interrupts are required is when the target 551 * mm might be active on another cpu (eg debuggers doing the flushes on 552 * behalf of debugees, kswapd stealing pages from another process etc). 553 * Kanoj 07/00. 554 */ 555 556 void flush_tlb_mm(struct mm_struct *mm) 557 { 558 if (!mm) 559 return; 560 561 if (atomic_read(&mm->mm_users) == 0) 562 return; /* happens as a result of exit_mmap() */ 563 564 preempt_disable(); 565 566 if (cpu_has_mmid) { 567 /* 568 * No need to worry about other CPUs - the ginvt in 569 * drop_mmu_context() will be globalized. 570 */ 571 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 572 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 573 } else { 574 unsigned int cpu; 575 576 for_each_online_cpu(cpu) { 577 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 578 set_cpu_context(cpu, mm, 0); 579 } 580 } 581 drop_mmu_context(mm); 582 583 preempt_enable(); 584 } 585 586 struct flush_tlb_data { 587 struct vm_area_struct *vma; 588 unsigned long addr1; 589 unsigned long addr2; 590 }; 591 592 static void flush_tlb_range_ipi(void *info) 593 { 594 struct flush_tlb_data *fd = info; 595 596 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 597 } 598 599 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 600 { 601 struct mm_struct *mm = vma->vm_mm; 602 unsigned long addr; 603 u32 old_mmid; 604 605 preempt_disable(); 606 if (cpu_has_mmid) { 607 htw_stop(); 608 old_mmid = read_c0_memorymapid(); 609 write_c0_memorymapid(cpu_asid(0, mm)); 610 mtc0_tlbw_hazard(); 611 addr = round_down(start, PAGE_SIZE * 2); 612 end = round_up(end, PAGE_SIZE * 2); 613 do { 614 ginvt_va_mmid(addr); 615 sync_ginv(); 616 addr += PAGE_SIZE * 2; 617 } while (addr < end); 618 write_c0_memorymapid(old_mmid); 619 instruction_hazard(); 620 htw_start(); 621 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 622 struct flush_tlb_data fd = { 623 .vma = vma, 624 .addr1 = start, 625 .addr2 = end, 626 }; 627 628 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 629 local_flush_tlb_range(vma, start, end); 630 } else { 631 unsigned int cpu; 632 int exec = vma->vm_flags & VM_EXEC; 633 634 for_each_online_cpu(cpu) { 635 /* 636 * flush_cache_range() will only fully flush icache if 637 * the VMA is executable, otherwise we must invalidate 638 * ASID without it appearing to has_valid_asid() as if 639 * mm has been completely unused by that CPU. 640 */ 641 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 642 set_cpu_context(cpu, mm, !exec); 643 } 644 local_flush_tlb_range(vma, start, end); 645 } 646 preempt_enable(); 647 } 648 649 static void flush_tlb_kernel_range_ipi(void *info) 650 { 651 struct flush_tlb_data *fd = info; 652 653 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 654 } 655 656 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 657 { 658 struct flush_tlb_data fd = { 659 .addr1 = start, 660 .addr2 = end, 661 }; 662 663 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 664 } 665 666 static void flush_tlb_page_ipi(void *info) 667 { 668 struct flush_tlb_data *fd = info; 669 670 local_flush_tlb_page(fd->vma, fd->addr1); 671 } 672 673 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 674 { 675 u32 old_mmid; 676 677 preempt_disable(); 678 if (cpu_has_mmid) { 679 htw_stop(); 680 old_mmid = read_c0_memorymapid(); 681 write_c0_memorymapid(cpu_asid(0, vma->vm_mm)); 682 mtc0_tlbw_hazard(); 683 ginvt_va_mmid(page); 684 sync_ginv(); 685 write_c0_memorymapid(old_mmid); 686 instruction_hazard(); 687 htw_start(); 688 } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) || 689 (current->mm != vma->vm_mm)) { 690 struct flush_tlb_data fd = { 691 .vma = vma, 692 .addr1 = page, 693 }; 694 695 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 696 local_flush_tlb_page(vma, page); 697 } else { 698 unsigned int cpu; 699 700 for_each_online_cpu(cpu) { 701 /* 702 * flush_cache_page() only does partial flushes, so 703 * invalidate ASID without it appearing to 704 * has_valid_asid() as if mm has been completely unused 705 * by that CPU. 706 */ 707 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 708 set_cpu_context(cpu, vma->vm_mm, 1); 709 } 710 local_flush_tlb_page(vma, page); 711 } 712 preempt_enable(); 713 } 714 715 static void flush_tlb_one_ipi(void *info) 716 { 717 unsigned long vaddr = (unsigned long) info; 718 719 local_flush_tlb_one(vaddr); 720 } 721 722 void flush_tlb_one(unsigned long vaddr) 723 { 724 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 725 } 726 727 EXPORT_SYMBOL(flush_tlb_page); 728 EXPORT_SYMBOL(flush_tlb_one); 729 730 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 731 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 732 { 733 if (mp_ops->cleanup_dead_cpu) 734 mp_ops->cleanup_dead_cpu(cpu); 735 } 736 #endif 737 738 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 739 740 static void tick_broadcast_callee(void *info) 741 { 742 tick_receive_broadcast(); 743 } 744 745 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) = 746 CSD_INIT(tick_broadcast_callee, NULL); 747 748 void tick_broadcast(const struct cpumask *mask) 749 { 750 call_single_data_t *csd; 751 int cpu; 752 753 for_each_cpu(cpu, mask) { 754 csd = &per_cpu(tick_broadcast_csd, cpu); 755 smp_call_function_single_async(cpu, csd); 756 } 757 } 758 759 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 760