xref: /linux/arch/mips/kernel/smp.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39 
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50 
51 cpumask_t cpu_callin_map;		/* Bitmask of started secondaries */
52 
53 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
54 EXPORT_SYMBOL(__cpu_number_map);
55 
56 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
57 EXPORT_SYMBOL(__cpu_logical_map);
58 
59 /* Number of TCs (or siblings in Intel speak) per CPU core */
60 int smp_num_siblings = 1;
61 EXPORT_SYMBOL(smp_num_siblings);
62 
63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
65 EXPORT_SYMBOL(cpu_sibling_map);
66 
67 /* representing the core map of multi-core chips of each logical CPU */
68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
69 EXPORT_SYMBOL(cpu_core_map);
70 
71 /*
72  * A logcal cpu mask containing only one VPE per core to
73  * reduce the number of IPIs on large MT systems.
74  */
75 cpumask_t cpu_foreign_map __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77 
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80 
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83 
84 cpumask_t cpu_coherent_mask;
85 
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90 
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93 	int i;
94 
95 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96 
97 	if (smp_num_siblings > 1) {
98 		for_each_cpu(i, &cpu_sibling_setup_map) {
99 			if (cpu_data[cpu].package == cpu_data[i].package &&
100 				    cpu_data[cpu].core == cpu_data[i].core) {
101 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103 			}
104 		}
105 	} else
106 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108 
109 static inline void set_cpu_core_map(int cpu)
110 {
111 	int i;
112 
113 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
114 
115 	for_each_cpu(i, &cpu_core_setup_map) {
116 		if (cpu_data[cpu].package == cpu_data[i].package) {
117 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
118 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
119 		}
120 	}
121 }
122 
123 /*
124  * Calculate a new cpu_foreign_map mask whenever a
125  * new cpu appears or disappears.
126  */
127 static inline void calculate_cpu_foreign_map(void)
128 {
129 	int i, k, core_present;
130 	cpumask_t temp_foreign_map;
131 
132 	/* Re-calculate the mask */
133 	cpumask_clear(&temp_foreign_map);
134 	for_each_online_cpu(i) {
135 		core_present = 0;
136 		for_each_cpu(k, &temp_foreign_map)
137 			if (cpu_data[i].package == cpu_data[k].package &&
138 			    cpu_data[i].core == cpu_data[k].core)
139 				core_present = 1;
140 		if (!core_present)
141 			cpumask_set_cpu(i, &temp_foreign_map);
142 	}
143 
144 	cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
145 }
146 
147 struct plat_smp_ops *mp_ops;
148 EXPORT_SYMBOL(mp_ops);
149 
150 void register_smp_ops(struct plat_smp_ops *ops)
151 {
152 	if (mp_ops)
153 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
154 
155 	mp_ops = ops;
156 }
157 
158 #ifdef CONFIG_GENERIC_IRQ_IPI
159 void mips_smp_send_ipi_single(int cpu, unsigned int action)
160 {
161 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
162 }
163 
164 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
165 {
166 	unsigned long flags;
167 	unsigned int core;
168 	int cpu;
169 
170 	local_irq_save(flags);
171 
172 	switch (action) {
173 	case SMP_CALL_FUNCTION:
174 		__ipi_send_mask(call_desc, mask);
175 		break;
176 
177 	case SMP_RESCHEDULE_YOURSELF:
178 		__ipi_send_mask(sched_desc, mask);
179 		break;
180 
181 	default:
182 		BUG();
183 	}
184 
185 	if (mips_cpc_present()) {
186 		for_each_cpu(cpu, mask) {
187 			core = cpu_data[cpu].core;
188 
189 			if (core == current_cpu_data.core)
190 				continue;
191 
192 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
193 				mips_cpc_lock_other(core);
194 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
195 				mips_cpc_unlock_other();
196 			}
197 		}
198 	}
199 
200 	local_irq_restore(flags);
201 }
202 
203 
204 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
205 {
206 	scheduler_ipi();
207 
208 	return IRQ_HANDLED;
209 }
210 
211 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
212 {
213 	generic_smp_call_function_interrupt();
214 
215 	return IRQ_HANDLED;
216 }
217 
218 static struct irqaction irq_resched = {
219 	.handler	= ipi_resched_interrupt,
220 	.flags		= IRQF_PERCPU,
221 	.name		= "IPI resched"
222 };
223 
224 static struct irqaction irq_call = {
225 	.handler	= ipi_call_interrupt,
226 	.flags		= IRQF_PERCPU,
227 	.name		= "IPI call"
228 };
229 
230 static __init void smp_ipi_init_one(unsigned int virq,
231 				    struct irqaction *action)
232 {
233 	int ret;
234 
235 	irq_set_handler(virq, handle_percpu_irq);
236 	ret = setup_irq(virq, action);
237 	BUG_ON(ret);
238 }
239 
240 static int __init mips_smp_ipi_init(void)
241 {
242 	unsigned int call_virq, sched_virq;
243 	struct irq_domain *ipidomain;
244 	struct device_node *node;
245 
246 	node = of_irq_find_parent(of_root);
247 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
248 
249 	/*
250 	 * Some platforms have half DT setup. So if we found irq node but
251 	 * didn't find an ipidomain, try to search for one that is not in the
252 	 * DT.
253 	 */
254 	if (node && !ipidomain)
255 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
256 
257 	/*
258 	 * There are systems which only use IPI domains some of the time,
259 	 * depending upon configuration we don't know until runtime. An
260 	 * example is Malta where we may compile in support for GIC & the
261 	 * MT ASE, but run on a system which has multiple VPEs in a single
262 	 * core and doesn't include a GIC. Until all IPI implementations
263 	 * have been converted to use IPI domains the best we can do here
264 	 * is to return & hope some other code sets up the IPIs.
265 	 */
266 	if (!ipidomain)
267 		return 0;
268 
269 	call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
270 	BUG_ON(!call_virq);
271 
272 	sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
273 	BUG_ON(!sched_virq);
274 
275 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
276 		int cpu;
277 
278 		for_each_cpu(cpu, cpu_possible_mask) {
279 			smp_ipi_init_one(call_virq + cpu, &irq_call);
280 			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
281 		}
282 	} else {
283 		smp_ipi_init_one(call_virq, &irq_call);
284 		smp_ipi_init_one(sched_virq, &irq_resched);
285 	}
286 
287 	call_desc = irq_to_desc(call_virq);
288 	sched_desc = irq_to_desc(sched_virq);
289 
290 	return 0;
291 }
292 early_initcall(mips_smp_ipi_init);
293 #endif
294 
295 /*
296  * First C code run on the secondary CPUs after being started up by
297  * the master.
298  */
299 asmlinkage void start_secondary(void)
300 {
301 	unsigned int cpu;
302 
303 	cpu_probe();
304 	per_cpu_trap_init(false);
305 	mips_clockevent_init();
306 	mp_ops->init_secondary();
307 	cpu_report();
308 	maar_init();
309 
310 	/*
311 	 * XXX parity protection should be folded in here when it's converted
312 	 * to an option instead of something based on .cputype
313 	 */
314 
315 	calibrate_delay();
316 	preempt_disable();
317 	cpu = smp_processor_id();
318 	cpu_data[cpu].udelay_val = loops_per_jiffy;
319 
320 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
321 	notify_cpu_starting(cpu);
322 
323 	set_cpu_online(cpu, true);
324 
325 	set_cpu_sibling_map(cpu);
326 	set_cpu_core_map(cpu);
327 
328 	calculate_cpu_foreign_map();
329 
330 	cpumask_set_cpu(cpu, &cpu_callin_map);
331 
332 	synchronise_count_slave(cpu);
333 
334 	/*
335 	 * irq will be enabled in ->smp_finish(), enabling it too early
336 	 * is dangerous.
337 	 */
338 	WARN_ON_ONCE(!irqs_disabled());
339 	mp_ops->smp_finish();
340 
341 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
342 }
343 
344 static void stop_this_cpu(void *dummy)
345 {
346 	/*
347 	 * Remove this CPU. Be a bit slow here and
348 	 * set the bits for every online CPU so we don't miss
349 	 * any IPI whilst taking this VPE down.
350 	 */
351 
352 	cpumask_copy(&cpu_foreign_map, cpu_online_mask);
353 
354 	/* Make it visible to every other CPU */
355 	smp_mb();
356 
357 	set_cpu_online(smp_processor_id(), false);
358 	calculate_cpu_foreign_map();
359 	local_irq_disable();
360 	while (1);
361 }
362 
363 void smp_send_stop(void)
364 {
365 	smp_call_function(stop_this_cpu, NULL, 0);
366 }
367 
368 void __init smp_cpus_done(unsigned int max_cpus)
369 {
370 }
371 
372 /* called from main before smp_init() */
373 void __init smp_prepare_cpus(unsigned int max_cpus)
374 {
375 	init_new_context(current, &init_mm);
376 	current_thread_info()->cpu = 0;
377 	mp_ops->prepare_cpus(max_cpus);
378 	set_cpu_sibling_map(0);
379 	set_cpu_core_map(0);
380 	calculate_cpu_foreign_map();
381 #ifndef CONFIG_HOTPLUG_CPU
382 	init_cpu_present(cpu_possible_mask);
383 #endif
384 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
385 }
386 
387 /* preload SMP state for boot cpu */
388 void smp_prepare_boot_cpu(void)
389 {
390 	set_cpu_possible(0, true);
391 	set_cpu_online(0, true);
392 	cpumask_set_cpu(0, &cpu_callin_map);
393 }
394 
395 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
396 {
397 	mp_ops->boot_secondary(cpu, tidle);
398 
399 	/*
400 	 * Trust is futile.  We should really have timeouts ...
401 	 */
402 	while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
403 		udelay(100);
404 		schedule();
405 	}
406 
407 	synchronise_count_master(cpu);
408 	return 0;
409 }
410 
411 /* Not really SMP stuff ... */
412 int setup_profiling_timer(unsigned int multiplier)
413 {
414 	return 0;
415 }
416 
417 static void flush_tlb_all_ipi(void *info)
418 {
419 	local_flush_tlb_all();
420 }
421 
422 void flush_tlb_all(void)
423 {
424 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
425 }
426 
427 static void flush_tlb_mm_ipi(void *mm)
428 {
429 	local_flush_tlb_mm((struct mm_struct *)mm);
430 }
431 
432 /*
433  * Special Variant of smp_call_function for use by TLB functions:
434  *
435  *  o No return value
436  *  o collapses to normal function call on UP kernels
437  *  o collapses to normal function call on systems with a single shared
438  *    primary cache.
439  */
440 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
441 {
442 	smp_call_function(func, info, 1);
443 }
444 
445 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
446 {
447 	preempt_disable();
448 
449 	smp_on_other_tlbs(func, info);
450 	func(info);
451 
452 	preempt_enable();
453 }
454 
455 /*
456  * The following tlb flush calls are invoked when old translations are
457  * being torn down, or pte attributes are changing. For single threaded
458  * address spaces, a new context is obtained on the current cpu, and tlb
459  * context on other cpus are invalidated to force a new context allocation
460  * at switch_mm time, should the mm ever be used on other cpus. For
461  * multithreaded address spaces, intercpu interrupts have to be sent.
462  * Another case where intercpu interrupts are required is when the target
463  * mm might be active on another cpu (eg debuggers doing the flushes on
464  * behalf of debugees, kswapd stealing pages from another process etc).
465  * Kanoj 07/00.
466  */
467 
468 void flush_tlb_mm(struct mm_struct *mm)
469 {
470 	preempt_disable();
471 
472 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
473 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
474 	} else {
475 		unsigned int cpu;
476 
477 		for_each_online_cpu(cpu) {
478 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
479 				cpu_context(cpu, mm) = 0;
480 		}
481 	}
482 	local_flush_tlb_mm(mm);
483 
484 	preempt_enable();
485 }
486 
487 struct flush_tlb_data {
488 	struct vm_area_struct *vma;
489 	unsigned long addr1;
490 	unsigned long addr2;
491 };
492 
493 static void flush_tlb_range_ipi(void *info)
494 {
495 	struct flush_tlb_data *fd = info;
496 
497 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
498 }
499 
500 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
501 {
502 	struct mm_struct *mm = vma->vm_mm;
503 
504 	preempt_disable();
505 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
506 		struct flush_tlb_data fd = {
507 			.vma = vma,
508 			.addr1 = start,
509 			.addr2 = end,
510 		};
511 
512 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
513 	} else {
514 		unsigned int cpu;
515 
516 		for_each_online_cpu(cpu) {
517 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
518 				cpu_context(cpu, mm) = 0;
519 		}
520 	}
521 	local_flush_tlb_range(vma, start, end);
522 	preempt_enable();
523 }
524 
525 static void flush_tlb_kernel_range_ipi(void *info)
526 {
527 	struct flush_tlb_data *fd = info;
528 
529 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
530 }
531 
532 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
533 {
534 	struct flush_tlb_data fd = {
535 		.addr1 = start,
536 		.addr2 = end,
537 	};
538 
539 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
540 }
541 
542 static void flush_tlb_page_ipi(void *info)
543 {
544 	struct flush_tlb_data *fd = info;
545 
546 	local_flush_tlb_page(fd->vma, fd->addr1);
547 }
548 
549 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
550 {
551 	preempt_disable();
552 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
553 		struct flush_tlb_data fd = {
554 			.vma = vma,
555 			.addr1 = page,
556 		};
557 
558 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
559 	} else {
560 		unsigned int cpu;
561 
562 		for_each_online_cpu(cpu) {
563 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
564 				cpu_context(cpu, vma->vm_mm) = 0;
565 		}
566 	}
567 	local_flush_tlb_page(vma, page);
568 	preempt_enable();
569 }
570 
571 static void flush_tlb_one_ipi(void *info)
572 {
573 	unsigned long vaddr = (unsigned long) info;
574 
575 	local_flush_tlb_one(vaddr);
576 }
577 
578 void flush_tlb_one(unsigned long vaddr)
579 {
580 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
581 }
582 
583 EXPORT_SYMBOL(flush_tlb_page);
584 EXPORT_SYMBOL(flush_tlb_one);
585 
586 #if defined(CONFIG_KEXEC)
587 void (*dump_ipi_function_ptr)(void *) = NULL;
588 void dump_send_ipi(void (*dump_ipi_callback)(void *))
589 {
590 	int i;
591 	int cpu = smp_processor_id();
592 
593 	dump_ipi_function_ptr = dump_ipi_callback;
594 	smp_mb();
595 	for_each_online_cpu(i)
596 		if (i != cpu)
597 			mp_ops->send_ipi_single(i, SMP_DUMP);
598 
599 }
600 EXPORT_SYMBOL(dump_send_ipi);
601 #endif
602 
603 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
604 
605 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
606 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
607 
608 void tick_broadcast(const struct cpumask *mask)
609 {
610 	atomic_t *count;
611 	struct call_single_data *csd;
612 	int cpu;
613 
614 	for_each_cpu(cpu, mask) {
615 		count = &per_cpu(tick_broadcast_count, cpu);
616 		csd = &per_cpu(tick_broadcast_csd, cpu);
617 
618 		if (atomic_inc_return(count) == 1)
619 			smp_call_function_single_async(cpu, csd);
620 	}
621 }
622 
623 static void tick_broadcast_callee(void *info)
624 {
625 	int cpu = smp_processor_id();
626 	tick_receive_broadcast();
627 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
628 }
629 
630 static int __init tick_broadcast_init(void)
631 {
632 	struct call_single_data *csd;
633 	int cpu;
634 
635 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
636 		csd = &per_cpu(tick_broadcast_csd, cpu);
637 		csd->func = tick_broadcast_callee;
638 	}
639 
640 	return 0;
641 }
642 early_initcall(tick_broadcast_init);
643 
644 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
645