1 /* 2 * Copyright (C) 2013 Imagination Technologies 3 * Author: Paul Burton <paul.burton@imgtec.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 #include <linux/delay.h> 12 #include <linux/io.h> 13 #include <linux/irqchip/mips-gic.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/smp.h> 17 #include <linux/types.h> 18 19 #include <asm/bcache.h> 20 #include <asm/mips-cm.h> 21 #include <asm/mips-cpc.h> 22 #include <asm/mips_mt.h> 23 #include <asm/mipsregs.h> 24 #include <asm/pm-cps.h> 25 #include <asm/r4kcache.h> 26 #include <asm/smp-cps.h> 27 #include <asm/time.h> 28 #include <asm/uasm.h> 29 30 static bool threads_disabled; 31 static DECLARE_BITMAP(core_power, NR_CPUS); 32 33 struct core_boot_config *mips_cps_core_bootcfg; 34 35 static int __init setup_nothreads(char *s) 36 { 37 threads_disabled = true; 38 return 0; 39 } 40 early_param("nothreads", setup_nothreads); 41 42 static unsigned core_vpe_count(unsigned core) 43 { 44 unsigned cfg; 45 46 if (threads_disabled) 47 return 1; 48 49 if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt) 50 && (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp)) 51 return 1; 52 53 mips_cm_lock_other(core, 0); 54 cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK; 55 mips_cm_unlock_other(); 56 return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1; 57 } 58 59 static void __init cps_smp_setup(void) 60 { 61 unsigned int ncores, nvpes, core_vpes; 62 unsigned long core_entry; 63 int c, v; 64 65 /* Detect & record VPE topology */ 66 ncores = mips_cm_numcores(); 67 pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE"); 68 for (c = nvpes = 0; c < ncores; c++) { 69 core_vpes = core_vpe_count(c); 70 pr_cont("%c%u", c ? ',' : '{', core_vpes); 71 72 /* Use the number of VPEs in core 0 for smp_num_siblings */ 73 if (!c) 74 smp_num_siblings = core_vpes; 75 76 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) { 77 cpu_data[nvpes + v].core = c; 78 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6) 79 cpu_data[nvpes + v].vpe_id = v; 80 #endif 81 } 82 83 nvpes += core_vpes; 84 } 85 pr_cont("} total %u\n", nvpes); 86 87 /* Indicate present CPUs (CPU being synonymous with VPE) */ 88 for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) { 89 set_cpu_possible(v, true); 90 set_cpu_present(v, true); 91 __cpu_number_map[v] = v; 92 __cpu_logical_map[v] = v; 93 } 94 95 /* Set a coherent default CCA (CWB) */ 96 change_c0_config(CONF_CM_CMASK, 0x5); 97 98 /* Core 0 is powered up (we're running on it) */ 99 bitmap_set(core_power, 0, 1); 100 101 /* Initialise core 0 */ 102 mips_cps_core_init(); 103 104 /* Make core 0 coherent with everything */ 105 write_gcr_cl_coherence(0xff); 106 107 if (mips_cm_revision() >= CM_REV_CM3) { 108 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry); 109 write_gcr_bev_base(core_entry); 110 } 111 112 #ifdef CONFIG_MIPS_MT_FPAFF 113 /* If we have an FPU, enroll ourselves in the FPU-full mask */ 114 if (cpu_has_fpu) 115 cpumask_set_cpu(0, &mt_fpu_cpumask); 116 #endif /* CONFIG_MIPS_MT_FPAFF */ 117 } 118 119 static void __init cps_prepare_cpus(unsigned int max_cpus) 120 { 121 unsigned ncores, core_vpes, c, cca; 122 bool cca_unsuitable; 123 u32 *entry_code; 124 125 mips_mt_set_cpuoptions(); 126 127 /* Detect whether the CCA is unsuited to multi-core SMP */ 128 cca = read_c0_config() & CONF_CM_CMASK; 129 switch (cca) { 130 case 0x4: /* CWBE */ 131 case 0x5: /* CWB */ 132 /* The CCA is coherent, multi-core is fine */ 133 cca_unsuitable = false; 134 break; 135 136 default: 137 /* CCA is not coherent, multi-core is not usable */ 138 cca_unsuitable = true; 139 } 140 141 /* Warn the user if the CCA prevents multi-core */ 142 ncores = mips_cm_numcores(); 143 if (cca_unsuitable && ncores > 1) { 144 pr_warn("Using only one core due to unsuitable CCA 0x%x\n", 145 cca); 146 147 for_each_present_cpu(c) { 148 if (cpu_data[c].core) 149 set_cpu_present(c, false); 150 } 151 } 152 153 /* 154 * Patch the start of mips_cps_core_entry to provide: 155 * 156 * s0 = kseg0 CCA 157 */ 158 entry_code = (u32 *)&mips_cps_core_entry; 159 uasm_i_addiu(&entry_code, 16, 0, cca); 160 blast_dcache_range((unsigned long)&mips_cps_core_entry, 161 (unsigned long)entry_code); 162 bc_wback_inv((unsigned long)&mips_cps_core_entry, 163 (void *)entry_code - (void *)&mips_cps_core_entry); 164 __sync(); 165 166 /* Allocate core boot configuration structs */ 167 mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg), 168 GFP_KERNEL); 169 if (!mips_cps_core_bootcfg) { 170 pr_err("Failed to allocate boot config for %u cores\n", ncores); 171 goto err_out; 172 } 173 174 /* Allocate VPE boot configuration structs */ 175 for (c = 0; c < ncores; c++) { 176 core_vpes = core_vpe_count(c); 177 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes, 178 sizeof(*mips_cps_core_bootcfg[c].vpe_config), 179 GFP_KERNEL); 180 if (!mips_cps_core_bootcfg[c].vpe_config) { 181 pr_err("Failed to allocate %u VPE boot configs\n", 182 core_vpes); 183 goto err_out; 184 } 185 } 186 187 /* Mark this CPU as booted */ 188 atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask, 189 1 << cpu_vpe_id(¤t_cpu_data)); 190 191 return; 192 err_out: 193 /* Clean up allocations */ 194 if (mips_cps_core_bootcfg) { 195 for (c = 0; c < ncores; c++) 196 kfree(mips_cps_core_bootcfg[c].vpe_config); 197 kfree(mips_cps_core_bootcfg); 198 mips_cps_core_bootcfg = NULL; 199 } 200 201 /* Effectively disable SMP by declaring CPUs not present */ 202 for_each_possible_cpu(c) { 203 if (c == 0) 204 continue; 205 set_cpu_present(c, false); 206 } 207 } 208 209 static void boot_core(unsigned int core, unsigned int vpe_id) 210 { 211 u32 access, stat, seq_state; 212 unsigned timeout; 213 214 /* Select the appropriate core */ 215 mips_cm_lock_other(core, 0); 216 217 /* Set its reset vector */ 218 write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry)); 219 220 /* Ensure its coherency is disabled */ 221 write_gcr_co_coherence(0); 222 223 /* Start it with the legacy memory map and exception base */ 224 write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB); 225 226 /* Ensure the core can access the GCRs */ 227 access = read_gcr_access(); 228 access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core); 229 write_gcr_access(access); 230 231 if (mips_cpc_present()) { 232 /* Reset the core */ 233 mips_cpc_lock_other(core); 234 235 if (mips_cm_revision() >= CM_REV_CM3) { 236 /* Run only the requested VP following the reset */ 237 write_cpc_co_vp_stop(0xf); 238 write_cpc_co_vp_run(1 << vpe_id); 239 240 /* 241 * Ensure that the VP_RUN register is written before the 242 * core leaves reset. 243 */ 244 wmb(); 245 } 246 247 write_cpc_co_cmd(CPC_Cx_CMD_RESET); 248 249 timeout = 100; 250 while (true) { 251 stat = read_cpc_co_stat_conf(); 252 seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK; 253 254 /* U6 == coherent execution, ie. the core is up */ 255 if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6) 256 break; 257 258 /* Delay a little while before we start warning */ 259 if (timeout) { 260 timeout--; 261 mdelay(10); 262 continue; 263 } 264 265 pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n", 266 core, stat); 267 mdelay(1000); 268 } 269 270 mips_cpc_unlock_other(); 271 } else { 272 /* Take the core out of reset */ 273 write_gcr_co_reset_release(0); 274 } 275 276 mips_cm_unlock_other(); 277 278 /* The core is now powered up */ 279 bitmap_set(core_power, core, 1); 280 } 281 282 static void remote_vpe_boot(void *dummy) 283 { 284 unsigned core = current_cpu_data.core; 285 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core]; 286 287 mips_cps_boot_vpes(core_cfg, cpu_vpe_id(¤t_cpu_data)); 288 } 289 290 static void cps_boot_secondary(int cpu, struct task_struct *idle) 291 { 292 unsigned core = cpu_data[cpu].core; 293 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); 294 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core]; 295 struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id]; 296 unsigned long core_entry; 297 unsigned int remote; 298 int err; 299 300 vpe_cfg->pc = (unsigned long)&smp_bootstrap; 301 vpe_cfg->sp = __KSTK_TOS(idle); 302 vpe_cfg->gp = (unsigned long)task_thread_info(idle); 303 304 atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask); 305 306 preempt_disable(); 307 308 if (!test_bit(core, core_power)) { 309 /* Boot a VPE on a powered down core */ 310 boot_core(core, vpe_id); 311 goto out; 312 } 313 314 if (cpu_has_vp) { 315 mips_cm_lock_other(core, vpe_id); 316 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry); 317 write_gcr_co_reset_base(core_entry); 318 mips_cm_unlock_other(); 319 } 320 321 if (core != current_cpu_data.core) { 322 /* Boot a VPE on another powered up core */ 323 for (remote = 0; remote < NR_CPUS; remote++) { 324 if (cpu_data[remote].core != core) 325 continue; 326 if (cpu_online(remote)) 327 break; 328 } 329 BUG_ON(remote >= NR_CPUS); 330 331 err = smp_call_function_single(remote, remote_vpe_boot, 332 NULL, 1); 333 if (err) 334 panic("Failed to call remote CPU\n"); 335 goto out; 336 } 337 338 BUG_ON(!cpu_has_mipsmt && !cpu_has_vp); 339 340 /* Boot a VPE on this core */ 341 mips_cps_boot_vpes(core_cfg, vpe_id); 342 out: 343 preempt_enable(); 344 } 345 346 static void cps_init_secondary(void) 347 { 348 /* Disable MT - we only want to run 1 TC per VPE */ 349 if (cpu_has_mipsmt) 350 dmt(); 351 352 if (mips_cm_revision() >= CM_REV_CM3) { 353 unsigned ident = gic_read_local_vp_id(); 354 355 /* 356 * Ensure that our calculation of the VP ID matches up with 357 * what the GIC reports, otherwise we'll have configured 358 * interrupts incorrectly. 359 */ 360 BUG_ON(ident != mips_cm_vp_id(smp_processor_id())); 361 } 362 363 if (cpu_has_veic) 364 clear_c0_status(ST0_IM); 365 else 366 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | 367 STATUSF_IP4 | STATUSF_IP5 | 368 STATUSF_IP6 | STATUSF_IP7); 369 } 370 371 static void cps_smp_finish(void) 372 { 373 write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ)); 374 375 #ifdef CONFIG_MIPS_MT_FPAFF 376 /* If we have an FPU, enroll ourselves in the FPU-full mask */ 377 if (cpu_has_fpu) 378 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask); 379 #endif /* CONFIG_MIPS_MT_FPAFF */ 380 381 local_irq_enable(); 382 } 383 384 #ifdef CONFIG_HOTPLUG_CPU 385 386 static int cps_cpu_disable(void) 387 { 388 unsigned cpu = smp_processor_id(); 389 struct core_boot_config *core_cfg; 390 391 if (!cpu) 392 return -EBUSY; 393 394 if (!cps_pm_support_state(CPS_PM_POWER_GATED)) 395 return -EINVAL; 396 397 core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core]; 398 atomic_sub(1 << cpu_vpe_id(¤t_cpu_data), &core_cfg->vpe_mask); 399 smp_mb__after_atomic(); 400 set_cpu_online(cpu, false); 401 calculate_cpu_foreign_map(); 402 cpumask_clear_cpu(cpu, &cpu_callin_map); 403 404 return 0; 405 } 406 407 static DECLARE_COMPLETION(cpu_death_chosen); 408 static unsigned cpu_death_sibling; 409 static enum { 410 CPU_DEATH_HALT, 411 CPU_DEATH_POWER, 412 } cpu_death; 413 414 void play_dead(void) 415 { 416 unsigned int cpu, core, vpe_id; 417 418 local_irq_disable(); 419 idle_task_exit(); 420 cpu = smp_processor_id(); 421 cpu_death = CPU_DEATH_POWER; 422 423 pr_debug("CPU%d going offline\n", cpu); 424 425 if (cpu_has_mipsmt || cpu_has_vp) { 426 core = cpu_data[cpu].core; 427 428 /* Look for another online VPE within the core */ 429 for_each_online_cpu(cpu_death_sibling) { 430 if (cpu_data[cpu_death_sibling].core != core) 431 continue; 432 433 /* 434 * There is an online VPE within the core. Just halt 435 * this TC and leave the core alone. 436 */ 437 cpu_death = CPU_DEATH_HALT; 438 break; 439 } 440 } 441 442 /* This CPU has chosen its way out */ 443 complete(&cpu_death_chosen); 444 445 if (cpu_death == CPU_DEATH_HALT) { 446 vpe_id = cpu_vpe_id(&cpu_data[cpu]); 447 448 pr_debug("Halting core %d VP%d\n", core, vpe_id); 449 if (cpu_has_mipsmt) { 450 /* Halt this TC */ 451 write_c0_tchalt(TCHALT_H); 452 instruction_hazard(); 453 } else if (cpu_has_vp) { 454 write_cpc_cl_vp_stop(1 << vpe_id); 455 456 /* Ensure that the VP_STOP register is written */ 457 wmb(); 458 } 459 } else { 460 pr_debug("Gating power to core %d\n", core); 461 /* Power down the core */ 462 cps_pm_enter_state(CPS_PM_POWER_GATED); 463 } 464 465 /* This should never be reached */ 466 panic("Failed to offline CPU %u", cpu); 467 } 468 469 static void wait_for_sibling_halt(void *ptr_cpu) 470 { 471 unsigned cpu = (unsigned long)ptr_cpu; 472 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); 473 unsigned halted; 474 unsigned long flags; 475 476 do { 477 local_irq_save(flags); 478 settc(vpe_id); 479 halted = read_tc_c0_tchalt(); 480 local_irq_restore(flags); 481 } while (!(halted & TCHALT_H)); 482 } 483 484 static void cps_cpu_die(unsigned int cpu) 485 { 486 unsigned core = cpu_data[cpu].core; 487 unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]); 488 unsigned stat; 489 int err; 490 491 /* Wait for the cpu to choose its way out */ 492 if (!wait_for_completion_timeout(&cpu_death_chosen, 493 msecs_to_jiffies(5000))) { 494 pr_err("CPU%u: didn't offline\n", cpu); 495 return; 496 } 497 498 /* 499 * Now wait for the CPU to actually offline. Without doing this that 500 * offlining may race with one or more of: 501 * 502 * - Onlining the CPU again. 503 * - Powering down the core if another VPE within it is offlined. 504 * - A sibling VPE entering a non-coherent state. 505 * 506 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing 507 * with which we could race, so do nothing. 508 */ 509 if (cpu_death == CPU_DEATH_POWER) { 510 /* 511 * Wait for the core to enter a powered down or clock gated 512 * state, the latter happening when a JTAG probe is connected 513 * in which case the CPC will refuse to power down the core. 514 */ 515 do { 516 mips_cm_lock_other(core, 0); 517 mips_cpc_lock_other(core); 518 stat = read_cpc_co_stat_conf(); 519 stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK; 520 mips_cpc_unlock_other(); 521 mips_cm_unlock_other(); 522 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 && 523 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 && 524 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2); 525 526 /* Indicate the core is powered off */ 527 bitmap_clear(core_power, core, 1); 528 } else if (cpu_has_mipsmt) { 529 /* 530 * Have a CPU with access to the offlined CPUs registers wait 531 * for its TC to halt. 532 */ 533 err = smp_call_function_single(cpu_death_sibling, 534 wait_for_sibling_halt, 535 (void *)(unsigned long)cpu, 1); 536 if (err) 537 panic("Failed to call remote sibling CPU\n"); 538 } else if (cpu_has_vp) { 539 do { 540 mips_cm_lock_other(core, vpe_id); 541 stat = read_cpc_co_vp_running(); 542 mips_cm_unlock_other(); 543 } while (stat & (1 << vpe_id)); 544 } 545 } 546 547 #endif /* CONFIG_HOTPLUG_CPU */ 548 549 static struct plat_smp_ops cps_smp_ops = { 550 .smp_setup = cps_smp_setup, 551 .prepare_cpus = cps_prepare_cpus, 552 .boot_secondary = cps_boot_secondary, 553 .init_secondary = cps_init_secondary, 554 .smp_finish = cps_smp_finish, 555 .send_ipi_single = mips_smp_send_ipi_single, 556 .send_ipi_mask = mips_smp_send_ipi_mask, 557 #ifdef CONFIG_HOTPLUG_CPU 558 .cpu_disable = cps_cpu_disable, 559 .cpu_die = cps_cpu_die, 560 #endif 561 }; 562 563 bool mips_cps_smp_in_use(void) 564 { 565 extern struct plat_smp_ops *mp_ops; 566 return mp_ops == &cps_smp_ops; 567 } 568 569 int register_cps_smp_ops(void) 570 { 571 if (!mips_cm_present()) { 572 pr_warn("MIPS CPS SMP unable to proceed without a CM\n"); 573 return -ENODEV; 574 } 575 576 /* check we have a GIC - we need one for IPIs */ 577 if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) { 578 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n"); 579 return -ENODEV; 580 } 581 582 register_smp_ops(&cps_smp_ops); 583 return 0; 584 } 585