xref: /linux/arch/mips/kernel/smp-cps.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/slab.h>
13 #include <linux/smp.h>
14 #include <linux/types.h>
15 
16 #include <asm/bcache.h>
17 #include <asm/mips-cps.h>
18 #include <asm/mips_mt.h>
19 #include <asm/mipsregs.h>
20 #include <asm/pm-cps.h>
21 #include <asm/r4kcache.h>
22 #include <asm/smp-cps.h>
23 #include <asm/time.h>
24 #include <asm/uasm.h>
25 
26 static bool threads_disabled;
27 static DECLARE_BITMAP(core_power, NR_CPUS);
28 
29 struct core_boot_config *mips_cps_core_bootcfg;
30 
31 static int __init setup_nothreads(char *s)
32 {
33 	threads_disabled = true;
34 	return 0;
35 }
36 early_param("nothreads", setup_nothreads);
37 
38 static unsigned core_vpe_count(unsigned int cluster, unsigned core)
39 {
40 	if (threads_disabled)
41 		return 1;
42 
43 	return mips_cps_numvps(cluster, core);
44 }
45 
46 static void __init cps_smp_setup(void)
47 {
48 	unsigned int nclusters, ncores, nvpes, core_vpes;
49 	unsigned long core_entry;
50 	int cl, c, v;
51 
52 	/* Detect & record VPE topology */
53 	nvpes = 0;
54 	nclusters = mips_cps_numclusters();
55 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
56 	for (cl = 0; cl < nclusters; cl++) {
57 		if (cl > 0)
58 			pr_cont(",");
59 		pr_cont("{");
60 
61 		ncores = mips_cps_numcores(cl);
62 		for (c = 0; c < ncores; c++) {
63 			core_vpes = core_vpe_count(cl, c);
64 
65 			if (c > 0)
66 				pr_cont(",");
67 			pr_cont("%u", core_vpes);
68 
69 			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
70 			if (!cl && !c)
71 				smp_num_siblings = core_vpes;
72 
73 			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
74 				cpu_set_cluster(&cpu_data[nvpes + v], cl);
75 				cpu_set_core(&cpu_data[nvpes + v], c);
76 				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
77 			}
78 
79 			nvpes += core_vpes;
80 		}
81 
82 		pr_cont("}");
83 	}
84 	pr_cont(" total %u\n", nvpes);
85 
86 	/* Indicate present CPUs (CPU being synonymous with VPE) */
87 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
88 		set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
89 		set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
90 		__cpu_number_map[v] = v;
91 		__cpu_logical_map[v] = v;
92 	}
93 
94 	/* Set a coherent default CCA (CWB) */
95 	change_c0_config(CONF_CM_CMASK, 0x5);
96 
97 	/* Core 0 is powered up (we're running on it) */
98 	bitmap_set(core_power, 0, 1);
99 
100 	/* Initialise core 0 */
101 	mips_cps_core_init();
102 
103 	/* Make core 0 coherent with everything */
104 	write_gcr_cl_coherence(0xff);
105 
106 	if (mips_cm_revision() >= CM_REV_CM3) {
107 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
108 		write_gcr_bev_base(core_entry);
109 	}
110 
111 #ifdef CONFIG_MIPS_MT_FPAFF
112 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
113 	if (cpu_has_fpu)
114 		cpumask_set_cpu(0, &mt_fpu_cpumask);
115 #endif /* CONFIG_MIPS_MT_FPAFF */
116 }
117 
118 static void __init cps_prepare_cpus(unsigned int max_cpus)
119 {
120 	unsigned ncores, core_vpes, c, cca;
121 	bool cca_unsuitable, cores_limited;
122 	u32 *entry_code;
123 
124 	mips_mt_set_cpuoptions();
125 
126 	/* Detect whether the CCA is unsuited to multi-core SMP */
127 	cca = read_c0_config() & CONF_CM_CMASK;
128 	switch (cca) {
129 	case 0x4: /* CWBE */
130 	case 0x5: /* CWB */
131 		/* The CCA is coherent, multi-core is fine */
132 		cca_unsuitable = false;
133 		break;
134 
135 	default:
136 		/* CCA is not coherent, multi-core is not usable */
137 		cca_unsuitable = true;
138 	}
139 
140 	/* Warn the user if the CCA prevents multi-core */
141 	cores_limited = false;
142 	if (cca_unsuitable || cpu_has_dc_aliases) {
143 		for_each_present_cpu(c) {
144 			if (cpus_are_siblings(smp_processor_id(), c))
145 				continue;
146 
147 			set_cpu_present(c, false);
148 			cores_limited = true;
149 		}
150 	}
151 	if (cores_limited)
152 		pr_warn("Using only one core due to %s%s%s\n",
153 			cca_unsuitable ? "unsuitable CCA" : "",
154 			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
155 			cpu_has_dc_aliases ? "dcache aliasing" : "");
156 
157 	/*
158 	 * Patch the start of mips_cps_core_entry to provide:
159 	 *
160 	 * s0 = kseg0 CCA
161 	 */
162 	entry_code = (u32 *)&mips_cps_core_entry;
163 	uasm_i_addiu(&entry_code, 16, 0, cca);
164 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
165 			   (unsigned long)entry_code);
166 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
167 		     (void *)entry_code - (void *)&mips_cps_core_entry);
168 	__sync();
169 
170 	/* Allocate core boot configuration structs */
171 	ncores = mips_cps_numcores(0);
172 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
173 					GFP_KERNEL);
174 	if (!mips_cps_core_bootcfg) {
175 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
176 		goto err_out;
177 	}
178 
179 	/* Allocate VPE boot configuration structs */
180 	for (c = 0; c < ncores; c++) {
181 		core_vpes = core_vpe_count(0, c);
182 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
183 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
184 				GFP_KERNEL);
185 		if (!mips_cps_core_bootcfg[c].vpe_config) {
186 			pr_err("Failed to allocate %u VPE boot configs\n",
187 			       core_vpes);
188 			goto err_out;
189 		}
190 	}
191 
192 	/* Mark this CPU as booted */
193 	atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
194 		   1 << cpu_vpe_id(&current_cpu_data));
195 
196 	return;
197 err_out:
198 	/* Clean up allocations */
199 	if (mips_cps_core_bootcfg) {
200 		for (c = 0; c < ncores; c++)
201 			kfree(mips_cps_core_bootcfg[c].vpe_config);
202 		kfree(mips_cps_core_bootcfg);
203 		mips_cps_core_bootcfg = NULL;
204 	}
205 
206 	/* Effectively disable SMP by declaring CPUs not present */
207 	for_each_possible_cpu(c) {
208 		if (c == 0)
209 			continue;
210 		set_cpu_present(c, false);
211 	}
212 }
213 
214 static void boot_core(unsigned int core, unsigned int vpe_id)
215 {
216 	u32 stat, seq_state;
217 	unsigned timeout;
218 
219 	/* Select the appropriate core */
220 	mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
221 
222 	/* Set its reset vector */
223 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
224 
225 	/* Ensure its coherency is disabled */
226 	write_gcr_co_coherence(0);
227 
228 	/* Start it with the legacy memory map and exception base */
229 	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
230 
231 	/* Ensure the core can access the GCRs */
232 	set_gcr_access(1 << core);
233 
234 	if (mips_cpc_present()) {
235 		/* Reset the core */
236 		mips_cpc_lock_other(core);
237 
238 		if (mips_cm_revision() >= CM_REV_CM3) {
239 			/* Run only the requested VP following the reset */
240 			write_cpc_co_vp_stop(0xf);
241 			write_cpc_co_vp_run(1 << vpe_id);
242 
243 			/*
244 			 * Ensure that the VP_RUN register is written before the
245 			 * core leaves reset.
246 			 */
247 			wmb();
248 		}
249 
250 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
251 
252 		timeout = 100;
253 		while (true) {
254 			stat = read_cpc_co_stat_conf();
255 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
256 			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
257 
258 			/* U6 == coherent execution, ie. the core is up */
259 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
260 				break;
261 
262 			/* Delay a little while before we start warning */
263 			if (timeout) {
264 				timeout--;
265 				mdelay(10);
266 				continue;
267 			}
268 
269 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
270 				core, stat);
271 			mdelay(1000);
272 		}
273 
274 		mips_cpc_unlock_other();
275 	} else {
276 		/* Take the core out of reset */
277 		write_gcr_co_reset_release(0);
278 	}
279 
280 	mips_cm_unlock_other();
281 
282 	/* The core is now powered up */
283 	bitmap_set(core_power, core, 1);
284 }
285 
286 static void remote_vpe_boot(void *dummy)
287 {
288 	unsigned core = cpu_core(&current_cpu_data);
289 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
290 
291 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
292 }
293 
294 static int cps_boot_secondary(int cpu, struct task_struct *idle)
295 {
296 	unsigned core = cpu_core(&cpu_data[cpu]);
297 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
298 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
299 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
300 	unsigned long core_entry;
301 	unsigned int remote;
302 	int err;
303 
304 	/* We don't yet support booting CPUs in other clusters */
305 	if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
306 		return -ENOSYS;
307 
308 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
309 	vpe_cfg->sp = __KSTK_TOS(idle);
310 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
311 
312 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
313 
314 	preempt_disable();
315 
316 	if (!test_bit(core, core_power)) {
317 		/* Boot a VPE on a powered down core */
318 		boot_core(core, vpe_id);
319 		goto out;
320 	}
321 
322 	if (cpu_has_vp) {
323 		mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
324 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
325 		write_gcr_co_reset_base(core_entry);
326 		mips_cm_unlock_other();
327 	}
328 
329 	if (!cpus_are_siblings(cpu, smp_processor_id())) {
330 		/* Boot a VPE on another powered up core */
331 		for (remote = 0; remote < NR_CPUS; remote++) {
332 			if (!cpus_are_siblings(cpu, remote))
333 				continue;
334 			if (cpu_online(remote))
335 				break;
336 		}
337 		if (remote >= NR_CPUS) {
338 			pr_crit("No online CPU in core %u to start CPU%d\n",
339 				core, cpu);
340 			goto out;
341 		}
342 
343 		err = smp_call_function_single(remote, remote_vpe_boot,
344 					       NULL, 1);
345 		if (err)
346 			panic("Failed to call remote CPU\n");
347 		goto out;
348 	}
349 
350 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
351 
352 	/* Boot a VPE on this core */
353 	mips_cps_boot_vpes(core_cfg, vpe_id);
354 out:
355 	preempt_enable();
356 	return 0;
357 }
358 
359 static void cps_init_secondary(void)
360 {
361 	/* Disable MT - we only want to run 1 TC per VPE */
362 	if (cpu_has_mipsmt)
363 		dmt();
364 
365 	if (mips_cm_revision() >= CM_REV_CM3) {
366 		unsigned int ident = read_gic_vl_ident();
367 
368 		/*
369 		 * Ensure that our calculation of the VP ID matches up with
370 		 * what the GIC reports, otherwise we'll have configured
371 		 * interrupts incorrectly.
372 		 */
373 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
374 	}
375 
376 	if (cpu_has_veic)
377 		clear_c0_status(ST0_IM);
378 	else
379 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
380 					 STATUSF_IP4 | STATUSF_IP5 |
381 					 STATUSF_IP6 | STATUSF_IP7);
382 }
383 
384 static void cps_smp_finish(void)
385 {
386 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
387 
388 #ifdef CONFIG_MIPS_MT_FPAFF
389 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
390 	if (cpu_has_fpu)
391 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
392 #endif /* CONFIG_MIPS_MT_FPAFF */
393 
394 	local_irq_enable();
395 }
396 
397 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
398 
399 enum cpu_death {
400 	CPU_DEATH_HALT,
401 	CPU_DEATH_POWER,
402 };
403 
404 static void cps_shutdown_this_cpu(enum cpu_death death)
405 {
406 	unsigned int cpu, core, vpe_id;
407 
408 	cpu = smp_processor_id();
409 	core = cpu_core(&cpu_data[cpu]);
410 
411 	if (death == CPU_DEATH_HALT) {
412 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
413 
414 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
415 		if (cpu_has_mipsmt) {
416 			/* Halt this TC */
417 			write_c0_tchalt(TCHALT_H);
418 			instruction_hazard();
419 		} else if (cpu_has_vp) {
420 			write_cpc_cl_vp_stop(1 << vpe_id);
421 
422 			/* Ensure that the VP_STOP register is written */
423 			wmb();
424 		}
425 	} else {
426 		pr_debug("Gating power to core %d\n", core);
427 		/* Power down the core */
428 		cps_pm_enter_state(CPS_PM_POWER_GATED);
429 	}
430 }
431 
432 #ifdef CONFIG_KEXEC
433 
434 static void cps_kexec_nonboot_cpu(void)
435 {
436 	if (cpu_has_mipsmt || cpu_has_vp)
437 		cps_shutdown_this_cpu(CPU_DEATH_HALT);
438 	else
439 		cps_shutdown_this_cpu(CPU_DEATH_POWER);
440 }
441 
442 #endif /* CONFIG_KEXEC */
443 
444 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
445 
446 #ifdef CONFIG_HOTPLUG_CPU
447 
448 static int cps_cpu_disable(void)
449 {
450 	unsigned cpu = smp_processor_id();
451 	struct core_boot_config *core_cfg;
452 
453 	if (!cpu)
454 		return -EBUSY;
455 
456 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
457 		return -EINVAL;
458 
459 	core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
460 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
461 	smp_mb__after_atomic();
462 	set_cpu_online(cpu, false);
463 	calculate_cpu_foreign_map();
464 
465 	return 0;
466 }
467 
468 static unsigned cpu_death_sibling;
469 static enum cpu_death cpu_death;
470 
471 void play_dead(void)
472 {
473 	unsigned int cpu;
474 
475 	local_irq_disable();
476 	idle_task_exit();
477 	cpu = smp_processor_id();
478 	cpu_death = CPU_DEATH_POWER;
479 
480 	pr_debug("CPU%d going offline\n", cpu);
481 
482 	if (cpu_has_mipsmt || cpu_has_vp) {
483 		/* Look for another online VPE within the core */
484 		for_each_online_cpu(cpu_death_sibling) {
485 			if (!cpus_are_siblings(cpu, cpu_death_sibling))
486 				continue;
487 
488 			/*
489 			 * There is an online VPE within the core. Just halt
490 			 * this TC and leave the core alone.
491 			 */
492 			cpu_death = CPU_DEATH_HALT;
493 			break;
494 		}
495 	}
496 
497 	/* This CPU has chosen its way out */
498 	(void)cpu_report_death();
499 
500 	cps_shutdown_this_cpu(cpu_death);
501 
502 	/* This should never be reached */
503 	panic("Failed to offline CPU %u", cpu);
504 }
505 
506 static void wait_for_sibling_halt(void *ptr_cpu)
507 {
508 	unsigned cpu = (unsigned long)ptr_cpu;
509 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
510 	unsigned halted;
511 	unsigned long flags;
512 
513 	do {
514 		local_irq_save(flags);
515 		settc(vpe_id);
516 		halted = read_tc_c0_tchalt();
517 		local_irq_restore(flags);
518 	} while (!(halted & TCHALT_H));
519 }
520 
521 static void cps_cpu_die(unsigned int cpu)
522 {
523 	unsigned core = cpu_core(&cpu_data[cpu]);
524 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
525 	ktime_t fail_time;
526 	unsigned stat;
527 	int err;
528 
529 	/* Wait for the cpu to choose its way out */
530 	if (!cpu_wait_death(cpu, 5)) {
531 		pr_err("CPU%u: didn't offline\n", cpu);
532 		return;
533 	}
534 
535 	/*
536 	 * Now wait for the CPU to actually offline. Without doing this that
537 	 * offlining may race with one or more of:
538 	 *
539 	 *   - Onlining the CPU again.
540 	 *   - Powering down the core if another VPE within it is offlined.
541 	 *   - A sibling VPE entering a non-coherent state.
542 	 *
543 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
544 	 * with which we could race, so do nothing.
545 	 */
546 	if (cpu_death == CPU_DEATH_POWER) {
547 		/*
548 		 * Wait for the core to enter a powered down or clock gated
549 		 * state, the latter happening when a JTAG probe is connected
550 		 * in which case the CPC will refuse to power down the core.
551 		 */
552 		fail_time = ktime_add_ms(ktime_get(), 2000);
553 		do {
554 			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
555 			mips_cpc_lock_other(core);
556 			stat = read_cpc_co_stat_conf();
557 			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
558 			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
559 			mips_cpc_unlock_other();
560 			mips_cm_unlock_other();
561 
562 			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
563 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
564 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
565 				break;
566 
567 			/*
568 			 * The core ought to have powered down, but didn't &
569 			 * now we don't really know what state it's in. It's
570 			 * likely that its _pwr_up pin has been wired to logic
571 			 * 1 & it powered back up as soon as we powered it
572 			 * down...
573 			 *
574 			 * The best we can do is warn the user & continue in
575 			 * the hope that the core is doing nothing harmful &
576 			 * might behave properly if we online it later.
577 			 */
578 			if (WARN(ktime_after(ktime_get(), fail_time),
579 				 "CPU%u hasn't powered down, seq. state %u\n",
580 				 cpu, stat))
581 				break;
582 		} while (1);
583 
584 		/* Indicate the core is powered off */
585 		bitmap_clear(core_power, core, 1);
586 	} else if (cpu_has_mipsmt) {
587 		/*
588 		 * Have a CPU with access to the offlined CPUs registers wait
589 		 * for its TC to halt.
590 		 */
591 		err = smp_call_function_single(cpu_death_sibling,
592 					       wait_for_sibling_halt,
593 					       (void *)(unsigned long)cpu, 1);
594 		if (err)
595 			panic("Failed to call remote sibling CPU\n");
596 	} else if (cpu_has_vp) {
597 		do {
598 			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
599 			stat = read_cpc_co_vp_running();
600 			mips_cm_unlock_other();
601 		} while (stat & (1 << vpe_id));
602 	}
603 }
604 
605 #endif /* CONFIG_HOTPLUG_CPU */
606 
607 static const struct plat_smp_ops cps_smp_ops = {
608 	.smp_setup		= cps_smp_setup,
609 	.prepare_cpus		= cps_prepare_cpus,
610 	.boot_secondary		= cps_boot_secondary,
611 	.init_secondary		= cps_init_secondary,
612 	.smp_finish		= cps_smp_finish,
613 	.send_ipi_single	= mips_smp_send_ipi_single,
614 	.send_ipi_mask		= mips_smp_send_ipi_mask,
615 #ifdef CONFIG_HOTPLUG_CPU
616 	.cpu_disable		= cps_cpu_disable,
617 	.cpu_die		= cps_cpu_die,
618 #endif
619 #ifdef CONFIG_KEXEC
620 	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
621 #endif
622 };
623 
624 bool mips_cps_smp_in_use(void)
625 {
626 	extern const struct plat_smp_ops *mp_ops;
627 	return mp_ops == &cps_smp_ops;
628 }
629 
630 int register_cps_smp_ops(void)
631 {
632 	if (!mips_cm_present()) {
633 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
634 		return -ENODEV;
635 	}
636 
637 	/* check we have a GIC - we need one for IPIs */
638 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
639 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
640 		return -ENODEV;
641 	}
642 
643 	register_smp_ops(&cps_smp_ops);
644 	return 0;
645 }
646