xref: /linux/arch/mips/kernel/smp-cps.c (revision 69050f8d6d075dc01af7a5f2f550a8067510366f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/slab.h>
14 #include <linux/smp.h>
15 #include <linux/types.h>
16 #include <linux/irq.h>
17 
18 #include <asm/bcache.h>
19 #include <asm/mips-cps.h>
20 #include <asm/mips_mt.h>
21 #include <asm/mipsregs.h>
22 #include <asm/pm-cps.h>
23 #include <asm/r4kcache.h>
24 #include <asm/regdef.h>
25 #include <asm/smp.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29 
30 #define BEV_VEC_SIZE	0x500
31 #define BEV_VEC_ALIGN	0x1000
32 
33 enum label_id {
34 	label_not_nmi = 1,
35 };
36 
37 UASM_L_LA(_not_nmi)
38 
39 static u64 core_entry_reg;
40 static phys_addr_t cps_vec_pa;
41 
42 struct cluster_boot_config *mips_cps_cluster_bootcfg;
43 
44 static void power_up_other_cluster(unsigned int cluster)
45 {
46 	u32 stat, seq_state;
47 	unsigned int timeout;
48 
49 	mips_cm_lock_other(cluster, CM_GCR_Cx_OTHER_CORE_CM, 0,
50 			   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
51 	stat = read_cpc_co_stat_conf();
52 	mips_cm_unlock_other();
53 
54 	seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
55 	seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
56 	if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U5)
57 		return;
58 
59 	/* Set endianness & power up the CM */
60 	mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
61 	write_cpc_redir_sys_config(IS_ENABLED(CONFIG_CPU_BIG_ENDIAN));
62 	write_cpc_redir_pwrup_ctl(1);
63 	mips_cm_unlock_other();
64 
65 	/* Wait for the CM to start up */
66 	timeout = 1000;
67 	mips_cm_lock_other(cluster, CM_GCR_Cx_OTHER_CORE_CM, 0,
68 			   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
69 	while (1) {
70 		stat = read_cpc_co_stat_conf();
71 		seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
72 		seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
73 		if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U5)
74 			break;
75 
76 		if (timeout) {
77 			mdelay(1);
78 			timeout--;
79 		} else {
80 			pr_warn("Waiting for cluster %u CM to power up... STAT_CONF=0x%x\n",
81 				cluster, stat);
82 			mdelay(1000);
83 		}
84 	}
85 
86 	mips_cm_unlock_other();
87 }
88 
89 static unsigned __init core_vpe_count(unsigned int cluster, unsigned core)
90 {
91 	return min(smp_max_threads, mips_cps_numvps(cluster, core));
92 }
93 
94 static void __init *mips_cps_build_core_entry(void *addr)
95 {
96 	extern void (*nmi_handler)(void);
97 	u32 *p = addr;
98 	u32 val;
99 	struct uasm_label labels[2];
100 	struct uasm_reloc relocs[2];
101 	struct uasm_label *l = labels;
102 	struct uasm_reloc *r = relocs;
103 
104 	memset(labels, 0, sizeof(labels));
105 	memset(relocs, 0, sizeof(relocs));
106 
107 	uasm_i_mfc0(&p, GPR_K0, C0_STATUS);
108 	UASM_i_LA(&p, GPR_T9, ST0_NMI);
109 	uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T9);
110 
111 	uasm_il_bnez(&p, &r, GPR_K0, label_not_nmi);
112 	uasm_i_nop(&p);
113 	UASM_i_LA(&p, GPR_K0, (long)&nmi_handler);
114 
115 	uasm_l_not_nmi(&l, p);
116 
117 	val = CAUSEF_IV;
118 	uasm_i_lui(&p, GPR_K0, val >> 16);
119 	uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
120 	uasm_i_mtc0(&p, GPR_K0, C0_CAUSE);
121 	val = ST0_CU1 | ST0_CU0 | ST0_BEV | ST0_KX_IF_64;
122 	uasm_i_lui(&p, GPR_K0, val >> 16);
123 	uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
124 	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
125 	uasm_i_ehb(&p);
126 	uasm_i_ori(&p, GPR_A0, 0, read_c0_config() & CONF_CM_CMASK);
127 	UASM_i_LA(&p, GPR_A1, (long)mips_gcr_base);
128 #if defined(KBUILD_64BIT_SYM32) || defined(CONFIG_32BIT)
129 	UASM_i_LA(&p, GPR_T9, CKSEG1ADDR(__pa_symbol(mips_cps_core_boot)));
130 #else
131 	UASM_i_LA(&p, GPR_T9, TO_UNCAC(__pa_symbol(mips_cps_core_boot)));
132 #endif
133 	uasm_i_jr(&p, GPR_T9);
134 	uasm_i_nop(&p);
135 
136 	uasm_resolve_relocs(relocs, labels);
137 
138 	return p;
139 }
140 
141 static bool __init check_64bit_reset(void)
142 {
143 	bool cx_64bit_reset = false;
144 
145 	mips_cm_lock_other(0, 0, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
146 	write_gcr_co_reset64_base(CM_GCR_Cx_RESET64_BASE_BEVEXCBASE);
147 	if ((read_gcr_co_reset64_base() & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) ==
148 	    CM_GCR_Cx_RESET64_BASE_BEVEXCBASE)
149 		cx_64bit_reset = true;
150 	mips_cm_unlock_other();
151 
152 	return cx_64bit_reset;
153 }
154 
155 static int __init allocate_cps_vecs(void)
156 {
157 	/* Try to allocate in KSEG1 first */
158 	cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN,
159 						0x0, CSEGX_SIZE - 1);
160 
161 	if (cps_vec_pa)
162 		core_entry_reg = CKSEG1ADDR(cps_vec_pa) &
163 					CM_GCR_Cx_RESET_BASE_BEVEXCBASE;
164 
165 	if (!cps_vec_pa && mips_cm_is64) {
166 		phys_addr_t end;
167 
168 		if (check_64bit_reset()) {
169 			pr_info("VP Local Reset Exception Base support 47 bits address\n");
170 			end = MEMBLOCK_ALLOC_ANYWHERE;
171 		} else {
172 			end = SZ_4G - 1;
173 		}
174 		cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN, 0, end);
175 		if (cps_vec_pa) {
176 			if (check_64bit_reset())
177 				core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) |
178 					CM_GCR_Cx_RESET_BASE_MODE;
179 			else
180 				core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET_BASE_BEVEXCBASE) |
181 					CM_GCR_Cx_RESET_BASE_MODE;
182 		}
183 	}
184 
185 	if (!cps_vec_pa)
186 		return -ENOMEM;
187 
188 	return 0;
189 }
190 
191 static void __init setup_cps_vecs(void)
192 {
193 	void *cps_vec;
194 
195 	cps_vec = (void *)CKSEG1ADDR_OR_64BIT(cps_vec_pa);
196 	mips_cps_build_core_entry(cps_vec);
197 
198 	memcpy(cps_vec + 0x200, &excep_tlbfill, 0x80);
199 	memcpy(cps_vec + 0x280, &excep_xtlbfill, 0x80);
200 	memcpy(cps_vec + 0x300, &excep_cache, 0x80);
201 	memcpy(cps_vec + 0x380, &excep_genex, 0x80);
202 	memcpy(cps_vec + 0x400, &excep_intex, 0x80);
203 	memcpy(cps_vec + 0x480, &excep_ejtag, 0x80);
204 
205 	/* Make sure no prefetched data in cache */
206 	blast_inv_dcache_range(CKSEG0ADDR_OR_64BIT(cps_vec_pa), CKSEG0ADDR_OR_64BIT(cps_vec_pa) + BEV_VEC_SIZE);
207 	bc_inv(CKSEG0ADDR_OR_64BIT(cps_vec_pa), BEV_VEC_SIZE);
208 	__sync();
209 }
210 
211 static void __init cps_smp_setup(void)
212 {
213 	unsigned int nclusters, ncores, nvpes, core_vpes;
214 	int cl, c, v;
215 
216 	/* Detect & record VPE topology */
217 	nvpes = 0;
218 	nclusters = mips_cps_numclusters();
219 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
220 	for (cl = 0; cl < nclusters; cl++) {
221 		if (cl > 0)
222 			pr_cont(",");
223 		pr_cont("{");
224 
225 		if (mips_cm_revision() >= CM_REV_CM3_5)
226 			power_up_other_cluster(cl);
227 
228 		ncores = mips_cps_numcores(cl);
229 		for (c = 0; c < ncores; c++) {
230 			core_vpes = core_vpe_count(cl, c);
231 
232 			if (c > 0)
233 				pr_cont(",");
234 			pr_cont("%u", core_vpes);
235 
236 			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
237 			if (!cl && !c)
238 				smp_num_siblings = core_vpes;
239 			cpumask_set_cpu(nvpes, &__cpu_primary_thread_mask);
240 
241 			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
242 				cpu_set_cluster(&cpu_data[nvpes + v], cl);
243 				cpu_set_core(&cpu_data[nvpes + v], c);
244 				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
245 			}
246 
247 			nvpes += core_vpes;
248 		}
249 
250 		pr_cont("}");
251 	}
252 	pr_cont(" total %u\n", nvpes);
253 
254 	/* Indicate present CPUs (CPU being synonymous with VPE) */
255 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
256 		set_cpu_possible(v, true);
257 		set_cpu_present(v, true);
258 		__cpu_number_map[v] = v;
259 		__cpu_logical_map[v] = v;
260 	}
261 
262 	/* Set a coherent default CCA (CWB) */
263 	change_c0_config(CONF_CM_CMASK, 0x5);
264 
265 	/* Initialise core 0 */
266 	mips_cps_core_init();
267 
268 	/* Make core 0 coherent with everything */
269 	write_gcr_cl_coherence(0xff);
270 
271 	if (allocate_cps_vecs())
272 		pr_err("Failed to allocate CPS vectors\n");
273 
274 	if (core_entry_reg && mips_cm_revision() >= CM_REV_CM3)
275 		write_gcr_bev_base(core_entry_reg);
276 
277 #ifdef CONFIG_MIPS_MT_FPAFF
278 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
279 	if (cpu_has_fpu)
280 		cpumask_set_cpu(0, &mt_fpu_cpumask);
281 #endif /* CONFIG_MIPS_MT_FPAFF */
282 }
283 
284 unsigned long calibrate_delay_is_known(void)
285 {
286 	int first_cpu_cluster = 0;
287 
288 	/* The calibration has to be done on the primary CPU of the cluster */
289 	if (mips_cps_first_online_in_cluster(&first_cpu_cluster))
290 		return 0;
291 
292 	return cpu_data[first_cpu_cluster].udelay_val;
293 }
294 
295 static void __init cps_prepare_cpus(unsigned int max_cpus)
296 {
297 	unsigned int nclusters, ncores, core_vpes, nvpe = 0, c, cl, cca;
298 	bool cca_unsuitable, cores_limited;
299 	struct cluster_boot_config *cluster_bootcfg;
300 	struct core_boot_config *core_bootcfg;
301 
302 	mips_mt_set_cpuoptions();
303 
304 	if (!core_entry_reg) {
305 		pr_err("core_entry address unsuitable, disabling smp-cps\n");
306 		goto err_out;
307 	}
308 
309 	/* Detect whether the CCA is unsuited to multi-core SMP */
310 	cca = read_c0_config() & CONF_CM_CMASK;
311 	switch (cca) {
312 	case 0x4: /* CWBE */
313 	case 0x5: /* CWB */
314 		/* The CCA is coherent, multi-core is fine */
315 		cca_unsuitable = false;
316 		break;
317 
318 	default:
319 		/* CCA is not coherent, multi-core is not usable */
320 		cca_unsuitable = true;
321 	}
322 
323 	/* Warn the user if the CCA prevents multi-core */
324 	cores_limited = false;
325 	if (cca_unsuitable || cpu_has_dc_aliases) {
326 		for_each_present_cpu(c) {
327 			if (cpus_are_siblings(smp_processor_id(), c))
328 				continue;
329 
330 			set_cpu_present(c, false);
331 			cores_limited = true;
332 		}
333 	}
334 	if (cores_limited)
335 		pr_warn("Using only one core due to %s%s%s\n",
336 			cca_unsuitable ? "unsuitable CCA" : "",
337 			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
338 			cpu_has_dc_aliases ? "dcache aliasing" : "");
339 
340 	setup_cps_vecs();
341 
342 	/* Allocate cluster boot configuration structs */
343 	nclusters = mips_cps_numclusters();
344 	mips_cps_cluster_bootcfg = kzalloc_objs(*mips_cps_cluster_bootcfg,
345 						nclusters, GFP_KERNEL);
346 	if (!mips_cps_cluster_bootcfg)
347 		goto err_out;
348 
349 	if (nclusters > 1)
350 		mips_cm_update_property();
351 
352 	for (cl = 0; cl < nclusters; cl++) {
353 		/* Allocate core boot configuration structs */
354 		ncores = mips_cps_numcores(cl);
355 		core_bootcfg = kzalloc_objs(*core_bootcfg, ncores, GFP_KERNEL);
356 		if (!core_bootcfg)
357 			goto err_out;
358 		mips_cps_cluster_bootcfg[cl].core_config = core_bootcfg;
359 
360 		mips_cps_cluster_bootcfg[cl].core_power =
361 			kcalloc(BITS_TO_LONGS(ncores), sizeof(unsigned long),
362 				GFP_KERNEL);
363 		if (!mips_cps_cluster_bootcfg[cl].core_power)
364 			goto err_out;
365 
366 		/* Allocate VPE boot configuration structs */
367 		for (c = 0; c < ncores; c++) {
368 			int v;
369 			core_vpes = core_vpe_count(cl, c);
370 			core_bootcfg[c].vpe_config = kzalloc_objs(*core_bootcfg[c].vpe_config,
371 								  core_vpes,
372 								  GFP_KERNEL);
373 			for (v = 0; v < core_vpes; v++)
374 				cpumask_set_cpu(nvpe++, &mips_cps_cluster_bootcfg[cl].cpumask);
375 			if (!core_bootcfg[c].vpe_config)
376 				goto err_out;
377 		}
378 	}
379 
380 	/* Mark this CPU as powered up & booted */
381 	cl = cpu_cluster(&current_cpu_data);
382 	c = cpu_core(&current_cpu_data);
383 	cluster_bootcfg = &mips_cps_cluster_bootcfg[cl];
384 	cpu_smt_set_num_threads(core_vpes, core_vpes);
385 	core_bootcfg = &cluster_bootcfg->core_config[c];
386 	bitmap_set(cluster_bootcfg->core_power, cpu_core(&current_cpu_data), 1);
387 	atomic_set(&core_bootcfg->vpe_mask, 1 << cpu_vpe_id(&current_cpu_data));
388 
389 	return;
390 err_out:
391 	/* Clean up allocations */
392 	if (mips_cps_cluster_bootcfg) {
393 		for (cl = 0; cl < nclusters; cl++) {
394 			cluster_bootcfg = &mips_cps_cluster_bootcfg[cl];
395 			ncores = mips_cps_numcores(cl);
396 			for (c = 0; c < ncores; c++) {
397 				core_bootcfg = &cluster_bootcfg->core_config[c];
398 				kfree(core_bootcfg->vpe_config);
399 			}
400 			kfree(mips_cps_cluster_bootcfg[c].core_config);
401 		}
402 		kfree(mips_cps_cluster_bootcfg);
403 		mips_cps_cluster_bootcfg = NULL;
404 	}
405 
406 	/* Effectively disable SMP by declaring CPUs not present */
407 	for_each_possible_cpu(c) {
408 		if (c == 0)
409 			continue;
410 		set_cpu_present(c, false);
411 	}
412 }
413 
414 static void init_cluster_l2(void)
415 {
416 	u32 l2_cfg, l2sm_cop, result;
417 
418 	while (!mips_cm_is_l2_hci_broken) {
419 		l2_cfg = read_gcr_redir_l2_ram_config();
420 
421 		/* If HCI is not supported, use the state machine below */
422 		if (!(l2_cfg & CM_GCR_L2_RAM_CONFIG_PRESENT))
423 			break;
424 		if (!(l2_cfg & CM_GCR_L2_RAM_CONFIG_HCI_SUPPORTED))
425 			break;
426 
427 		/* If the HCI_DONE bit is set, we're finished */
428 		if (l2_cfg & CM_GCR_L2_RAM_CONFIG_HCI_DONE)
429 			return;
430 	}
431 
432 	l2sm_cop = read_gcr_redir_l2sm_cop();
433 	if (WARN(!(l2sm_cop & CM_GCR_L2SM_COP_PRESENT),
434 		 "L2 init not supported on this system yet"))
435 		return;
436 
437 	/* Clear L2 tag registers */
438 	write_gcr_redir_l2_tag_state(0);
439 	write_gcr_redir_l2_ecc(0);
440 
441 	/* Ensure the L2 tag writes complete before the state machine starts */
442 	mb();
443 
444 	/* Wait for the L2 state machine to be idle */
445 	do {
446 		l2sm_cop = read_gcr_redir_l2sm_cop();
447 	} while (l2sm_cop & CM_GCR_L2SM_COP_RUNNING);
448 
449 	/* Start a store tag operation */
450 	l2sm_cop = CM_GCR_L2SM_COP_TYPE_IDX_STORETAG;
451 	l2sm_cop <<= __ffs(CM_GCR_L2SM_COP_TYPE);
452 	l2sm_cop |= CM_GCR_L2SM_COP_CMD_START;
453 	write_gcr_redir_l2sm_cop(l2sm_cop);
454 
455 	/* Ensure the state machine starts before we poll for completion */
456 	mb();
457 
458 	/* Wait for the operation to be complete */
459 	do {
460 		l2sm_cop = read_gcr_redir_l2sm_cop();
461 		result = l2sm_cop & CM_GCR_L2SM_COP_RESULT;
462 		result >>= __ffs(CM_GCR_L2SM_COP_RESULT);
463 	} while (!result);
464 
465 	WARN(result != CM_GCR_L2SM_COP_RESULT_DONE_OK,
466 	     "L2 state machine failed cache init with error %u\n", result);
467 }
468 
469 static void boot_core(unsigned int cluster, unsigned int core,
470 		      unsigned int vpe_id)
471 {
472 	struct cluster_boot_config *cluster_cfg;
473 	u32 access, stat, seq_state;
474 	unsigned int timeout, ncores;
475 
476 	cluster_cfg = &mips_cps_cluster_bootcfg[cluster];
477 	ncores = mips_cps_numcores(cluster);
478 
479 	if ((cluster != cpu_cluster(&current_cpu_data)) &&
480 	    bitmap_empty(cluster_cfg->core_power, ncores)) {
481 		power_up_other_cluster(cluster);
482 
483 		mips_cm_lock_other(cluster, core, 0,
484 				   CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
485 
486 		/* Ensure cluster GCRs are where we expect */
487 		write_gcr_redir_base(read_gcr_base());
488 		write_gcr_redir_cpc_base(read_gcr_cpc_base());
489 		write_gcr_redir_gic_base(read_gcr_gic_base());
490 
491 		init_cluster_l2();
492 
493 		/* Mirror L2 configuration */
494 		write_gcr_redir_l2_only_sync_base(read_gcr_l2_only_sync_base());
495 		write_gcr_redir_l2_pft_control(read_gcr_l2_pft_control());
496 		write_gcr_redir_l2_pft_control_b(read_gcr_l2_pft_control_b());
497 
498 		/* Mirror ECC/parity setup */
499 		write_gcr_redir_err_control(read_gcr_err_control());
500 
501 		/* Set BEV base */
502 		write_gcr_redir_bev_base(core_entry_reg);
503 
504 		mips_cm_unlock_other();
505 	}
506 
507 	if (cluster != cpu_cluster(&current_cpu_data)) {
508 		mips_cm_lock_other(cluster, core, 0,
509 				   CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
510 
511 		/* Ensure the core can access the GCRs */
512 		access = read_gcr_redir_access();
513 		access |= BIT(core);
514 		write_gcr_redir_access(access);
515 
516 		mips_cm_unlock_other();
517 	} else {
518 		/* Ensure the core can access the GCRs */
519 		access = read_gcr_access();
520 		access |= BIT(core);
521 		write_gcr_access(access);
522 	}
523 
524 	/* Select the appropriate core */
525 	mips_cm_lock_other(cluster, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
526 
527 	/* Set its reset vector */
528 	if (mips_cm_is64)
529 		write_gcr_co_reset64_base(core_entry_reg);
530 	else
531 		write_gcr_co_reset_base(core_entry_reg);
532 
533 	/* Ensure its coherency is disabled */
534 	write_gcr_co_coherence(0);
535 
536 	/* Start it with the legacy memory map and exception base */
537 	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
538 
539 	/* Ensure the core can access the GCRs */
540 	if (mips_cm_revision() < CM_REV_CM3)
541 		set_gcr_access(1 << core);
542 	else
543 		set_gcr_access_cm3(1 << core);
544 
545 	if (mips_cpc_present()) {
546 		/* Reset the core */
547 		mips_cpc_lock_other(core);
548 
549 		if (mips_cm_revision() >= CM_REV_CM3) {
550 			/* Run only the requested VP following the reset */
551 			write_cpc_co_vp_stop(0xf);
552 			write_cpc_co_vp_run(1 << vpe_id);
553 
554 			/*
555 			 * Ensure that the VP_RUN register is written before the
556 			 * core leaves reset.
557 			 */
558 			wmb();
559 		}
560 
561 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
562 
563 		timeout = 100;
564 		while (true) {
565 			stat = read_cpc_co_stat_conf();
566 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
567 			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
568 
569 			/* U6 == coherent execution, ie. the core is up */
570 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
571 				break;
572 
573 			/* Delay a little while before we start warning */
574 			if (timeout) {
575 				timeout--;
576 				mdelay(10);
577 				continue;
578 			}
579 
580 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
581 				core, stat);
582 			mdelay(1000);
583 		}
584 
585 		mips_cpc_unlock_other();
586 	} else {
587 		/* Take the core out of reset */
588 		write_gcr_co_reset_release(0);
589 	}
590 
591 	mips_cm_unlock_other();
592 
593 	/* The core is now powered up */
594 	bitmap_set(cluster_cfg->core_power, core, 1);
595 
596 	/*
597 	 * Restore CM_PWRUP=0 so that the CM can power down if all the cores in
598 	 * the cluster do (eg. if they're all removed via hotplug.
599 	 */
600 	if (mips_cm_revision() >= CM_REV_CM3_5) {
601 		mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
602 		write_cpc_redir_pwrup_ctl(0);
603 		mips_cm_unlock_other();
604 	}
605 }
606 
607 static void remote_vpe_boot(void *dummy)
608 {
609 	unsigned int cluster = cpu_cluster(&current_cpu_data);
610 	unsigned core = cpu_core(&current_cpu_data);
611 	struct cluster_boot_config *cluster_cfg =
612 		&mips_cps_cluster_bootcfg[cluster];
613 	struct core_boot_config *core_cfg = &cluster_cfg->core_config[core];
614 
615 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
616 }
617 
618 static int cps_boot_secondary(int cpu, struct task_struct *idle)
619 {
620 	unsigned int cluster = cpu_cluster(&cpu_data[cpu]);
621 	unsigned core = cpu_core(&cpu_data[cpu]);
622 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
623 	struct cluster_boot_config *cluster_cfg =
624 		&mips_cps_cluster_bootcfg[cluster];
625 	struct core_boot_config *core_cfg = &cluster_cfg->core_config[core];
626 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
627 	unsigned int remote;
628 	int err;
629 
630 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
631 	vpe_cfg->sp = __KSTK_TOS(idle);
632 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
633 
634 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
635 
636 	preempt_disable();
637 
638 	if (!test_bit(core, cluster_cfg->core_power)) {
639 		/* Boot a VPE on a powered down core */
640 		boot_core(cluster, core, vpe_id);
641 		goto out;
642 	}
643 
644 	if (cpu_has_vp) {
645 		mips_cm_lock_other(cluster, core, vpe_id,
646 				   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
647 		if (mips_cm_is64)
648 			write_gcr_co_reset64_base(core_entry_reg);
649 		else
650 			write_gcr_co_reset_base(core_entry_reg);
651 		mips_cm_unlock_other();
652 	}
653 
654 	if (!cpus_are_siblings(cpu, smp_processor_id())) {
655 		/* Boot a VPE on another powered up core */
656 		for (remote = 0; remote < NR_CPUS; remote++) {
657 			if (!cpus_are_siblings(cpu, remote))
658 				continue;
659 			if (cpu_online(remote))
660 				break;
661 		}
662 		if (remote >= NR_CPUS) {
663 			pr_crit("No online CPU in core %u to start CPU%d\n",
664 				core, cpu);
665 			goto out;
666 		}
667 
668 		err = smp_call_function_single(remote, remote_vpe_boot,
669 					       NULL, 1);
670 		if (err)
671 			panic("Failed to call remote CPU\n");
672 		goto out;
673 	}
674 
675 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
676 
677 	/* Boot a VPE on this core */
678 	mips_cps_boot_vpes(core_cfg, vpe_id);
679 out:
680 	preempt_enable();
681 	return 0;
682 }
683 
684 static void cps_init_secondary(void)
685 {
686 	int core = cpu_core(&current_cpu_data);
687 
688 	/* Disable MT - we only want to run 1 TC per VPE */
689 	if (cpu_has_mipsmt)
690 		dmt();
691 
692 	if (mips_cm_revision() >= CM_REV_CM3) {
693 		unsigned int ident = read_gic_vl_ident();
694 
695 		/*
696 		 * Ensure that our calculation of the VP ID matches up with
697 		 * what the GIC reports, otherwise we'll have configured
698 		 * interrupts incorrectly.
699 		 */
700 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
701 	}
702 
703 	if (core > 0 && !read_gcr_cl_coherence())
704 		pr_warn("Core %u is not in coherent domain\n", core);
705 
706 	if (cpu_has_veic)
707 		clear_c0_status(ST0_IM);
708 	else
709 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
710 					 STATUSF_IP4 | STATUSF_IP5 |
711 					 STATUSF_IP6 | STATUSF_IP7);
712 }
713 
714 static void cps_smp_finish(void)
715 {
716 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
717 
718 #ifdef CONFIG_MIPS_MT_FPAFF
719 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
720 	if (cpu_has_fpu)
721 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
722 #endif /* CONFIG_MIPS_MT_FPAFF */
723 
724 	local_irq_enable();
725 }
726 
727 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC_CORE)
728 
729 enum cpu_death {
730 	CPU_DEATH_HALT,
731 	CPU_DEATH_POWER,
732 };
733 
734 static void cps_shutdown_this_cpu(enum cpu_death death)
735 {
736 	unsigned int cpu, core, vpe_id;
737 
738 	cpu = smp_processor_id();
739 	core = cpu_core(&cpu_data[cpu]);
740 
741 	if (death == CPU_DEATH_HALT) {
742 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
743 
744 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
745 		if (cpu_has_mipsmt) {
746 			/* Halt this TC */
747 			write_c0_tchalt(TCHALT_H);
748 			instruction_hazard();
749 		} else if (cpu_has_vp) {
750 			write_cpc_cl_vp_stop(1 << vpe_id);
751 
752 			/* Ensure that the VP_STOP register is written */
753 			wmb();
754 		}
755 	} else {
756 		if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
757 			pr_debug("Gating power to core %d\n", core);
758 			/* Power down the core */
759 			cps_pm_enter_state(CPS_PM_POWER_GATED);
760 		}
761 	}
762 }
763 
764 #ifdef CONFIG_KEXEC_CORE
765 
766 static void cps_kexec_nonboot_cpu(void)
767 {
768 	if (cpu_has_mipsmt || cpu_has_vp)
769 		cps_shutdown_this_cpu(CPU_DEATH_HALT);
770 	else
771 		cps_shutdown_this_cpu(CPU_DEATH_POWER);
772 }
773 
774 #endif /* CONFIG_KEXEC_CORE */
775 
776 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC_CORE */
777 
778 #ifdef CONFIG_HOTPLUG_CPU
779 
780 static int cps_cpu_disable(void)
781 {
782 	unsigned cpu = smp_processor_id();
783 	struct cluster_boot_config *cluster_cfg;
784 	struct core_boot_config *core_cfg;
785 
786 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
787 		return -EINVAL;
788 
789 	cluster_cfg = &mips_cps_cluster_bootcfg[cpu_cluster(&current_cpu_data)];
790 	core_cfg = &cluster_cfg->core_config[cpu_core(&current_cpu_data)];
791 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
792 	smp_mb__after_atomic();
793 	set_cpu_online(cpu, false);
794 	calculate_cpu_foreign_map();
795 	irq_migrate_all_off_this_cpu();
796 
797 	return 0;
798 }
799 
800 static unsigned cpu_death_sibling;
801 static enum cpu_death cpu_death;
802 
803 void play_dead(void)
804 {
805 	unsigned int cpu;
806 
807 	local_irq_disable();
808 	idle_task_exit();
809 	cpu = smp_processor_id();
810 	cpu_death = CPU_DEATH_POWER;
811 
812 	pr_debug("CPU%d going offline\n", cpu);
813 
814 	if (cpu_has_mipsmt || cpu_has_vp) {
815 		/* Look for another online VPE within the core */
816 		for_each_online_cpu(cpu_death_sibling) {
817 			if (!cpus_are_siblings(cpu, cpu_death_sibling))
818 				continue;
819 
820 			/*
821 			 * There is an online VPE within the core. Just halt
822 			 * this TC and leave the core alone.
823 			 */
824 			cpu_death = CPU_DEATH_HALT;
825 			break;
826 		}
827 	}
828 
829 	cpuhp_ap_report_dead();
830 
831 	cps_shutdown_this_cpu(cpu_death);
832 
833 	/* This should never be reached */
834 	panic("Failed to offline CPU %u", cpu);
835 }
836 
837 static void wait_for_sibling_halt(void *ptr_cpu)
838 {
839 	unsigned cpu = (unsigned long)ptr_cpu;
840 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
841 	unsigned halted;
842 	unsigned long flags;
843 
844 	do {
845 		local_irq_save(flags);
846 		settc(vpe_id);
847 		halted = read_tc_c0_tchalt();
848 		local_irq_restore(flags);
849 	} while (!(halted & TCHALT_H));
850 }
851 
852 static void cps_cpu_die(unsigned int cpu) { }
853 
854 static void cps_cleanup_dead_cpu(unsigned cpu)
855 {
856 	unsigned int cluster = cpu_cluster(&cpu_data[cpu]);
857 	unsigned core = cpu_core(&cpu_data[cpu]);
858 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
859 	ktime_t fail_time;
860 	unsigned stat;
861 	int err;
862 	struct cluster_boot_config *cluster_cfg;
863 
864 	cluster_cfg = &mips_cps_cluster_bootcfg[cluster];
865 
866 	/*
867 	 * Now wait for the CPU to actually offline. Without doing this that
868 	 * offlining may race with one or more of:
869 	 *
870 	 *   - Onlining the CPU again.
871 	 *   - Powering down the core if another VPE within it is offlined.
872 	 *   - A sibling VPE entering a non-coherent state.
873 	 *
874 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
875 	 * with which we could race, so do nothing.
876 	 */
877 	if (cpu_death == CPU_DEATH_POWER) {
878 		/*
879 		 * Wait for the core to enter a powered down or clock gated
880 		 * state, the latter happening when a JTAG probe is connected
881 		 * in which case the CPC will refuse to power down the core.
882 		 */
883 		fail_time = ktime_add_ms(ktime_get(), 2000);
884 		do {
885 			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
886 			mips_cpc_lock_other(core);
887 			stat = read_cpc_co_stat_conf();
888 			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
889 			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
890 			mips_cpc_unlock_other();
891 			mips_cm_unlock_other();
892 
893 			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
894 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
895 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
896 				break;
897 
898 			/*
899 			 * The core ought to have powered down, but didn't &
900 			 * now we don't really know what state it's in. It's
901 			 * likely that its _pwr_up pin has been wired to logic
902 			 * 1 & it powered back up as soon as we powered it
903 			 * down...
904 			 *
905 			 * The best we can do is warn the user & continue in
906 			 * the hope that the core is doing nothing harmful &
907 			 * might behave properly if we online it later.
908 			 */
909 			if (WARN(ktime_after(ktime_get(), fail_time),
910 				 "CPU%u hasn't powered down, seq. state %u\n",
911 				 cpu, stat))
912 				break;
913 		} while (1);
914 
915 		/* Indicate the core is powered off */
916 		bitmap_clear(cluster_cfg->core_power, core, 1);
917 	} else if (cpu_has_mipsmt) {
918 		/*
919 		 * Have a CPU with access to the offlined CPUs registers wait
920 		 * for its TC to halt.
921 		 */
922 		err = smp_call_function_single(cpu_death_sibling,
923 					       wait_for_sibling_halt,
924 					       (void *)(unsigned long)cpu, 1);
925 		if (err)
926 			panic("Failed to call remote sibling CPU\n");
927 	} else if (cpu_has_vp) {
928 		do {
929 			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
930 			stat = read_cpc_co_vp_running();
931 			mips_cm_unlock_other();
932 		} while (stat & (1 << vpe_id));
933 	}
934 }
935 
936 #endif /* CONFIG_HOTPLUG_CPU */
937 
938 static const struct plat_smp_ops cps_smp_ops = {
939 	.smp_setup		= cps_smp_setup,
940 	.prepare_cpus		= cps_prepare_cpus,
941 	.boot_secondary		= cps_boot_secondary,
942 	.init_secondary		= cps_init_secondary,
943 	.smp_finish		= cps_smp_finish,
944 	.send_ipi_single	= mips_smp_send_ipi_single,
945 	.send_ipi_mask		= mips_smp_send_ipi_mask,
946 #ifdef CONFIG_HOTPLUG_CPU
947 	.cpu_disable		= cps_cpu_disable,
948 	.cpu_die		= cps_cpu_die,
949 	.cleanup_dead_cpu	= cps_cleanup_dead_cpu,
950 #endif
951 #ifdef CONFIG_KEXEC_CORE
952 	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
953 #endif
954 };
955 
956 bool mips_cps_smp_in_use(void)
957 {
958 	extern const struct plat_smp_ops *mp_ops;
959 	return mp_ops == &cps_smp_ops;
960 }
961 
962 int register_cps_smp_ops(void)
963 {
964 	if (!mips_cm_present()) {
965 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
966 		return -ENODEV;
967 	}
968 
969 	/* check we have a GIC - we need one for IPIs */
970 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
971 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
972 		return -ENODEV;
973 	}
974 
975 	register_smp_ops(&cps_smp_ops);
976 	return 0;
977 }
978