1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2013 Imagination Technologies 4 * Author: Paul Burton <paul.burton@mips.com> 5 */ 6 7 #include <linux/cpu.h> 8 #include <linux/delay.h> 9 #include <linux/io.h> 10 #include <linux/sched/task_stack.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/slab.h> 13 #include <linux/smp.h> 14 #include <linux/types.h> 15 #include <linux/irq.h> 16 17 #include <asm/bcache.h> 18 #include <asm/mips-cps.h> 19 #include <asm/mips_mt.h> 20 #include <asm/mipsregs.h> 21 #include <asm/pm-cps.h> 22 #include <asm/r4kcache.h> 23 #include <asm/smp.h> 24 #include <asm/smp-cps.h> 25 #include <asm/time.h> 26 #include <asm/uasm.h> 27 28 static bool threads_disabled; 29 static DECLARE_BITMAP(core_power, NR_CPUS); 30 31 struct core_boot_config *mips_cps_core_bootcfg; 32 33 static int __init setup_nothreads(char *s) 34 { 35 threads_disabled = true; 36 return 0; 37 } 38 early_param("nothreads", setup_nothreads); 39 40 static unsigned core_vpe_count(unsigned int cluster, unsigned core) 41 { 42 if (threads_disabled) 43 return 1; 44 45 return mips_cps_numvps(cluster, core); 46 } 47 48 static void __init cps_smp_setup(void) 49 { 50 unsigned int nclusters, ncores, nvpes, core_vpes; 51 unsigned long core_entry; 52 int cl, c, v; 53 54 /* Detect & record VPE topology */ 55 nvpes = 0; 56 nclusters = mips_cps_numclusters(); 57 pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE"); 58 for (cl = 0; cl < nclusters; cl++) { 59 if (cl > 0) 60 pr_cont(","); 61 pr_cont("{"); 62 63 ncores = mips_cps_numcores(cl); 64 for (c = 0; c < ncores; c++) { 65 core_vpes = core_vpe_count(cl, c); 66 67 if (c > 0) 68 pr_cont(","); 69 pr_cont("%u", core_vpes); 70 71 /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */ 72 if (!cl && !c) 73 smp_num_siblings = core_vpes; 74 75 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) { 76 cpu_set_cluster(&cpu_data[nvpes + v], cl); 77 cpu_set_core(&cpu_data[nvpes + v], c); 78 cpu_set_vpe_id(&cpu_data[nvpes + v], v); 79 } 80 81 nvpes += core_vpes; 82 } 83 84 pr_cont("}"); 85 } 86 pr_cont(" total %u\n", nvpes); 87 88 /* Indicate present CPUs (CPU being synonymous with VPE) */ 89 for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) { 90 set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0); 91 set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0); 92 __cpu_number_map[v] = v; 93 __cpu_logical_map[v] = v; 94 } 95 96 /* Set a coherent default CCA (CWB) */ 97 change_c0_config(CONF_CM_CMASK, 0x5); 98 99 /* Core 0 is powered up (we're running on it) */ 100 bitmap_set(core_power, 0, 1); 101 102 /* Initialise core 0 */ 103 mips_cps_core_init(); 104 105 /* Make core 0 coherent with everything */ 106 write_gcr_cl_coherence(0xff); 107 108 if (mips_cm_revision() >= CM_REV_CM3) { 109 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry); 110 write_gcr_bev_base(core_entry); 111 } 112 113 #ifdef CONFIG_MIPS_MT_FPAFF 114 /* If we have an FPU, enroll ourselves in the FPU-full mask */ 115 if (cpu_has_fpu) 116 cpumask_set_cpu(0, &mt_fpu_cpumask); 117 #endif /* CONFIG_MIPS_MT_FPAFF */ 118 } 119 120 static void __init cps_prepare_cpus(unsigned int max_cpus) 121 { 122 unsigned ncores, core_vpes, c, cca; 123 bool cca_unsuitable, cores_limited; 124 u32 *entry_code; 125 126 mips_mt_set_cpuoptions(); 127 128 /* Detect whether the CCA is unsuited to multi-core SMP */ 129 cca = read_c0_config() & CONF_CM_CMASK; 130 switch (cca) { 131 case 0x4: /* CWBE */ 132 case 0x5: /* CWB */ 133 /* The CCA is coherent, multi-core is fine */ 134 cca_unsuitable = false; 135 break; 136 137 default: 138 /* CCA is not coherent, multi-core is not usable */ 139 cca_unsuitable = true; 140 } 141 142 /* Warn the user if the CCA prevents multi-core */ 143 cores_limited = false; 144 if (cca_unsuitable || cpu_has_dc_aliases) { 145 for_each_present_cpu(c) { 146 if (cpus_are_siblings(smp_processor_id(), c)) 147 continue; 148 149 set_cpu_present(c, false); 150 cores_limited = true; 151 } 152 } 153 if (cores_limited) 154 pr_warn("Using only one core due to %s%s%s\n", 155 cca_unsuitable ? "unsuitable CCA" : "", 156 (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "", 157 cpu_has_dc_aliases ? "dcache aliasing" : ""); 158 159 /* 160 * Patch the start of mips_cps_core_entry to provide: 161 * 162 * s0 = kseg0 CCA 163 */ 164 entry_code = (u32 *)&mips_cps_core_entry; 165 uasm_i_addiu(&entry_code, 16, 0, cca); 166 UASM_i_LA(&entry_code, 17, (long)mips_gcr_base); 167 BUG_ON((void *)entry_code > (void *)&mips_cps_core_entry_patch_end); 168 blast_dcache_range((unsigned long)&mips_cps_core_entry, 169 (unsigned long)entry_code); 170 bc_wback_inv((unsigned long)&mips_cps_core_entry, 171 (void *)entry_code - (void *)&mips_cps_core_entry); 172 __sync(); 173 174 /* Allocate core boot configuration structs */ 175 ncores = mips_cps_numcores(0); 176 mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg), 177 GFP_KERNEL); 178 if (!mips_cps_core_bootcfg) { 179 pr_err("Failed to allocate boot config for %u cores\n", ncores); 180 goto err_out; 181 } 182 183 /* Allocate VPE boot configuration structs */ 184 for (c = 0; c < ncores; c++) { 185 core_vpes = core_vpe_count(0, c); 186 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes, 187 sizeof(*mips_cps_core_bootcfg[c].vpe_config), 188 GFP_KERNEL); 189 if (!mips_cps_core_bootcfg[c].vpe_config) { 190 pr_err("Failed to allocate %u VPE boot configs\n", 191 core_vpes); 192 goto err_out; 193 } 194 } 195 196 /* Mark this CPU as booted */ 197 atomic_set(&mips_cps_core_bootcfg[cpu_core(¤t_cpu_data)].vpe_mask, 198 1 << cpu_vpe_id(¤t_cpu_data)); 199 200 return; 201 err_out: 202 /* Clean up allocations */ 203 if (mips_cps_core_bootcfg) { 204 for (c = 0; c < ncores; c++) 205 kfree(mips_cps_core_bootcfg[c].vpe_config); 206 kfree(mips_cps_core_bootcfg); 207 mips_cps_core_bootcfg = NULL; 208 } 209 210 /* Effectively disable SMP by declaring CPUs not present */ 211 for_each_possible_cpu(c) { 212 if (c == 0) 213 continue; 214 set_cpu_present(c, false); 215 } 216 } 217 218 static void boot_core(unsigned int core, unsigned int vpe_id) 219 { 220 u32 stat, seq_state; 221 unsigned timeout; 222 223 /* Select the appropriate core */ 224 mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL); 225 226 /* Set its reset vector */ 227 write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry)); 228 229 /* Ensure its coherency is disabled */ 230 write_gcr_co_coherence(0); 231 232 /* Start it with the legacy memory map and exception base */ 233 write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB); 234 235 /* Ensure the core can access the GCRs */ 236 set_gcr_access(1 << core); 237 238 if (mips_cpc_present()) { 239 /* Reset the core */ 240 mips_cpc_lock_other(core); 241 242 if (mips_cm_revision() >= CM_REV_CM3) { 243 /* Run only the requested VP following the reset */ 244 write_cpc_co_vp_stop(0xf); 245 write_cpc_co_vp_run(1 << vpe_id); 246 247 /* 248 * Ensure that the VP_RUN register is written before the 249 * core leaves reset. 250 */ 251 wmb(); 252 } 253 254 write_cpc_co_cmd(CPC_Cx_CMD_RESET); 255 256 timeout = 100; 257 while (true) { 258 stat = read_cpc_co_stat_conf(); 259 seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE; 260 seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE); 261 262 /* U6 == coherent execution, ie. the core is up */ 263 if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6) 264 break; 265 266 /* Delay a little while before we start warning */ 267 if (timeout) { 268 timeout--; 269 mdelay(10); 270 continue; 271 } 272 273 pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n", 274 core, stat); 275 mdelay(1000); 276 } 277 278 mips_cpc_unlock_other(); 279 } else { 280 /* Take the core out of reset */ 281 write_gcr_co_reset_release(0); 282 } 283 284 mips_cm_unlock_other(); 285 286 /* The core is now powered up */ 287 bitmap_set(core_power, core, 1); 288 } 289 290 static void remote_vpe_boot(void *dummy) 291 { 292 unsigned core = cpu_core(¤t_cpu_data); 293 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core]; 294 295 mips_cps_boot_vpes(core_cfg, cpu_vpe_id(¤t_cpu_data)); 296 } 297 298 static int cps_boot_secondary(int cpu, struct task_struct *idle) 299 { 300 unsigned core = cpu_core(&cpu_data[cpu]); 301 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); 302 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core]; 303 struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id]; 304 unsigned long core_entry; 305 unsigned int remote; 306 int err; 307 308 /* We don't yet support booting CPUs in other clusters */ 309 if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data)) 310 return -ENOSYS; 311 312 vpe_cfg->pc = (unsigned long)&smp_bootstrap; 313 vpe_cfg->sp = __KSTK_TOS(idle); 314 vpe_cfg->gp = (unsigned long)task_thread_info(idle); 315 316 atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask); 317 318 preempt_disable(); 319 320 if (!test_bit(core, core_power)) { 321 /* Boot a VPE on a powered down core */ 322 boot_core(core, vpe_id); 323 goto out; 324 } 325 326 if (cpu_has_vp) { 327 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL); 328 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry); 329 write_gcr_co_reset_base(core_entry); 330 mips_cm_unlock_other(); 331 } 332 333 if (!cpus_are_siblings(cpu, smp_processor_id())) { 334 /* Boot a VPE on another powered up core */ 335 for (remote = 0; remote < NR_CPUS; remote++) { 336 if (!cpus_are_siblings(cpu, remote)) 337 continue; 338 if (cpu_online(remote)) 339 break; 340 } 341 if (remote >= NR_CPUS) { 342 pr_crit("No online CPU in core %u to start CPU%d\n", 343 core, cpu); 344 goto out; 345 } 346 347 err = smp_call_function_single(remote, remote_vpe_boot, 348 NULL, 1); 349 if (err) 350 panic("Failed to call remote CPU\n"); 351 goto out; 352 } 353 354 BUG_ON(!cpu_has_mipsmt && !cpu_has_vp); 355 356 /* Boot a VPE on this core */ 357 mips_cps_boot_vpes(core_cfg, vpe_id); 358 out: 359 preempt_enable(); 360 return 0; 361 } 362 363 static void cps_init_secondary(void) 364 { 365 int core = cpu_core(¤t_cpu_data); 366 367 /* Disable MT - we only want to run 1 TC per VPE */ 368 if (cpu_has_mipsmt) 369 dmt(); 370 371 if (mips_cm_revision() >= CM_REV_CM3) { 372 unsigned int ident = read_gic_vl_ident(); 373 374 /* 375 * Ensure that our calculation of the VP ID matches up with 376 * what the GIC reports, otherwise we'll have configured 377 * interrupts incorrectly. 378 */ 379 BUG_ON(ident != mips_cm_vp_id(smp_processor_id())); 380 } 381 382 if (core > 0 && !read_gcr_cl_coherence()) 383 pr_warn("Core %u is not in coherent domain\n", core); 384 385 if (cpu_has_veic) 386 clear_c0_status(ST0_IM); 387 else 388 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | 389 STATUSF_IP4 | STATUSF_IP5 | 390 STATUSF_IP6 | STATUSF_IP7); 391 } 392 393 static void cps_smp_finish(void) 394 { 395 write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ)); 396 397 #ifdef CONFIG_MIPS_MT_FPAFF 398 /* If we have an FPU, enroll ourselves in the FPU-full mask */ 399 if (cpu_has_fpu) 400 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask); 401 #endif /* CONFIG_MIPS_MT_FPAFF */ 402 403 local_irq_enable(); 404 } 405 406 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC) 407 408 enum cpu_death { 409 CPU_DEATH_HALT, 410 CPU_DEATH_POWER, 411 }; 412 413 static void cps_shutdown_this_cpu(enum cpu_death death) 414 { 415 unsigned int cpu, core, vpe_id; 416 417 cpu = smp_processor_id(); 418 core = cpu_core(&cpu_data[cpu]); 419 420 if (death == CPU_DEATH_HALT) { 421 vpe_id = cpu_vpe_id(&cpu_data[cpu]); 422 423 pr_debug("Halting core %d VP%d\n", core, vpe_id); 424 if (cpu_has_mipsmt) { 425 /* Halt this TC */ 426 write_c0_tchalt(TCHALT_H); 427 instruction_hazard(); 428 } else if (cpu_has_vp) { 429 write_cpc_cl_vp_stop(1 << vpe_id); 430 431 /* Ensure that the VP_STOP register is written */ 432 wmb(); 433 } 434 } else { 435 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 436 pr_debug("Gating power to core %d\n", core); 437 /* Power down the core */ 438 cps_pm_enter_state(CPS_PM_POWER_GATED); 439 } 440 } 441 } 442 443 #ifdef CONFIG_KEXEC 444 445 static void cps_kexec_nonboot_cpu(void) 446 { 447 if (cpu_has_mipsmt || cpu_has_vp) 448 cps_shutdown_this_cpu(CPU_DEATH_HALT); 449 else 450 cps_shutdown_this_cpu(CPU_DEATH_POWER); 451 } 452 453 #endif /* CONFIG_KEXEC */ 454 455 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */ 456 457 #ifdef CONFIG_HOTPLUG_CPU 458 459 static int cps_cpu_disable(void) 460 { 461 unsigned cpu = smp_processor_id(); 462 struct core_boot_config *core_cfg; 463 464 if (!cps_pm_support_state(CPS_PM_POWER_GATED)) 465 return -EINVAL; 466 467 core_cfg = &mips_cps_core_bootcfg[cpu_core(¤t_cpu_data)]; 468 atomic_sub(1 << cpu_vpe_id(¤t_cpu_data), &core_cfg->vpe_mask); 469 smp_mb__after_atomic(); 470 set_cpu_online(cpu, false); 471 calculate_cpu_foreign_map(); 472 irq_migrate_all_off_this_cpu(); 473 474 return 0; 475 } 476 477 static unsigned cpu_death_sibling; 478 static enum cpu_death cpu_death; 479 480 void play_dead(void) 481 { 482 unsigned int cpu; 483 484 local_irq_disable(); 485 idle_task_exit(); 486 cpu = smp_processor_id(); 487 cpu_death = CPU_DEATH_POWER; 488 489 pr_debug("CPU%d going offline\n", cpu); 490 491 if (cpu_has_mipsmt || cpu_has_vp) { 492 /* Look for another online VPE within the core */ 493 for_each_online_cpu(cpu_death_sibling) { 494 if (!cpus_are_siblings(cpu, cpu_death_sibling)) 495 continue; 496 497 /* 498 * There is an online VPE within the core. Just halt 499 * this TC and leave the core alone. 500 */ 501 cpu_death = CPU_DEATH_HALT; 502 break; 503 } 504 } 505 506 cpuhp_ap_report_dead(); 507 508 cps_shutdown_this_cpu(cpu_death); 509 510 /* This should never be reached */ 511 panic("Failed to offline CPU %u", cpu); 512 } 513 514 static void wait_for_sibling_halt(void *ptr_cpu) 515 { 516 unsigned cpu = (unsigned long)ptr_cpu; 517 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); 518 unsigned halted; 519 unsigned long flags; 520 521 do { 522 local_irq_save(flags); 523 settc(vpe_id); 524 halted = read_tc_c0_tchalt(); 525 local_irq_restore(flags); 526 } while (!(halted & TCHALT_H)); 527 } 528 529 static void cps_cpu_die(unsigned int cpu) { } 530 531 static void cps_cleanup_dead_cpu(unsigned cpu) 532 { 533 unsigned core = cpu_core(&cpu_data[cpu]); 534 unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]); 535 ktime_t fail_time; 536 unsigned stat; 537 int err; 538 539 /* 540 * Now wait for the CPU to actually offline. Without doing this that 541 * offlining may race with one or more of: 542 * 543 * - Onlining the CPU again. 544 * - Powering down the core if another VPE within it is offlined. 545 * - A sibling VPE entering a non-coherent state. 546 * 547 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing 548 * with which we could race, so do nothing. 549 */ 550 if (cpu_death == CPU_DEATH_POWER) { 551 /* 552 * Wait for the core to enter a powered down or clock gated 553 * state, the latter happening when a JTAG probe is connected 554 * in which case the CPC will refuse to power down the core. 555 */ 556 fail_time = ktime_add_ms(ktime_get(), 2000); 557 do { 558 mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL); 559 mips_cpc_lock_other(core); 560 stat = read_cpc_co_stat_conf(); 561 stat &= CPC_Cx_STAT_CONF_SEQSTATE; 562 stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE); 563 mips_cpc_unlock_other(); 564 mips_cm_unlock_other(); 565 566 if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 || 567 stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 || 568 stat == CPC_Cx_STAT_CONF_SEQSTATE_U2) 569 break; 570 571 /* 572 * The core ought to have powered down, but didn't & 573 * now we don't really know what state it's in. It's 574 * likely that its _pwr_up pin has been wired to logic 575 * 1 & it powered back up as soon as we powered it 576 * down... 577 * 578 * The best we can do is warn the user & continue in 579 * the hope that the core is doing nothing harmful & 580 * might behave properly if we online it later. 581 */ 582 if (WARN(ktime_after(ktime_get(), fail_time), 583 "CPU%u hasn't powered down, seq. state %u\n", 584 cpu, stat)) 585 break; 586 } while (1); 587 588 /* Indicate the core is powered off */ 589 bitmap_clear(core_power, core, 1); 590 } else if (cpu_has_mipsmt) { 591 /* 592 * Have a CPU with access to the offlined CPUs registers wait 593 * for its TC to halt. 594 */ 595 err = smp_call_function_single(cpu_death_sibling, 596 wait_for_sibling_halt, 597 (void *)(unsigned long)cpu, 1); 598 if (err) 599 panic("Failed to call remote sibling CPU\n"); 600 } else if (cpu_has_vp) { 601 do { 602 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL); 603 stat = read_cpc_co_vp_running(); 604 mips_cm_unlock_other(); 605 } while (stat & (1 << vpe_id)); 606 } 607 } 608 609 #endif /* CONFIG_HOTPLUG_CPU */ 610 611 static const struct plat_smp_ops cps_smp_ops = { 612 .smp_setup = cps_smp_setup, 613 .prepare_cpus = cps_prepare_cpus, 614 .boot_secondary = cps_boot_secondary, 615 .init_secondary = cps_init_secondary, 616 .smp_finish = cps_smp_finish, 617 .send_ipi_single = mips_smp_send_ipi_single, 618 .send_ipi_mask = mips_smp_send_ipi_mask, 619 #ifdef CONFIG_HOTPLUG_CPU 620 .cpu_disable = cps_cpu_disable, 621 .cpu_die = cps_cpu_die, 622 .cleanup_dead_cpu = cps_cleanup_dead_cpu, 623 #endif 624 #ifdef CONFIG_KEXEC 625 .kexec_nonboot_cpu = cps_kexec_nonboot_cpu, 626 #endif 627 }; 628 629 bool mips_cps_smp_in_use(void) 630 { 631 extern const struct plat_smp_ops *mp_ops; 632 return mp_ops == &cps_smp_ops; 633 } 634 635 int register_cps_smp_ops(void) 636 { 637 if (!mips_cm_present()) { 638 pr_warn("MIPS CPS SMP unable to proceed without a CM\n"); 639 return -ENODEV; 640 } 641 642 /* check we have a GIC - we need one for IPIs */ 643 if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) { 644 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n"); 645 return -ENODEV; 646 } 647 648 register_smp_ops(&cps_smp_ops); 649 return 0; 650 } 651