xref: /linux/arch/mips/kernel/smp-cps.c (revision 5dfe7a7e52ccdf60dfd11ccbe509e4365ea721ca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/slab.h>
13 #include <linux/smp.h>
14 #include <linux/types.h>
15 #include <linux/irq.h>
16 
17 #include <asm/bcache.h>
18 #include <asm/mips-cps.h>
19 #include <asm/mips_mt.h>
20 #include <asm/mipsregs.h>
21 #include <asm/pm-cps.h>
22 #include <asm/r4kcache.h>
23 #include <asm/smp.h>
24 #include <asm/smp-cps.h>
25 #include <asm/time.h>
26 #include <asm/uasm.h>
27 
28 static bool threads_disabled;
29 static DECLARE_BITMAP(core_power, NR_CPUS);
30 
31 struct core_boot_config *mips_cps_core_bootcfg;
32 
33 static int __init setup_nothreads(char *s)
34 {
35 	threads_disabled = true;
36 	return 0;
37 }
38 early_param("nothreads", setup_nothreads);
39 
40 static unsigned core_vpe_count(unsigned int cluster, unsigned core)
41 {
42 	if (threads_disabled)
43 		return 1;
44 
45 	return mips_cps_numvps(cluster, core);
46 }
47 
48 static void __init cps_smp_setup(void)
49 {
50 	unsigned int nclusters, ncores, nvpes, core_vpes;
51 	unsigned long core_entry;
52 	int cl, c, v;
53 
54 	/* Detect & record VPE topology */
55 	nvpes = 0;
56 	nclusters = mips_cps_numclusters();
57 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
58 	for (cl = 0; cl < nclusters; cl++) {
59 		if (cl > 0)
60 			pr_cont(",");
61 		pr_cont("{");
62 
63 		ncores = mips_cps_numcores(cl);
64 		for (c = 0; c < ncores; c++) {
65 			core_vpes = core_vpe_count(cl, c);
66 
67 			if (c > 0)
68 				pr_cont(",");
69 			pr_cont("%u", core_vpes);
70 
71 			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
72 			if (!cl && !c)
73 				smp_num_siblings = core_vpes;
74 
75 			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
76 				cpu_set_cluster(&cpu_data[nvpes + v], cl);
77 				cpu_set_core(&cpu_data[nvpes + v], c);
78 				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
79 			}
80 
81 			nvpes += core_vpes;
82 		}
83 
84 		pr_cont("}");
85 	}
86 	pr_cont(" total %u\n", nvpes);
87 
88 	/* Indicate present CPUs (CPU being synonymous with VPE) */
89 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
90 		set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
91 		set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
92 		__cpu_number_map[v] = v;
93 		__cpu_logical_map[v] = v;
94 	}
95 
96 	/* Set a coherent default CCA (CWB) */
97 	change_c0_config(CONF_CM_CMASK, 0x5);
98 
99 	/* Core 0 is powered up (we're running on it) */
100 	bitmap_set(core_power, 0, 1);
101 
102 	/* Initialise core 0 */
103 	mips_cps_core_init();
104 
105 	/* Make core 0 coherent with everything */
106 	write_gcr_cl_coherence(0xff);
107 
108 	if (mips_cm_revision() >= CM_REV_CM3) {
109 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
110 		write_gcr_bev_base(core_entry);
111 	}
112 
113 #ifdef CONFIG_MIPS_MT_FPAFF
114 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
115 	if (cpu_has_fpu)
116 		cpumask_set_cpu(0, &mt_fpu_cpumask);
117 #endif /* CONFIG_MIPS_MT_FPAFF */
118 }
119 
120 static void __init cps_prepare_cpus(unsigned int max_cpus)
121 {
122 	unsigned ncores, core_vpes, c, cca;
123 	bool cca_unsuitable, cores_limited;
124 	u32 *entry_code;
125 
126 	mips_mt_set_cpuoptions();
127 
128 	/* Detect whether the CCA is unsuited to multi-core SMP */
129 	cca = read_c0_config() & CONF_CM_CMASK;
130 	switch (cca) {
131 	case 0x4: /* CWBE */
132 	case 0x5: /* CWB */
133 		/* The CCA is coherent, multi-core is fine */
134 		cca_unsuitable = false;
135 		break;
136 
137 	default:
138 		/* CCA is not coherent, multi-core is not usable */
139 		cca_unsuitable = true;
140 	}
141 
142 	/* Warn the user if the CCA prevents multi-core */
143 	cores_limited = false;
144 	if (cca_unsuitable || cpu_has_dc_aliases) {
145 		for_each_present_cpu(c) {
146 			if (cpus_are_siblings(smp_processor_id(), c))
147 				continue;
148 
149 			set_cpu_present(c, false);
150 			cores_limited = true;
151 		}
152 	}
153 	if (cores_limited)
154 		pr_warn("Using only one core due to %s%s%s\n",
155 			cca_unsuitable ? "unsuitable CCA" : "",
156 			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
157 			cpu_has_dc_aliases ? "dcache aliasing" : "");
158 
159 	/*
160 	 * Patch the start of mips_cps_core_entry to provide:
161 	 *
162 	 * s0 = kseg0 CCA
163 	 */
164 	entry_code = (u32 *)&mips_cps_core_entry;
165 	uasm_i_addiu(&entry_code, 16, 0, cca);
166 	UASM_i_LA(&entry_code, 17, (long)mips_gcr_base);
167 	BUG_ON((void *)entry_code > (void *)&mips_cps_core_entry_patch_end);
168 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
169 			   (unsigned long)entry_code);
170 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
171 		     (void *)entry_code - (void *)&mips_cps_core_entry);
172 	__sync();
173 
174 	/* Allocate core boot configuration structs */
175 	ncores = mips_cps_numcores(0);
176 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
177 					GFP_KERNEL);
178 	if (!mips_cps_core_bootcfg) {
179 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
180 		goto err_out;
181 	}
182 
183 	/* Allocate VPE boot configuration structs */
184 	for (c = 0; c < ncores; c++) {
185 		core_vpes = core_vpe_count(0, c);
186 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
187 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
188 				GFP_KERNEL);
189 		if (!mips_cps_core_bootcfg[c].vpe_config) {
190 			pr_err("Failed to allocate %u VPE boot configs\n",
191 			       core_vpes);
192 			goto err_out;
193 		}
194 	}
195 
196 	/* Mark this CPU as booted */
197 	atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
198 		   1 << cpu_vpe_id(&current_cpu_data));
199 
200 	return;
201 err_out:
202 	/* Clean up allocations */
203 	if (mips_cps_core_bootcfg) {
204 		for (c = 0; c < ncores; c++)
205 			kfree(mips_cps_core_bootcfg[c].vpe_config);
206 		kfree(mips_cps_core_bootcfg);
207 		mips_cps_core_bootcfg = NULL;
208 	}
209 
210 	/* Effectively disable SMP by declaring CPUs not present */
211 	for_each_possible_cpu(c) {
212 		if (c == 0)
213 			continue;
214 		set_cpu_present(c, false);
215 	}
216 }
217 
218 static void boot_core(unsigned int core, unsigned int vpe_id)
219 {
220 	u32 stat, seq_state;
221 	unsigned timeout;
222 
223 	/* Select the appropriate core */
224 	mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
225 
226 	/* Set its reset vector */
227 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
228 
229 	/* Ensure its coherency is disabled */
230 	write_gcr_co_coherence(0);
231 
232 	/* Start it with the legacy memory map and exception base */
233 	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
234 
235 	/* Ensure the core can access the GCRs */
236 	set_gcr_access(1 << core);
237 
238 	if (mips_cpc_present()) {
239 		/* Reset the core */
240 		mips_cpc_lock_other(core);
241 
242 		if (mips_cm_revision() >= CM_REV_CM3) {
243 			/* Run only the requested VP following the reset */
244 			write_cpc_co_vp_stop(0xf);
245 			write_cpc_co_vp_run(1 << vpe_id);
246 
247 			/*
248 			 * Ensure that the VP_RUN register is written before the
249 			 * core leaves reset.
250 			 */
251 			wmb();
252 		}
253 
254 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
255 
256 		timeout = 100;
257 		while (true) {
258 			stat = read_cpc_co_stat_conf();
259 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
260 			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
261 
262 			/* U6 == coherent execution, ie. the core is up */
263 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
264 				break;
265 
266 			/* Delay a little while before we start warning */
267 			if (timeout) {
268 				timeout--;
269 				mdelay(10);
270 				continue;
271 			}
272 
273 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
274 				core, stat);
275 			mdelay(1000);
276 		}
277 
278 		mips_cpc_unlock_other();
279 	} else {
280 		/* Take the core out of reset */
281 		write_gcr_co_reset_release(0);
282 	}
283 
284 	mips_cm_unlock_other();
285 
286 	/* The core is now powered up */
287 	bitmap_set(core_power, core, 1);
288 }
289 
290 static void remote_vpe_boot(void *dummy)
291 {
292 	unsigned core = cpu_core(&current_cpu_data);
293 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
294 
295 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
296 }
297 
298 static int cps_boot_secondary(int cpu, struct task_struct *idle)
299 {
300 	unsigned core = cpu_core(&cpu_data[cpu]);
301 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
302 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
303 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
304 	unsigned long core_entry;
305 	unsigned int remote;
306 	int err;
307 
308 	/* We don't yet support booting CPUs in other clusters */
309 	if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
310 		return -ENOSYS;
311 
312 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
313 	vpe_cfg->sp = __KSTK_TOS(idle);
314 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
315 
316 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
317 
318 	preempt_disable();
319 
320 	if (!test_bit(core, core_power)) {
321 		/* Boot a VPE on a powered down core */
322 		boot_core(core, vpe_id);
323 		goto out;
324 	}
325 
326 	if (cpu_has_vp) {
327 		mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
328 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
329 		write_gcr_co_reset_base(core_entry);
330 		mips_cm_unlock_other();
331 	}
332 
333 	if (!cpus_are_siblings(cpu, smp_processor_id())) {
334 		/* Boot a VPE on another powered up core */
335 		for (remote = 0; remote < NR_CPUS; remote++) {
336 			if (!cpus_are_siblings(cpu, remote))
337 				continue;
338 			if (cpu_online(remote))
339 				break;
340 		}
341 		if (remote >= NR_CPUS) {
342 			pr_crit("No online CPU in core %u to start CPU%d\n",
343 				core, cpu);
344 			goto out;
345 		}
346 
347 		err = smp_call_function_single(remote, remote_vpe_boot,
348 					       NULL, 1);
349 		if (err)
350 			panic("Failed to call remote CPU\n");
351 		goto out;
352 	}
353 
354 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
355 
356 	/* Boot a VPE on this core */
357 	mips_cps_boot_vpes(core_cfg, vpe_id);
358 out:
359 	preempt_enable();
360 	return 0;
361 }
362 
363 static void cps_init_secondary(void)
364 {
365 	int core = cpu_core(&current_cpu_data);
366 
367 	/* Disable MT - we only want to run 1 TC per VPE */
368 	if (cpu_has_mipsmt)
369 		dmt();
370 
371 	if (mips_cm_revision() >= CM_REV_CM3) {
372 		unsigned int ident = read_gic_vl_ident();
373 
374 		/*
375 		 * Ensure that our calculation of the VP ID matches up with
376 		 * what the GIC reports, otherwise we'll have configured
377 		 * interrupts incorrectly.
378 		 */
379 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
380 	}
381 
382 	if (core > 0 && !read_gcr_cl_coherence())
383 		pr_warn("Core %u is not in coherent domain\n", core);
384 
385 	if (cpu_has_veic)
386 		clear_c0_status(ST0_IM);
387 	else
388 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
389 					 STATUSF_IP4 | STATUSF_IP5 |
390 					 STATUSF_IP6 | STATUSF_IP7);
391 }
392 
393 static void cps_smp_finish(void)
394 {
395 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
396 
397 #ifdef CONFIG_MIPS_MT_FPAFF
398 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
399 	if (cpu_has_fpu)
400 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
401 #endif /* CONFIG_MIPS_MT_FPAFF */
402 
403 	local_irq_enable();
404 }
405 
406 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
407 
408 enum cpu_death {
409 	CPU_DEATH_HALT,
410 	CPU_DEATH_POWER,
411 };
412 
413 static void cps_shutdown_this_cpu(enum cpu_death death)
414 {
415 	unsigned int cpu, core, vpe_id;
416 
417 	cpu = smp_processor_id();
418 	core = cpu_core(&cpu_data[cpu]);
419 
420 	if (death == CPU_DEATH_HALT) {
421 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
422 
423 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
424 		if (cpu_has_mipsmt) {
425 			/* Halt this TC */
426 			write_c0_tchalt(TCHALT_H);
427 			instruction_hazard();
428 		} else if (cpu_has_vp) {
429 			write_cpc_cl_vp_stop(1 << vpe_id);
430 
431 			/* Ensure that the VP_STOP register is written */
432 			wmb();
433 		}
434 	} else {
435 		if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
436 			pr_debug("Gating power to core %d\n", core);
437 			/* Power down the core */
438 			cps_pm_enter_state(CPS_PM_POWER_GATED);
439 		}
440 	}
441 }
442 
443 #ifdef CONFIG_KEXEC
444 
445 static void cps_kexec_nonboot_cpu(void)
446 {
447 	if (cpu_has_mipsmt || cpu_has_vp)
448 		cps_shutdown_this_cpu(CPU_DEATH_HALT);
449 	else
450 		cps_shutdown_this_cpu(CPU_DEATH_POWER);
451 }
452 
453 #endif /* CONFIG_KEXEC */
454 
455 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
456 
457 #ifdef CONFIG_HOTPLUG_CPU
458 
459 static int cps_cpu_disable(void)
460 {
461 	unsigned cpu = smp_processor_id();
462 	struct core_boot_config *core_cfg;
463 
464 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
465 		return -EINVAL;
466 
467 	core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
468 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
469 	smp_mb__after_atomic();
470 	set_cpu_online(cpu, false);
471 	calculate_cpu_foreign_map();
472 	irq_migrate_all_off_this_cpu();
473 
474 	return 0;
475 }
476 
477 static unsigned cpu_death_sibling;
478 static enum cpu_death cpu_death;
479 
480 void play_dead(void)
481 {
482 	unsigned int cpu;
483 
484 	local_irq_disable();
485 	idle_task_exit();
486 	cpu = smp_processor_id();
487 	cpu_death = CPU_DEATH_POWER;
488 
489 	pr_debug("CPU%d going offline\n", cpu);
490 
491 	if (cpu_has_mipsmt || cpu_has_vp) {
492 		/* Look for another online VPE within the core */
493 		for_each_online_cpu(cpu_death_sibling) {
494 			if (!cpus_are_siblings(cpu, cpu_death_sibling))
495 				continue;
496 
497 			/*
498 			 * There is an online VPE within the core. Just halt
499 			 * this TC and leave the core alone.
500 			 */
501 			cpu_death = CPU_DEATH_HALT;
502 			break;
503 		}
504 	}
505 
506 	cpuhp_ap_report_dead();
507 
508 	cps_shutdown_this_cpu(cpu_death);
509 
510 	/* This should never be reached */
511 	panic("Failed to offline CPU %u", cpu);
512 }
513 
514 static void wait_for_sibling_halt(void *ptr_cpu)
515 {
516 	unsigned cpu = (unsigned long)ptr_cpu;
517 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
518 	unsigned halted;
519 	unsigned long flags;
520 
521 	do {
522 		local_irq_save(flags);
523 		settc(vpe_id);
524 		halted = read_tc_c0_tchalt();
525 		local_irq_restore(flags);
526 	} while (!(halted & TCHALT_H));
527 }
528 
529 static void cps_cpu_die(unsigned int cpu) { }
530 
531 static void cps_cleanup_dead_cpu(unsigned cpu)
532 {
533 	unsigned core = cpu_core(&cpu_data[cpu]);
534 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
535 	ktime_t fail_time;
536 	unsigned stat;
537 	int err;
538 
539 	/*
540 	 * Now wait for the CPU to actually offline. Without doing this that
541 	 * offlining may race with one or more of:
542 	 *
543 	 *   - Onlining the CPU again.
544 	 *   - Powering down the core if another VPE within it is offlined.
545 	 *   - A sibling VPE entering a non-coherent state.
546 	 *
547 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
548 	 * with which we could race, so do nothing.
549 	 */
550 	if (cpu_death == CPU_DEATH_POWER) {
551 		/*
552 		 * Wait for the core to enter a powered down or clock gated
553 		 * state, the latter happening when a JTAG probe is connected
554 		 * in which case the CPC will refuse to power down the core.
555 		 */
556 		fail_time = ktime_add_ms(ktime_get(), 2000);
557 		do {
558 			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
559 			mips_cpc_lock_other(core);
560 			stat = read_cpc_co_stat_conf();
561 			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
562 			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
563 			mips_cpc_unlock_other();
564 			mips_cm_unlock_other();
565 
566 			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
567 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
568 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
569 				break;
570 
571 			/*
572 			 * The core ought to have powered down, but didn't &
573 			 * now we don't really know what state it's in. It's
574 			 * likely that its _pwr_up pin has been wired to logic
575 			 * 1 & it powered back up as soon as we powered it
576 			 * down...
577 			 *
578 			 * The best we can do is warn the user & continue in
579 			 * the hope that the core is doing nothing harmful &
580 			 * might behave properly if we online it later.
581 			 */
582 			if (WARN(ktime_after(ktime_get(), fail_time),
583 				 "CPU%u hasn't powered down, seq. state %u\n",
584 				 cpu, stat))
585 				break;
586 		} while (1);
587 
588 		/* Indicate the core is powered off */
589 		bitmap_clear(core_power, core, 1);
590 	} else if (cpu_has_mipsmt) {
591 		/*
592 		 * Have a CPU with access to the offlined CPUs registers wait
593 		 * for its TC to halt.
594 		 */
595 		err = smp_call_function_single(cpu_death_sibling,
596 					       wait_for_sibling_halt,
597 					       (void *)(unsigned long)cpu, 1);
598 		if (err)
599 			panic("Failed to call remote sibling CPU\n");
600 	} else if (cpu_has_vp) {
601 		do {
602 			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
603 			stat = read_cpc_co_vp_running();
604 			mips_cm_unlock_other();
605 		} while (stat & (1 << vpe_id));
606 	}
607 }
608 
609 #endif /* CONFIG_HOTPLUG_CPU */
610 
611 static const struct plat_smp_ops cps_smp_ops = {
612 	.smp_setup		= cps_smp_setup,
613 	.prepare_cpus		= cps_prepare_cpus,
614 	.boot_secondary		= cps_boot_secondary,
615 	.init_secondary		= cps_init_secondary,
616 	.smp_finish		= cps_smp_finish,
617 	.send_ipi_single	= mips_smp_send_ipi_single,
618 	.send_ipi_mask		= mips_smp_send_ipi_mask,
619 #ifdef CONFIG_HOTPLUG_CPU
620 	.cpu_disable		= cps_cpu_disable,
621 	.cpu_die		= cps_cpu_die,
622 	.cleanup_dead_cpu	= cps_cleanup_dead_cpu,
623 #endif
624 #ifdef CONFIG_KEXEC
625 	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
626 #endif
627 };
628 
629 bool mips_cps_smp_in_use(void)
630 {
631 	extern const struct plat_smp_ops *mp_ops;
632 	return mp_ops == &cps_smp_ops;
633 }
634 
635 int register_cps_smp_ops(void)
636 {
637 	if (!mips_cm_present()) {
638 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
639 		return -ENODEV;
640 	}
641 
642 	/* check we have a GIC - we need one for IPIs */
643 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
644 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
645 		return -ENODEV;
646 	}
647 
648 	register_smp_ops(&cps_smp_ops);
649 	return 0;
650 }
651