xref: /linux/arch/mips/kernel/smp-cps.c (revision 3590692a136d75e39cd67b0f23e032669fcdbcd2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/slab.h>
14 #include <linux/smp.h>
15 #include <linux/types.h>
16 #include <linux/irq.h>
17 
18 #include <asm/bcache.h>
19 #include <asm/mips-cps.h>
20 #include <asm/mips_mt.h>
21 #include <asm/mipsregs.h>
22 #include <asm/pm-cps.h>
23 #include <asm/r4kcache.h>
24 #include <asm/regdef.h>
25 #include <asm/smp.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29 
30 #define BEV_VEC_SIZE	0x500
31 #define BEV_VEC_ALIGN	0x1000
32 
33 enum label_id {
34 	label_not_nmi = 1,
35 };
36 
37 UASM_L_LA(_not_nmi)
38 
39 static u64 core_entry_reg;
40 static phys_addr_t cps_vec_pa;
41 
42 struct cluster_boot_config *mips_cps_cluster_bootcfg;
43 
44 static void power_up_other_cluster(unsigned int cluster)
45 {
46 	u32 stat, seq_state;
47 	unsigned int timeout;
48 
49 	mips_cm_lock_other(cluster, CM_GCR_Cx_OTHER_CORE_CM, 0,
50 			   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
51 	stat = read_cpc_co_stat_conf();
52 	mips_cm_unlock_other();
53 
54 	seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
55 	seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
56 	if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U5)
57 		return;
58 
59 	/* Set endianness & power up the CM */
60 	mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
61 	write_cpc_redir_sys_config(IS_ENABLED(CONFIG_CPU_BIG_ENDIAN));
62 	write_cpc_redir_pwrup_ctl(1);
63 	mips_cm_unlock_other();
64 
65 	/* Wait for the CM to start up */
66 	timeout = 1000;
67 	mips_cm_lock_other(cluster, CM_GCR_Cx_OTHER_CORE_CM, 0,
68 			   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
69 	while (1) {
70 		stat = read_cpc_co_stat_conf();
71 		seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
72 		seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
73 		if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U5)
74 			break;
75 
76 		if (timeout) {
77 			mdelay(1);
78 			timeout--;
79 		} else {
80 			pr_warn("Waiting for cluster %u CM to power up... STAT_CONF=0x%x\n",
81 				cluster, stat);
82 			mdelay(1000);
83 		}
84 	}
85 
86 	mips_cm_unlock_other();
87 }
88 
89 static unsigned __init core_vpe_count(unsigned int cluster, unsigned core)
90 {
91 	return min(smp_max_threads, mips_cps_numvps(cluster, core));
92 }
93 
94 static void __init *mips_cps_build_core_entry(void *addr)
95 {
96 	extern void (*nmi_handler)(void);
97 	u32 *p = addr;
98 	u32 val;
99 	struct uasm_label labels[2];
100 	struct uasm_reloc relocs[2];
101 	struct uasm_label *l = labels;
102 	struct uasm_reloc *r = relocs;
103 
104 	memset(labels, 0, sizeof(labels));
105 	memset(relocs, 0, sizeof(relocs));
106 
107 	uasm_i_mfc0(&p, GPR_K0, C0_STATUS);
108 	UASM_i_LA(&p, GPR_T9, ST0_NMI);
109 	uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T9);
110 
111 	uasm_il_bnez(&p, &r, GPR_K0, label_not_nmi);
112 	uasm_i_nop(&p);
113 	UASM_i_LA(&p, GPR_K0, (long)&nmi_handler);
114 
115 	uasm_l_not_nmi(&l, p);
116 
117 	val = CAUSEF_IV;
118 	uasm_i_lui(&p, GPR_K0, val >> 16);
119 	uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
120 	uasm_i_mtc0(&p, GPR_K0, C0_CAUSE);
121 	val = ST0_CU1 | ST0_CU0 | ST0_BEV | ST0_KX_IF_64;
122 	uasm_i_lui(&p, GPR_K0, val >> 16);
123 	uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
124 	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
125 	uasm_i_ehb(&p);
126 	uasm_i_ori(&p, GPR_A0, 0, read_c0_config() & CONF_CM_CMASK);
127 	UASM_i_LA(&p, GPR_A1, (long)mips_gcr_base);
128 #if defined(KBUILD_64BIT_SYM32) || defined(CONFIG_32BIT)
129 	UASM_i_LA(&p, GPR_T9, CKSEG1ADDR(__pa_symbol(mips_cps_core_boot)));
130 #else
131 	UASM_i_LA(&p, GPR_T9, TO_UNCAC(__pa_symbol(mips_cps_core_boot)));
132 #endif
133 	uasm_i_jr(&p, GPR_T9);
134 	uasm_i_nop(&p);
135 
136 	uasm_resolve_relocs(relocs, labels);
137 
138 	return p;
139 }
140 
141 static bool __init check_64bit_reset(void)
142 {
143 	bool cx_64bit_reset = false;
144 
145 	mips_cm_lock_other(0, 0, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
146 	write_gcr_co_reset64_base(CM_GCR_Cx_RESET64_BASE_BEVEXCBASE);
147 	if ((read_gcr_co_reset64_base() & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) ==
148 	    CM_GCR_Cx_RESET64_BASE_BEVEXCBASE)
149 		cx_64bit_reset = true;
150 	mips_cm_unlock_other();
151 
152 	return cx_64bit_reset;
153 }
154 
155 static int __init allocate_cps_vecs(void)
156 {
157 	/* Try to allocate in KSEG1 first */
158 	cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN,
159 						0x0, CSEGX_SIZE - 1);
160 
161 	if (cps_vec_pa)
162 		core_entry_reg = CKSEG1ADDR(cps_vec_pa) &
163 					CM_GCR_Cx_RESET_BASE_BEVEXCBASE;
164 
165 	if (!cps_vec_pa && mips_cm_is64) {
166 		phys_addr_t end;
167 
168 		if (check_64bit_reset()) {
169 			pr_info("VP Local Reset Exception Base support 47 bits address\n");
170 			end = MEMBLOCK_ALLOC_ANYWHERE;
171 		} else {
172 			end = SZ_4G - 1;
173 		}
174 		cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN, 0, end);
175 		if (cps_vec_pa) {
176 			if (check_64bit_reset())
177 				core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) |
178 					CM_GCR_Cx_RESET_BASE_MODE;
179 			else
180 				core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET_BASE_BEVEXCBASE) |
181 					CM_GCR_Cx_RESET_BASE_MODE;
182 		}
183 	}
184 
185 	if (!cps_vec_pa)
186 		return -ENOMEM;
187 
188 	return 0;
189 }
190 
191 static void __init setup_cps_vecs(void)
192 {
193 	void *cps_vec;
194 
195 	cps_vec = (void *)CKSEG1ADDR_OR_64BIT(cps_vec_pa);
196 	mips_cps_build_core_entry(cps_vec);
197 
198 	memcpy(cps_vec + 0x200, &excep_tlbfill, 0x80);
199 	memcpy(cps_vec + 0x280, &excep_xtlbfill, 0x80);
200 	memcpy(cps_vec + 0x300, &excep_cache, 0x80);
201 	memcpy(cps_vec + 0x380, &excep_genex, 0x80);
202 	memcpy(cps_vec + 0x400, &excep_intex, 0x80);
203 	memcpy(cps_vec + 0x480, &excep_ejtag, 0x80);
204 
205 	/* Make sure no prefetched data in cache */
206 	blast_inv_dcache_range(CKSEG0ADDR_OR_64BIT(cps_vec_pa), CKSEG0ADDR_OR_64BIT(cps_vec_pa) + BEV_VEC_SIZE);
207 	bc_inv(CKSEG0ADDR_OR_64BIT(cps_vec_pa), BEV_VEC_SIZE);
208 	__sync();
209 }
210 
211 static void __init cps_smp_setup(void)
212 {
213 	unsigned int nclusters, ncores, nvpes, core_vpes;
214 	int cl, c, v;
215 
216 	/* Detect & record VPE topology */
217 	nvpes = 0;
218 	nclusters = mips_cps_numclusters();
219 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
220 	for (cl = 0; cl < nclusters; cl++) {
221 		if (cl > 0)
222 			pr_cont(",");
223 		pr_cont("{");
224 
225 		if (mips_cm_revision() >= CM_REV_CM3_5)
226 			power_up_other_cluster(cl);
227 
228 		ncores = mips_cps_numcores(cl);
229 		for (c = 0; c < ncores; c++) {
230 			core_vpes = core_vpe_count(cl, c);
231 
232 			if (c > 0)
233 				pr_cont(",");
234 			pr_cont("%u", core_vpes);
235 
236 			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
237 			if (!cl && !c)
238 				smp_num_siblings = core_vpes;
239 			cpumask_set_cpu(nvpes, &__cpu_primary_thread_mask);
240 
241 			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
242 				cpu_set_cluster(&cpu_data[nvpes + v], cl);
243 				cpu_set_core(&cpu_data[nvpes + v], c);
244 				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
245 			}
246 
247 			nvpes += core_vpes;
248 		}
249 
250 		pr_cont("}");
251 	}
252 	pr_cont(" total %u\n", nvpes);
253 
254 	/* Indicate present CPUs (CPU being synonymous with VPE) */
255 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
256 		set_cpu_possible(v, true);
257 		set_cpu_present(v, true);
258 		__cpu_number_map[v] = v;
259 		__cpu_logical_map[v] = v;
260 	}
261 
262 	/* Set a coherent default CCA (CWB) */
263 	change_c0_config(CONF_CM_CMASK, 0x5);
264 
265 	/* Initialise core 0 */
266 	mips_cps_core_init();
267 
268 	/* Make core 0 coherent with everything */
269 	write_gcr_cl_coherence(0xff);
270 
271 	if (allocate_cps_vecs())
272 		pr_err("Failed to allocate CPS vectors\n");
273 
274 	if (core_entry_reg && mips_cm_revision() >= CM_REV_CM3)
275 		write_gcr_bev_base(core_entry_reg);
276 
277 #ifdef CONFIG_MIPS_MT_FPAFF
278 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
279 	if (cpu_has_fpu)
280 		cpumask_set_cpu(0, &mt_fpu_cpumask);
281 #endif /* CONFIG_MIPS_MT_FPAFF */
282 }
283 
284 static void __init cps_prepare_cpus(unsigned int max_cpus)
285 {
286 	unsigned int nclusters, ncores, core_vpes, c, cl, cca;
287 	bool cca_unsuitable, cores_limited;
288 	struct cluster_boot_config *cluster_bootcfg;
289 	struct core_boot_config *core_bootcfg;
290 
291 	mips_mt_set_cpuoptions();
292 
293 	if (!core_entry_reg) {
294 		pr_err("core_entry address unsuitable, disabling smp-cps\n");
295 		goto err_out;
296 	}
297 
298 	/* Detect whether the CCA is unsuited to multi-core SMP */
299 	cca = read_c0_config() & CONF_CM_CMASK;
300 	switch (cca) {
301 	case 0x4: /* CWBE */
302 	case 0x5: /* CWB */
303 		/* The CCA is coherent, multi-core is fine */
304 		cca_unsuitable = false;
305 		break;
306 
307 	default:
308 		/* CCA is not coherent, multi-core is not usable */
309 		cca_unsuitable = true;
310 	}
311 
312 	/* Warn the user if the CCA prevents multi-core */
313 	cores_limited = false;
314 	if (cca_unsuitable || cpu_has_dc_aliases) {
315 		for_each_present_cpu(c) {
316 			if (cpus_are_siblings(smp_processor_id(), c))
317 				continue;
318 
319 			set_cpu_present(c, false);
320 			cores_limited = true;
321 		}
322 	}
323 	if (cores_limited)
324 		pr_warn("Using only one core due to %s%s%s\n",
325 			cca_unsuitable ? "unsuitable CCA" : "",
326 			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
327 			cpu_has_dc_aliases ? "dcache aliasing" : "");
328 
329 	setup_cps_vecs();
330 
331 	/* Allocate cluster boot configuration structs */
332 	nclusters = mips_cps_numclusters();
333 	mips_cps_cluster_bootcfg = kcalloc(nclusters,
334 					   sizeof(*mips_cps_cluster_bootcfg),
335 					   GFP_KERNEL);
336 
337 	if (nclusters > 1)
338 		mips_cm_update_property();
339 
340 	for (cl = 0; cl < nclusters; cl++) {
341 		/* Allocate core boot configuration structs */
342 		ncores = mips_cps_numcores(cl);
343 		core_bootcfg = kcalloc(ncores, sizeof(*core_bootcfg),
344 					GFP_KERNEL);
345 		if (!core_bootcfg)
346 			goto err_out;
347 		mips_cps_cluster_bootcfg[cl].core_config = core_bootcfg;
348 
349 		mips_cps_cluster_bootcfg[cl].core_power =
350 			kcalloc(BITS_TO_LONGS(ncores), sizeof(unsigned long),
351 				GFP_KERNEL);
352 
353 		/* Allocate VPE boot configuration structs */
354 		for (c = 0; c < ncores; c++) {
355 			core_vpes = core_vpe_count(cl, c);
356 			core_bootcfg[c].vpe_config = kcalloc(core_vpes,
357 					sizeof(*core_bootcfg[c].vpe_config),
358 					GFP_KERNEL);
359 			if (!core_bootcfg[c].vpe_config)
360 				goto err_out;
361 		}
362 	}
363 
364 	/* Mark this CPU as powered up & booted */
365 	cl = cpu_cluster(&current_cpu_data);
366 	c = cpu_core(&current_cpu_data);
367 	cluster_bootcfg = &mips_cps_cluster_bootcfg[cl];
368 	cpu_smt_set_num_threads(core_vpes, core_vpes);
369 	core_bootcfg = &cluster_bootcfg->core_config[c];
370 	bitmap_set(cluster_bootcfg->core_power, cpu_core(&current_cpu_data), 1);
371 	atomic_set(&core_bootcfg->vpe_mask, 1 << cpu_vpe_id(&current_cpu_data));
372 
373 	return;
374 err_out:
375 	/* Clean up allocations */
376 	if (mips_cps_cluster_bootcfg) {
377 		for (cl = 0; cl < nclusters; cl++) {
378 			cluster_bootcfg = &mips_cps_cluster_bootcfg[cl];
379 			ncores = mips_cps_numcores(cl);
380 			for (c = 0; c < ncores; c++) {
381 				core_bootcfg = &cluster_bootcfg->core_config[c];
382 				kfree(core_bootcfg->vpe_config);
383 			}
384 			kfree(mips_cps_cluster_bootcfg[c].core_config);
385 		}
386 		kfree(mips_cps_cluster_bootcfg);
387 		mips_cps_cluster_bootcfg = NULL;
388 	}
389 
390 	/* Effectively disable SMP by declaring CPUs not present */
391 	for_each_possible_cpu(c) {
392 		if (c == 0)
393 			continue;
394 		set_cpu_present(c, false);
395 	}
396 }
397 
398 static void init_cluster_l2(void)
399 {
400 	u32 l2_cfg, l2sm_cop, result;
401 
402 	while (!mips_cm_is_l2_hci_broken) {
403 		l2_cfg = read_gcr_redir_l2_ram_config();
404 
405 		/* If HCI is not supported, use the state machine below */
406 		if (!(l2_cfg & CM_GCR_L2_RAM_CONFIG_PRESENT))
407 			break;
408 		if (!(l2_cfg & CM_GCR_L2_RAM_CONFIG_HCI_SUPPORTED))
409 			break;
410 
411 		/* If the HCI_DONE bit is set, we're finished */
412 		if (l2_cfg & CM_GCR_L2_RAM_CONFIG_HCI_DONE)
413 			return;
414 	}
415 
416 	l2sm_cop = read_gcr_redir_l2sm_cop();
417 	if (WARN(!(l2sm_cop & CM_GCR_L2SM_COP_PRESENT),
418 		 "L2 init not supported on this system yet"))
419 		return;
420 
421 	/* Clear L2 tag registers */
422 	write_gcr_redir_l2_tag_state(0);
423 	write_gcr_redir_l2_ecc(0);
424 
425 	/* Ensure the L2 tag writes complete before the state machine starts */
426 	mb();
427 
428 	/* Wait for the L2 state machine to be idle */
429 	do {
430 		l2sm_cop = read_gcr_redir_l2sm_cop();
431 	} while (l2sm_cop & CM_GCR_L2SM_COP_RUNNING);
432 
433 	/* Start a store tag operation */
434 	l2sm_cop = CM_GCR_L2SM_COP_TYPE_IDX_STORETAG;
435 	l2sm_cop <<= __ffs(CM_GCR_L2SM_COP_TYPE);
436 	l2sm_cop |= CM_GCR_L2SM_COP_CMD_START;
437 	write_gcr_redir_l2sm_cop(l2sm_cop);
438 
439 	/* Ensure the state machine starts before we poll for completion */
440 	mb();
441 
442 	/* Wait for the operation to be complete */
443 	do {
444 		l2sm_cop = read_gcr_redir_l2sm_cop();
445 		result = l2sm_cop & CM_GCR_L2SM_COP_RESULT;
446 		result >>= __ffs(CM_GCR_L2SM_COP_RESULT);
447 	} while (!result);
448 
449 	WARN(result != CM_GCR_L2SM_COP_RESULT_DONE_OK,
450 	     "L2 state machine failed cache init with error %u\n", result);
451 }
452 
453 static void boot_core(unsigned int cluster, unsigned int core,
454 		      unsigned int vpe_id)
455 {
456 	struct cluster_boot_config *cluster_cfg;
457 	u32 access, stat, seq_state;
458 	unsigned int timeout, ncores;
459 
460 	cluster_cfg = &mips_cps_cluster_bootcfg[cluster];
461 	ncores = mips_cps_numcores(cluster);
462 
463 	if ((cluster != cpu_cluster(&current_cpu_data)) &&
464 	    bitmap_empty(cluster_cfg->core_power, ncores)) {
465 		power_up_other_cluster(cluster);
466 
467 		mips_cm_lock_other(cluster, core, 0,
468 				   CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
469 
470 		/* Ensure cluster GCRs are where we expect */
471 		write_gcr_redir_base(read_gcr_base());
472 		write_gcr_redir_cpc_base(read_gcr_cpc_base());
473 		write_gcr_redir_gic_base(read_gcr_gic_base());
474 
475 		init_cluster_l2();
476 
477 		/* Mirror L2 configuration */
478 		write_gcr_redir_l2_only_sync_base(read_gcr_l2_only_sync_base());
479 		write_gcr_redir_l2_pft_control(read_gcr_l2_pft_control());
480 		write_gcr_redir_l2_pft_control_b(read_gcr_l2_pft_control_b());
481 
482 		/* Mirror ECC/parity setup */
483 		write_gcr_redir_err_control(read_gcr_err_control());
484 
485 		/* Set BEV base */
486 		write_gcr_redir_bev_base(core_entry_reg);
487 
488 		mips_cm_unlock_other();
489 	}
490 
491 	if (cluster != cpu_cluster(&current_cpu_data)) {
492 		mips_cm_lock_other(cluster, core, 0,
493 				   CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
494 
495 		/* Ensure the core can access the GCRs */
496 		access = read_gcr_redir_access();
497 		access |= BIT(core);
498 		write_gcr_redir_access(access);
499 
500 		mips_cm_unlock_other();
501 	} else {
502 		/* Ensure the core can access the GCRs */
503 		access = read_gcr_access();
504 		access |= BIT(core);
505 		write_gcr_access(access);
506 	}
507 
508 	/* Select the appropriate core */
509 	mips_cm_lock_other(cluster, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
510 
511 	/* Set its reset vector */
512 	if (mips_cm_is64)
513 		write_gcr_co_reset64_base(core_entry_reg);
514 	else
515 		write_gcr_co_reset_base(core_entry_reg);
516 
517 	/* Ensure its coherency is disabled */
518 	write_gcr_co_coherence(0);
519 
520 	/* Start it with the legacy memory map and exception base */
521 	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
522 
523 	/* Ensure the core can access the GCRs */
524 	if (mips_cm_revision() < CM_REV_CM3)
525 		set_gcr_access(1 << core);
526 	else
527 		set_gcr_access_cm3(1 << core);
528 
529 	if (mips_cpc_present()) {
530 		/* Reset the core */
531 		mips_cpc_lock_other(core);
532 
533 		if (mips_cm_revision() >= CM_REV_CM3) {
534 			/* Run only the requested VP following the reset */
535 			write_cpc_co_vp_stop(0xf);
536 			write_cpc_co_vp_run(1 << vpe_id);
537 
538 			/*
539 			 * Ensure that the VP_RUN register is written before the
540 			 * core leaves reset.
541 			 */
542 			wmb();
543 		}
544 
545 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
546 
547 		timeout = 100;
548 		while (true) {
549 			stat = read_cpc_co_stat_conf();
550 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
551 			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
552 
553 			/* U6 == coherent execution, ie. the core is up */
554 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
555 				break;
556 
557 			/* Delay a little while before we start warning */
558 			if (timeout) {
559 				timeout--;
560 				mdelay(10);
561 				continue;
562 			}
563 
564 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
565 				core, stat);
566 			mdelay(1000);
567 		}
568 
569 		mips_cpc_unlock_other();
570 	} else {
571 		/* Take the core out of reset */
572 		write_gcr_co_reset_release(0);
573 	}
574 
575 	mips_cm_unlock_other();
576 
577 	/* The core is now powered up */
578 	bitmap_set(cluster_cfg->core_power, core, 1);
579 
580 	/*
581 	 * Restore CM_PWRUP=0 so that the CM can power down if all the cores in
582 	 * the cluster do (eg. if they're all removed via hotplug.
583 	 */
584 	if (mips_cm_revision() >= CM_REV_CM3_5) {
585 		mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
586 		write_cpc_redir_pwrup_ctl(0);
587 		mips_cm_unlock_other();
588 	}
589 }
590 
591 static void remote_vpe_boot(void *dummy)
592 {
593 	unsigned int cluster = cpu_cluster(&current_cpu_data);
594 	unsigned core = cpu_core(&current_cpu_data);
595 	struct cluster_boot_config *cluster_cfg =
596 		&mips_cps_cluster_bootcfg[cluster];
597 	struct core_boot_config *core_cfg = &cluster_cfg->core_config[core];
598 
599 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
600 }
601 
602 static int cps_boot_secondary(int cpu, struct task_struct *idle)
603 {
604 	unsigned int cluster = cpu_cluster(&cpu_data[cpu]);
605 	unsigned core = cpu_core(&cpu_data[cpu]);
606 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
607 	struct cluster_boot_config *cluster_cfg =
608 		&mips_cps_cluster_bootcfg[cluster];
609 	struct core_boot_config *core_cfg = &cluster_cfg->core_config[core];
610 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
611 	unsigned int remote;
612 	int err;
613 
614 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
615 	vpe_cfg->sp = __KSTK_TOS(idle);
616 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
617 
618 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
619 
620 	preempt_disable();
621 
622 	if (!test_bit(core, cluster_cfg->core_power)) {
623 		/* Boot a VPE on a powered down core */
624 		boot_core(cluster, core, vpe_id);
625 		goto out;
626 	}
627 
628 	if (cpu_has_vp) {
629 		mips_cm_lock_other(cluster, core, vpe_id,
630 				   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
631 		if (mips_cm_is64)
632 			write_gcr_co_reset64_base(core_entry_reg);
633 		else
634 			write_gcr_co_reset_base(core_entry_reg);
635 		mips_cm_unlock_other();
636 	}
637 
638 	if (!cpus_are_siblings(cpu, smp_processor_id())) {
639 		/* Boot a VPE on another powered up core */
640 		for (remote = 0; remote < NR_CPUS; remote++) {
641 			if (!cpus_are_siblings(cpu, remote))
642 				continue;
643 			if (cpu_online(remote))
644 				break;
645 		}
646 		if (remote >= NR_CPUS) {
647 			pr_crit("No online CPU in core %u to start CPU%d\n",
648 				core, cpu);
649 			goto out;
650 		}
651 
652 		err = smp_call_function_single(remote, remote_vpe_boot,
653 					       NULL, 1);
654 		if (err)
655 			panic("Failed to call remote CPU\n");
656 		goto out;
657 	}
658 
659 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
660 
661 	/* Boot a VPE on this core */
662 	mips_cps_boot_vpes(core_cfg, vpe_id);
663 out:
664 	preempt_enable();
665 	return 0;
666 }
667 
668 static void cps_init_secondary(void)
669 {
670 	int core = cpu_core(&current_cpu_data);
671 
672 	/* Disable MT - we only want to run 1 TC per VPE */
673 	if (cpu_has_mipsmt)
674 		dmt();
675 
676 	if (mips_cm_revision() >= CM_REV_CM3) {
677 		unsigned int ident = read_gic_vl_ident();
678 
679 		/*
680 		 * Ensure that our calculation of the VP ID matches up with
681 		 * what the GIC reports, otherwise we'll have configured
682 		 * interrupts incorrectly.
683 		 */
684 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
685 	}
686 
687 	if (core > 0 && !read_gcr_cl_coherence())
688 		pr_warn("Core %u is not in coherent domain\n", core);
689 
690 	if (cpu_has_veic)
691 		clear_c0_status(ST0_IM);
692 	else
693 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
694 					 STATUSF_IP4 | STATUSF_IP5 |
695 					 STATUSF_IP6 | STATUSF_IP7);
696 }
697 
698 static void cps_smp_finish(void)
699 {
700 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
701 
702 #ifdef CONFIG_MIPS_MT_FPAFF
703 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
704 	if (cpu_has_fpu)
705 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
706 #endif /* CONFIG_MIPS_MT_FPAFF */
707 
708 	local_irq_enable();
709 }
710 
711 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC_CORE)
712 
713 enum cpu_death {
714 	CPU_DEATH_HALT,
715 	CPU_DEATH_POWER,
716 };
717 
718 static void cps_shutdown_this_cpu(enum cpu_death death)
719 {
720 	unsigned int cpu, core, vpe_id;
721 
722 	cpu = smp_processor_id();
723 	core = cpu_core(&cpu_data[cpu]);
724 
725 	if (death == CPU_DEATH_HALT) {
726 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
727 
728 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
729 		if (cpu_has_mipsmt) {
730 			/* Halt this TC */
731 			write_c0_tchalt(TCHALT_H);
732 			instruction_hazard();
733 		} else if (cpu_has_vp) {
734 			write_cpc_cl_vp_stop(1 << vpe_id);
735 
736 			/* Ensure that the VP_STOP register is written */
737 			wmb();
738 		}
739 	} else {
740 		if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
741 			pr_debug("Gating power to core %d\n", core);
742 			/* Power down the core */
743 			cps_pm_enter_state(CPS_PM_POWER_GATED);
744 		}
745 	}
746 }
747 
748 #ifdef CONFIG_KEXEC_CORE
749 
750 static void cps_kexec_nonboot_cpu(void)
751 {
752 	if (cpu_has_mipsmt || cpu_has_vp)
753 		cps_shutdown_this_cpu(CPU_DEATH_HALT);
754 	else
755 		cps_shutdown_this_cpu(CPU_DEATH_POWER);
756 }
757 
758 #endif /* CONFIG_KEXEC_CORE */
759 
760 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC_CORE */
761 
762 #ifdef CONFIG_HOTPLUG_CPU
763 
764 static int cps_cpu_disable(void)
765 {
766 	unsigned cpu = smp_processor_id();
767 	struct cluster_boot_config *cluster_cfg;
768 	struct core_boot_config *core_cfg;
769 
770 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
771 		return -EINVAL;
772 
773 	cluster_cfg = &mips_cps_cluster_bootcfg[cpu_cluster(&current_cpu_data)];
774 	core_cfg = &cluster_cfg->core_config[cpu_core(&current_cpu_data)];
775 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
776 	smp_mb__after_atomic();
777 	set_cpu_online(cpu, false);
778 	calculate_cpu_foreign_map();
779 	irq_migrate_all_off_this_cpu();
780 
781 	return 0;
782 }
783 
784 static unsigned cpu_death_sibling;
785 static enum cpu_death cpu_death;
786 
787 void play_dead(void)
788 {
789 	unsigned int cpu;
790 
791 	local_irq_disable();
792 	idle_task_exit();
793 	cpu = smp_processor_id();
794 	cpu_death = CPU_DEATH_POWER;
795 
796 	pr_debug("CPU%d going offline\n", cpu);
797 
798 	if (cpu_has_mipsmt || cpu_has_vp) {
799 		/* Look for another online VPE within the core */
800 		for_each_online_cpu(cpu_death_sibling) {
801 			if (!cpus_are_siblings(cpu, cpu_death_sibling))
802 				continue;
803 
804 			/*
805 			 * There is an online VPE within the core. Just halt
806 			 * this TC and leave the core alone.
807 			 */
808 			cpu_death = CPU_DEATH_HALT;
809 			break;
810 		}
811 	}
812 
813 	cpuhp_ap_report_dead();
814 
815 	cps_shutdown_this_cpu(cpu_death);
816 
817 	/* This should never be reached */
818 	panic("Failed to offline CPU %u", cpu);
819 }
820 
821 static void wait_for_sibling_halt(void *ptr_cpu)
822 {
823 	unsigned cpu = (unsigned long)ptr_cpu;
824 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
825 	unsigned halted;
826 	unsigned long flags;
827 
828 	do {
829 		local_irq_save(flags);
830 		settc(vpe_id);
831 		halted = read_tc_c0_tchalt();
832 		local_irq_restore(flags);
833 	} while (!(halted & TCHALT_H));
834 }
835 
836 static void cps_cpu_die(unsigned int cpu) { }
837 
838 static void cps_cleanup_dead_cpu(unsigned cpu)
839 {
840 	unsigned int cluster = cpu_cluster(&cpu_data[cpu]);
841 	unsigned core = cpu_core(&cpu_data[cpu]);
842 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
843 	ktime_t fail_time;
844 	unsigned stat;
845 	int err;
846 	struct cluster_boot_config *cluster_cfg;
847 
848 	cluster_cfg = &mips_cps_cluster_bootcfg[cluster];
849 
850 	/*
851 	 * Now wait for the CPU to actually offline. Without doing this that
852 	 * offlining may race with one or more of:
853 	 *
854 	 *   - Onlining the CPU again.
855 	 *   - Powering down the core if another VPE within it is offlined.
856 	 *   - A sibling VPE entering a non-coherent state.
857 	 *
858 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
859 	 * with which we could race, so do nothing.
860 	 */
861 	if (cpu_death == CPU_DEATH_POWER) {
862 		/*
863 		 * Wait for the core to enter a powered down or clock gated
864 		 * state, the latter happening when a JTAG probe is connected
865 		 * in which case the CPC will refuse to power down the core.
866 		 */
867 		fail_time = ktime_add_ms(ktime_get(), 2000);
868 		do {
869 			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
870 			mips_cpc_lock_other(core);
871 			stat = read_cpc_co_stat_conf();
872 			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
873 			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
874 			mips_cpc_unlock_other();
875 			mips_cm_unlock_other();
876 
877 			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
878 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
879 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
880 				break;
881 
882 			/*
883 			 * The core ought to have powered down, but didn't &
884 			 * now we don't really know what state it's in. It's
885 			 * likely that its _pwr_up pin has been wired to logic
886 			 * 1 & it powered back up as soon as we powered it
887 			 * down...
888 			 *
889 			 * The best we can do is warn the user & continue in
890 			 * the hope that the core is doing nothing harmful &
891 			 * might behave properly if we online it later.
892 			 */
893 			if (WARN(ktime_after(ktime_get(), fail_time),
894 				 "CPU%u hasn't powered down, seq. state %u\n",
895 				 cpu, stat))
896 				break;
897 		} while (1);
898 
899 		/* Indicate the core is powered off */
900 		bitmap_clear(cluster_cfg->core_power, core, 1);
901 	} else if (cpu_has_mipsmt) {
902 		/*
903 		 * Have a CPU with access to the offlined CPUs registers wait
904 		 * for its TC to halt.
905 		 */
906 		err = smp_call_function_single(cpu_death_sibling,
907 					       wait_for_sibling_halt,
908 					       (void *)(unsigned long)cpu, 1);
909 		if (err)
910 			panic("Failed to call remote sibling CPU\n");
911 	} else if (cpu_has_vp) {
912 		do {
913 			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
914 			stat = read_cpc_co_vp_running();
915 			mips_cm_unlock_other();
916 		} while (stat & (1 << vpe_id));
917 	}
918 }
919 
920 #endif /* CONFIG_HOTPLUG_CPU */
921 
922 static const struct plat_smp_ops cps_smp_ops = {
923 	.smp_setup		= cps_smp_setup,
924 	.prepare_cpus		= cps_prepare_cpus,
925 	.boot_secondary		= cps_boot_secondary,
926 	.init_secondary		= cps_init_secondary,
927 	.smp_finish		= cps_smp_finish,
928 	.send_ipi_single	= mips_smp_send_ipi_single,
929 	.send_ipi_mask		= mips_smp_send_ipi_mask,
930 #ifdef CONFIG_HOTPLUG_CPU
931 	.cpu_disable		= cps_cpu_disable,
932 	.cpu_die		= cps_cpu_die,
933 	.cleanup_dead_cpu	= cps_cleanup_dead_cpu,
934 #endif
935 #ifdef CONFIG_KEXEC_CORE
936 	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
937 #endif
938 };
939 
940 bool mips_cps_smp_in_use(void)
941 {
942 	extern const struct plat_smp_ops *mp_ops;
943 	return mp_ops == &cps_smp_ops;
944 }
945 
946 int register_cps_smp_ops(void)
947 {
948 	if (!mips_cm_present()) {
949 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
950 		return -ENODEV;
951 	}
952 
953 	/* check we have a GIC - we need one for IPIs */
954 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
955 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
956 		return -ENODEV;
957 	}
958 
959 	register_smp_ops(&cps_smp_ops);
960 	return 0;
961 }
962