xref: /linux/arch/mips/kernel/smp-cps.c (revision 2a2c74b2efcb1a0ca3fdcb5fbb96ad8de6a29177)
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/io.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/smp.h>
15 #include <linux/types.h>
16 
17 #include <asm/cacheflush.h>
18 #include <asm/gic.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mips_mt.h>
22 #include <asm/mipsregs.h>
23 #include <asm/smp-cps.h>
24 #include <asm/time.h>
25 #include <asm/uasm.h>
26 
27 static DECLARE_BITMAP(core_power, NR_CPUS);
28 
29 struct boot_config mips_cps_bootcfg;
30 
31 static void init_core(void)
32 {
33 	unsigned int nvpes, t;
34 	u32 mvpconf0, vpeconf0, vpecontrol, tcstatus, tcbind, status;
35 
36 	if (!cpu_has_mipsmt)
37 		return;
38 
39 	/* Enter VPE configuration state */
40 	dvpe();
41 	set_c0_mvpcontrol(MVPCONTROL_VPC);
42 
43 	/* Retrieve the count of VPEs in this core */
44 	mvpconf0 = read_c0_mvpconf0();
45 	nvpes = ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
46 	smp_num_siblings = nvpes;
47 
48 	for (t = 1; t < nvpes; t++) {
49 		/* Use a 1:1 mapping of TC index to VPE index */
50 		settc(t);
51 
52 		/* Bind 1 TC to this VPE */
53 		tcbind = read_tc_c0_tcbind();
54 		tcbind &= ~TCBIND_CURVPE;
55 		tcbind |= t << TCBIND_CURVPE_SHIFT;
56 		write_tc_c0_tcbind(tcbind);
57 
58 		/* Set exclusive TC, non-active, master */
59 		vpeconf0 = read_vpe_c0_vpeconf0();
60 		vpeconf0 &= ~(VPECONF0_XTC | VPECONF0_VPA);
61 		vpeconf0 |= t << VPECONF0_XTC_SHIFT;
62 		vpeconf0 |= VPECONF0_MVP;
63 		write_vpe_c0_vpeconf0(vpeconf0);
64 
65 		/* Declare TC non-active, non-allocatable & interrupt exempt */
66 		tcstatus = read_tc_c0_tcstatus();
67 		tcstatus &= ~(TCSTATUS_A | TCSTATUS_DA);
68 		tcstatus |= TCSTATUS_IXMT;
69 		write_tc_c0_tcstatus(tcstatus);
70 
71 		/* Halt the TC */
72 		write_tc_c0_tchalt(TCHALT_H);
73 
74 		/* Allow only 1 TC to execute */
75 		vpecontrol = read_vpe_c0_vpecontrol();
76 		vpecontrol &= ~VPECONTROL_TE;
77 		write_vpe_c0_vpecontrol(vpecontrol);
78 
79 		/* Copy (most of) Status from VPE 0 */
80 		status = read_c0_status();
81 		status &= ~(ST0_IM | ST0_IE | ST0_KSU);
82 		status |= ST0_CU0;
83 		write_vpe_c0_status(status);
84 
85 		/* Copy Config from VPE 0 */
86 		write_vpe_c0_config(read_c0_config());
87 		write_vpe_c0_config7(read_c0_config7());
88 
89 		/* Ensure no software interrupts are pending */
90 		write_vpe_c0_cause(0);
91 
92 		/* Sync Count */
93 		write_vpe_c0_count(read_c0_count());
94 	}
95 
96 	/* Leave VPE configuration state */
97 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
98 }
99 
100 static void __init cps_smp_setup(void)
101 {
102 	unsigned int ncores, nvpes, core_vpes;
103 	int c, v;
104 	u32 core_cfg, *entry_code;
105 
106 	/* Detect & record VPE topology */
107 	ncores = mips_cm_numcores();
108 	pr_info("VPE topology ");
109 	for (c = nvpes = 0; c < ncores; c++) {
110 		if (cpu_has_mipsmt && config_enabled(CONFIG_MIPS_MT_SMP)) {
111 			write_gcr_cl_other(c << CM_GCR_Cx_OTHER_CORENUM_SHF);
112 			core_cfg = read_gcr_co_config();
113 			core_vpes = ((core_cfg & CM_GCR_Cx_CONFIG_PVPE_MSK) >>
114 				     CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
115 		} else {
116 			core_vpes = 1;
117 		}
118 
119 		pr_cont("%c%u", c ? ',' : '{', core_vpes);
120 
121 		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
122 			cpu_data[nvpes + v].core = c;
123 #ifdef CONFIG_MIPS_MT_SMP
124 			cpu_data[nvpes + v].vpe_id = v;
125 #endif
126 		}
127 
128 		nvpes += core_vpes;
129 	}
130 	pr_cont("} total %u\n", nvpes);
131 
132 	/* Indicate present CPUs (CPU being synonymous with VPE) */
133 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
134 		set_cpu_possible(v, true);
135 		set_cpu_present(v, true);
136 		__cpu_number_map[v] = v;
137 		__cpu_logical_map[v] = v;
138 	}
139 
140 	/* Core 0 is powered up (we're running on it) */
141 	bitmap_set(core_power, 0, 1);
142 
143 	/* Disable MT - we only want to run 1 TC per VPE */
144 	if (cpu_has_mipsmt)
145 		dmt();
146 
147 	/* Initialise core 0 */
148 	init_core();
149 
150 	/* Patch the start of mips_cps_core_entry to provide the CM base */
151 	entry_code = (u32 *)&mips_cps_core_entry;
152 	UASM_i_LA(&entry_code, 3, (long)mips_cm_base);
153 
154 	/* Make core 0 coherent with everything */
155 	write_gcr_cl_coherence(0xff);
156 }
157 
158 static void __init cps_prepare_cpus(unsigned int max_cpus)
159 {
160 	mips_mt_set_cpuoptions();
161 }
162 
163 static void boot_core(struct boot_config *cfg)
164 {
165 	u32 access;
166 
167 	/* Select the appropriate core */
168 	write_gcr_cl_other(cfg->core << CM_GCR_Cx_OTHER_CORENUM_SHF);
169 
170 	/* Set its reset vector */
171 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
172 
173 	/* Ensure its coherency is disabled */
174 	write_gcr_co_coherence(0);
175 
176 	/* Ensure the core can access the GCRs */
177 	access = read_gcr_access();
178 	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + cfg->core);
179 	write_gcr_access(access);
180 
181 	/* Copy cfg */
182 	mips_cps_bootcfg = *cfg;
183 
184 	if (mips_cpc_present()) {
185 		/* Select the appropriate core */
186 		write_cpc_cl_other(cfg->core << CPC_Cx_OTHER_CORENUM_SHF);
187 
188 		/* Reset the core */
189 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
190 	} else {
191 		/* Take the core out of reset */
192 		write_gcr_co_reset_release(0);
193 	}
194 
195 	/* The core is now powered up */
196 	bitmap_set(core_power, cfg->core, 1);
197 }
198 
199 static void boot_vpe(void *info)
200 {
201 	struct boot_config *cfg = info;
202 	u32 tcstatus, vpeconf0;
203 
204 	/* Enter VPE configuration state */
205 	dvpe();
206 	set_c0_mvpcontrol(MVPCONTROL_VPC);
207 
208 	settc(cfg->vpe);
209 
210 	/* Set the TC restart PC */
211 	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
212 
213 	/* Activate the TC, allow interrupts */
214 	tcstatus = read_tc_c0_tcstatus();
215 	tcstatus &= ~TCSTATUS_IXMT;
216 	tcstatus |= TCSTATUS_A;
217 	write_tc_c0_tcstatus(tcstatus);
218 
219 	/* Clear the TC halt bit */
220 	write_tc_c0_tchalt(0);
221 
222 	/* Activate the VPE */
223 	vpeconf0 = read_vpe_c0_vpeconf0();
224 	vpeconf0 |= VPECONF0_VPA;
225 	write_vpe_c0_vpeconf0(vpeconf0);
226 
227 	/* Set the stack & global pointer registers */
228 	write_tc_gpr_sp(cfg->sp);
229 	write_tc_gpr_gp(cfg->gp);
230 
231 	/* Leave VPE configuration state */
232 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
233 
234 	/* Enable other VPEs to execute */
235 	evpe(EVPE_ENABLE);
236 }
237 
238 static void cps_boot_secondary(int cpu, struct task_struct *idle)
239 {
240 	struct boot_config cfg;
241 	unsigned int remote;
242 	int err;
243 
244 	cfg.core = cpu_data[cpu].core;
245 	cfg.vpe = cpu_vpe_id(&cpu_data[cpu]);
246 	cfg.pc = (unsigned long)&smp_bootstrap;
247 	cfg.sp = __KSTK_TOS(idle);
248 	cfg.gp = (unsigned long)task_thread_info(idle);
249 
250 	if (!test_bit(cfg.core, core_power)) {
251 		/* Boot a VPE on a powered down core */
252 		boot_core(&cfg);
253 		return;
254 	}
255 
256 	if (cfg.core != current_cpu_data.core) {
257 		/* Boot a VPE on another powered up core */
258 		for (remote = 0; remote < NR_CPUS; remote++) {
259 			if (cpu_data[remote].core != cfg.core)
260 				continue;
261 			if (cpu_online(remote))
262 				break;
263 		}
264 		BUG_ON(remote >= NR_CPUS);
265 
266 		err = smp_call_function_single(remote, boot_vpe, &cfg, 1);
267 		if (err)
268 			panic("Failed to call remote CPU\n");
269 		return;
270 	}
271 
272 	BUG_ON(!cpu_has_mipsmt);
273 
274 	/* Boot a VPE on this core */
275 	boot_vpe(&cfg);
276 }
277 
278 static void cps_init_secondary(void)
279 {
280 	/* Disable MT - we only want to run 1 TC per VPE */
281 	if (cpu_has_mipsmt)
282 		dmt();
283 
284 	/* TODO: revisit this assumption once hotplug is implemented */
285 	if (cpu_vpe_id(&current_cpu_data) == 0)
286 		init_core();
287 
288 	change_c0_status(ST0_IM, STATUSF_IP3 | STATUSF_IP4 |
289 				 STATUSF_IP6 | STATUSF_IP7);
290 }
291 
292 static void cps_smp_finish(void)
293 {
294 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
295 
296 #ifdef CONFIG_MIPS_MT_FPAFF
297 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
298 	if (cpu_has_fpu)
299 		cpu_set(smp_processor_id(), mt_fpu_cpumask);
300 #endif /* CONFIG_MIPS_MT_FPAFF */
301 
302 	local_irq_enable();
303 }
304 
305 static void cps_cpus_done(void)
306 {
307 }
308 
309 static struct plat_smp_ops cps_smp_ops = {
310 	.smp_setup		= cps_smp_setup,
311 	.prepare_cpus		= cps_prepare_cpus,
312 	.boot_secondary		= cps_boot_secondary,
313 	.init_secondary		= cps_init_secondary,
314 	.smp_finish		= cps_smp_finish,
315 	.send_ipi_single	= gic_send_ipi_single,
316 	.send_ipi_mask		= gic_send_ipi_mask,
317 	.cpus_done		= cps_cpus_done,
318 };
319 
320 int register_cps_smp_ops(void)
321 {
322 	if (!mips_cm_present()) {
323 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
324 		return -ENODEV;
325 	}
326 
327 	/* check we have a GIC - we need one for IPIs */
328 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
329 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
330 		return -ENODEV;
331 	}
332 
333 	register_smp_ops(&cps_smp_ops);
334 	return 0;
335 }
336