xref: /linux/arch/mips/kernel/smp-cps.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/types.h>
18 
19 #include <asm/bcache.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29 
30 static bool threads_disabled;
31 static DECLARE_BITMAP(core_power, NR_CPUS);
32 
33 struct core_boot_config *mips_cps_core_bootcfg;
34 
35 static int __init setup_nothreads(char *s)
36 {
37 	threads_disabled = true;
38 	return 0;
39 }
40 early_param("nothreads", setup_nothreads);
41 
42 static unsigned core_vpe_count(unsigned core)
43 {
44 	unsigned cfg;
45 
46 	if (threads_disabled)
47 		return 1;
48 
49 	if ((!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
50 		&& (!config_enabled(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
51 		return 1;
52 
53 	mips_cm_lock_other(core, 0);
54 	cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
55 	mips_cm_unlock_other();
56 	return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
57 }
58 
59 static void __init cps_smp_setup(void)
60 {
61 	unsigned int ncores, nvpes, core_vpes;
62 	unsigned long core_entry;
63 	int c, v;
64 
65 	/* Detect & record VPE topology */
66 	ncores = mips_cm_numcores();
67 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
68 	for (c = nvpes = 0; c < ncores; c++) {
69 		core_vpes = core_vpe_count(c);
70 		pr_cont("%c%u", c ? ',' : '{', core_vpes);
71 
72 		/* Use the number of VPEs in core 0 for smp_num_siblings */
73 		if (!c)
74 			smp_num_siblings = core_vpes;
75 
76 		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
77 			cpu_data[nvpes + v].core = c;
78 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
79 			cpu_data[nvpes + v].vpe_id = v;
80 #endif
81 		}
82 
83 		nvpes += core_vpes;
84 	}
85 	pr_cont("} total %u\n", nvpes);
86 
87 	/* Indicate present CPUs (CPU being synonymous with VPE) */
88 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
89 		set_cpu_possible(v, true);
90 		set_cpu_present(v, true);
91 		__cpu_number_map[v] = v;
92 		__cpu_logical_map[v] = v;
93 	}
94 
95 	/* Set a coherent default CCA (CWB) */
96 	change_c0_config(CONF_CM_CMASK, 0x5);
97 
98 	/* Core 0 is powered up (we're running on it) */
99 	bitmap_set(core_power, 0, 1);
100 
101 	/* Initialise core 0 */
102 	mips_cps_core_init();
103 
104 	/* Make core 0 coherent with everything */
105 	write_gcr_cl_coherence(0xff);
106 
107 	if (mips_cm_revision() >= CM_REV_CM3) {
108 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109 		write_gcr_bev_base(core_entry);
110 	}
111 
112 #ifdef CONFIG_MIPS_MT_FPAFF
113 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
114 	if (cpu_has_fpu)
115 		cpumask_set_cpu(0, &mt_fpu_cpumask);
116 #endif /* CONFIG_MIPS_MT_FPAFF */
117 }
118 
119 static void __init cps_prepare_cpus(unsigned int max_cpus)
120 {
121 	unsigned ncores, core_vpes, c, cca;
122 	bool cca_unsuitable;
123 	u32 *entry_code;
124 
125 	mips_mt_set_cpuoptions();
126 
127 	/* Detect whether the CCA is unsuited to multi-core SMP */
128 	cca = read_c0_config() & CONF_CM_CMASK;
129 	switch (cca) {
130 	case 0x4: /* CWBE */
131 	case 0x5: /* CWB */
132 		/* The CCA is coherent, multi-core is fine */
133 		cca_unsuitable = false;
134 		break;
135 
136 	default:
137 		/* CCA is not coherent, multi-core is not usable */
138 		cca_unsuitable = true;
139 	}
140 
141 	/* Warn the user if the CCA prevents multi-core */
142 	ncores = mips_cm_numcores();
143 	if (cca_unsuitable && ncores > 1) {
144 		pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
145 			cca);
146 
147 		for_each_present_cpu(c) {
148 			if (cpu_data[c].core)
149 				set_cpu_present(c, false);
150 		}
151 	}
152 
153 	/*
154 	 * Patch the start of mips_cps_core_entry to provide:
155 	 *
156 	 * s0 = kseg0 CCA
157 	 */
158 	entry_code = (u32 *)&mips_cps_core_entry;
159 	uasm_i_addiu(&entry_code, 16, 0, cca);
160 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
161 			   (unsigned long)entry_code);
162 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
163 		     (void *)entry_code - (void *)&mips_cps_core_entry);
164 	__sync();
165 
166 	/* Allocate core boot configuration structs */
167 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
168 					GFP_KERNEL);
169 	if (!mips_cps_core_bootcfg) {
170 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
171 		goto err_out;
172 	}
173 
174 	/* Allocate VPE boot configuration structs */
175 	for (c = 0; c < ncores; c++) {
176 		core_vpes = core_vpe_count(c);
177 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
178 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
179 				GFP_KERNEL);
180 		if (!mips_cps_core_bootcfg[c].vpe_config) {
181 			pr_err("Failed to allocate %u VPE boot configs\n",
182 			       core_vpes);
183 			goto err_out;
184 		}
185 	}
186 
187 	/* Mark this CPU as booted */
188 	atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
189 		   1 << cpu_vpe_id(&current_cpu_data));
190 
191 	return;
192 err_out:
193 	/* Clean up allocations */
194 	if (mips_cps_core_bootcfg) {
195 		for (c = 0; c < ncores; c++)
196 			kfree(mips_cps_core_bootcfg[c].vpe_config);
197 		kfree(mips_cps_core_bootcfg);
198 		mips_cps_core_bootcfg = NULL;
199 	}
200 
201 	/* Effectively disable SMP by declaring CPUs not present */
202 	for_each_possible_cpu(c) {
203 		if (c == 0)
204 			continue;
205 		set_cpu_present(c, false);
206 	}
207 }
208 
209 static void boot_core(unsigned core)
210 {
211 	u32 access, stat, seq_state;
212 	unsigned timeout;
213 
214 	/* Select the appropriate core */
215 	mips_cm_lock_other(core, 0);
216 
217 	/* Set its reset vector */
218 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
219 
220 	/* Ensure its coherency is disabled */
221 	write_gcr_co_coherence(0);
222 
223 	/* Start it with the legacy memory map and exception base */
224 	write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
225 
226 	/* Ensure the core can access the GCRs */
227 	access = read_gcr_access();
228 	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
229 	write_gcr_access(access);
230 
231 	if (mips_cpc_present()) {
232 		/* Reset the core */
233 		mips_cpc_lock_other(core);
234 
235 		if (mips_cm_revision() >= CM_REV_CM3) {
236 			/* Run VP0 following the reset */
237 			write_cpc_co_vp_run(0x1);
238 
239 			/*
240 			 * Ensure that the VP_RUN register is written before the
241 			 * core leaves reset.
242 			 */
243 			wmb();
244 		}
245 
246 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
247 
248 		timeout = 100;
249 		while (true) {
250 			stat = read_cpc_co_stat_conf();
251 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
252 
253 			/* U6 == coherent execution, ie. the core is up */
254 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
255 				break;
256 
257 			/* Delay a little while before we start warning */
258 			if (timeout) {
259 				timeout--;
260 				mdelay(10);
261 				continue;
262 			}
263 
264 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
265 				core, stat);
266 			mdelay(1000);
267 		}
268 
269 		mips_cpc_unlock_other();
270 	} else {
271 		/* Take the core out of reset */
272 		write_gcr_co_reset_release(0);
273 	}
274 
275 	mips_cm_unlock_other();
276 
277 	/* The core is now powered up */
278 	bitmap_set(core_power, core, 1);
279 }
280 
281 static void remote_vpe_boot(void *dummy)
282 {
283 	unsigned core = current_cpu_data.core;
284 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
285 
286 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
287 }
288 
289 static void cps_boot_secondary(int cpu, struct task_struct *idle)
290 {
291 	unsigned core = cpu_data[cpu].core;
292 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
293 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
294 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
295 	unsigned long core_entry;
296 	unsigned int remote;
297 	int err;
298 
299 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
300 	vpe_cfg->sp = __KSTK_TOS(idle);
301 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
302 
303 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
304 
305 	preempt_disable();
306 
307 	if (!test_bit(core, core_power)) {
308 		/* Boot a VPE on a powered down core */
309 		boot_core(core);
310 		goto out;
311 	}
312 
313 	if (cpu_has_vp) {
314 		mips_cm_lock_other(core, vpe_id);
315 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
316 		write_gcr_co_reset_base(core_entry);
317 		mips_cm_unlock_other();
318 	}
319 
320 	if (core != current_cpu_data.core) {
321 		/* Boot a VPE on another powered up core */
322 		for (remote = 0; remote < NR_CPUS; remote++) {
323 			if (cpu_data[remote].core != core)
324 				continue;
325 			if (cpu_online(remote))
326 				break;
327 		}
328 		BUG_ON(remote >= NR_CPUS);
329 
330 		err = smp_call_function_single(remote, remote_vpe_boot,
331 					       NULL, 1);
332 		if (err)
333 			panic("Failed to call remote CPU\n");
334 		goto out;
335 	}
336 
337 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
338 
339 	/* Boot a VPE on this core */
340 	mips_cps_boot_vpes(core_cfg, vpe_id);
341 out:
342 	preempt_enable();
343 }
344 
345 static void cps_init_secondary(void)
346 {
347 	/* Disable MT - we only want to run 1 TC per VPE */
348 	if (cpu_has_mipsmt)
349 		dmt();
350 
351 	if (mips_cm_revision() >= CM_REV_CM3) {
352 		unsigned ident = gic_read_local_vp_id();
353 
354 		/*
355 		 * Ensure that our calculation of the VP ID matches up with
356 		 * what the GIC reports, otherwise we'll have configured
357 		 * interrupts incorrectly.
358 		 */
359 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
360 	}
361 
362 	if (cpu_has_veic)
363 		clear_c0_status(ST0_IM);
364 	else
365 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
366 					 STATUSF_IP4 | STATUSF_IP5 |
367 					 STATUSF_IP6 | STATUSF_IP7);
368 }
369 
370 static void cps_smp_finish(void)
371 {
372 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
373 
374 #ifdef CONFIG_MIPS_MT_FPAFF
375 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
376 	if (cpu_has_fpu)
377 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
378 #endif /* CONFIG_MIPS_MT_FPAFF */
379 
380 	local_irq_enable();
381 }
382 
383 #ifdef CONFIG_HOTPLUG_CPU
384 
385 static int cps_cpu_disable(void)
386 {
387 	unsigned cpu = smp_processor_id();
388 	struct core_boot_config *core_cfg;
389 
390 	if (!cpu)
391 		return -EBUSY;
392 
393 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
394 		return -EINVAL;
395 
396 	core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
397 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
398 	smp_mb__after_atomic();
399 	set_cpu_online(cpu, false);
400 	cpumask_clear_cpu(cpu, &cpu_callin_map);
401 
402 	return 0;
403 }
404 
405 static DECLARE_COMPLETION(cpu_death_chosen);
406 static unsigned cpu_death_sibling;
407 static enum {
408 	CPU_DEATH_HALT,
409 	CPU_DEATH_POWER,
410 } cpu_death;
411 
412 void play_dead(void)
413 {
414 	unsigned cpu, core;
415 
416 	local_irq_disable();
417 	idle_task_exit();
418 	cpu = smp_processor_id();
419 	cpu_death = CPU_DEATH_POWER;
420 
421 	if (cpu_has_mipsmt) {
422 		core = cpu_data[cpu].core;
423 
424 		/* Look for another online VPE within the core */
425 		for_each_online_cpu(cpu_death_sibling) {
426 			if (cpu_data[cpu_death_sibling].core != core)
427 				continue;
428 
429 			/*
430 			 * There is an online VPE within the core. Just halt
431 			 * this TC and leave the core alone.
432 			 */
433 			cpu_death = CPU_DEATH_HALT;
434 			break;
435 		}
436 	}
437 
438 	/* This CPU has chosen its way out */
439 	complete(&cpu_death_chosen);
440 
441 	if (cpu_death == CPU_DEATH_HALT) {
442 		/* Halt this TC */
443 		write_c0_tchalt(TCHALT_H);
444 		instruction_hazard();
445 	} else {
446 		/* Power down the core */
447 		cps_pm_enter_state(CPS_PM_POWER_GATED);
448 	}
449 
450 	/* This should never be reached */
451 	panic("Failed to offline CPU %u", cpu);
452 }
453 
454 static void wait_for_sibling_halt(void *ptr_cpu)
455 {
456 	unsigned cpu = (unsigned long)ptr_cpu;
457 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
458 	unsigned halted;
459 	unsigned long flags;
460 
461 	do {
462 		local_irq_save(flags);
463 		settc(vpe_id);
464 		halted = read_tc_c0_tchalt();
465 		local_irq_restore(flags);
466 	} while (!(halted & TCHALT_H));
467 }
468 
469 static void cps_cpu_die(unsigned int cpu)
470 {
471 	unsigned core = cpu_data[cpu].core;
472 	unsigned stat;
473 	int err;
474 
475 	/* Wait for the cpu to choose its way out */
476 	if (!wait_for_completion_timeout(&cpu_death_chosen,
477 					 msecs_to_jiffies(5000))) {
478 		pr_err("CPU%u: didn't offline\n", cpu);
479 		return;
480 	}
481 
482 	/*
483 	 * Now wait for the CPU to actually offline. Without doing this that
484 	 * offlining may race with one or more of:
485 	 *
486 	 *   - Onlining the CPU again.
487 	 *   - Powering down the core if another VPE within it is offlined.
488 	 *   - A sibling VPE entering a non-coherent state.
489 	 *
490 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
491 	 * with which we could race, so do nothing.
492 	 */
493 	if (cpu_death == CPU_DEATH_POWER) {
494 		/*
495 		 * Wait for the core to enter a powered down or clock gated
496 		 * state, the latter happening when a JTAG probe is connected
497 		 * in which case the CPC will refuse to power down the core.
498 		 */
499 		do {
500 			mips_cpc_lock_other(core);
501 			stat = read_cpc_co_stat_conf();
502 			stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
503 			mips_cpc_unlock_other();
504 		} while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
505 			 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
506 			 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
507 
508 		/* Indicate the core is powered off */
509 		bitmap_clear(core_power, core, 1);
510 	} else if (cpu_has_mipsmt) {
511 		/*
512 		 * Have a CPU with access to the offlined CPUs registers wait
513 		 * for its TC to halt.
514 		 */
515 		err = smp_call_function_single(cpu_death_sibling,
516 					       wait_for_sibling_halt,
517 					       (void *)(unsigned long)cpu, 1);
518 		if (err)
519 			panic("Failed to call remote sibling CPU\n");
520 	}
521 }
522 
523 #endif /* CONFIG_HOTPLUG_CPU */
524 
525 static struct plat_smp_ops cps_smp_ops = {
526 	.smp_setup		= cps_smp_setup,
527 	.prepare_cpus		= cps_prepare_cpus,
528 	.boot_secondary		= cps_boot_secondary,
529 	.init_secondary		= cps_init_secondary,
530 	.smp_finish		= cps_smp_finish,
531 	.send_ipi_single	= mips_smp_send_ipi_single,
532 	.send_ipi_mask		= mips_smp_send_ipi_mask,
533 #ifdef CONFIG_HOTPLUG_CPU
534 	.cpu_disable		= cps_cpu_disable,
535 	.cpu_die		= cps_cpu_die,
536 #endif
537 };
538 
539 bool mips_cps_smp_in_use(void)
540 {
541 	extern struct plat_smp_ops *mp_ops;
542 	return mp_ops == &cps_smp_ops;
543 }
544 
545 int register_cps_smp_ops(void)
546 {
547 	if (!mips_cm_present()) {
548 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
549 		return -ENODEV;
550 	}
551 
552 	/* check we have a GIC - we need one for IPIs */
553 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
554 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
555 		return -ENODEV;
556 	}
557 
558 	register_smp_ops(&cps_smp_ops);
559 	return 0;
560 }
561