1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com) 7 * 8 * SMP support for BMIPS 9 */ 10 11 #include <linux/init.h> 12 #include <linux/sched.h> 13 #include <linux/sched/hotplug.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/mm.h> 16 #include <linux/delay.h> 17 #include <linux/smp.h> 18 #include <linux/interrupt.h> 19 #include <linux/spinlock.h> 20 #include <linux/cpu.h> 21 #include <linux/cpumask.h> 22 #include <linux/reboot.h> 23 #include <linux/io.h> 24 #include <linux/compiler.h> 25 #include <linux/linkage.h> 26 #include <linux/bug.h> 27 #include <linux/kernel.h> 28 29 #include <asm/time.h> 30 #include <asm/pgtable.h> 31 #include <asm/processor.h> 32 #include <asm/bootinfo.h> 33 #include <asm/pmon.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mipsregs.h> 37 #include <asm/bmips.h> 38 #include <asm/traps.h> 39 #include <asm/barrier.h> 40 #include <asm/cpu-features.h> 41 42 static int __maybe_unused max_cpus = 1; 43 44 /* these may be configured by the platform code */ 45 int bmips_smp_enabled = 1; 46 int bmips_cpu_offset; 47 cpumask_t bmips_booted_mask; 48 unsigned long bmips_tp1_irqs = IE_IRQ1; 49 50 #define RESET_FROM_KSEG0 0x80080800 51 #define RESET_FROM_KSEG1 0xa0080800 52 53 static void bmips_set_reset_vec(int cpu, u32 val); 54 55 #ifdef CONFIG_SMP 56 57 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */ 58 unsigned long bmips_smp_boot_sp; 59 unsigned long bmips_smp_boot_gp; 60 61 static void bmips43xx_send_ipi_single(int cpu, unsigned int action); 62 static void bmips5000_send_ipi_single(int cpu, unsigned int action); 63 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id); 64 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id); 65 66 /* SW interrupts 0,1 are used for interprocessor signaling */ 67 #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0) 68 #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1) 69 70 #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift)) 71 #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8)) 72 #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8)) 73 #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0)) 74 75 static void __init bmips_smp_setup(void) 76 { 77 int i, cpu = 1, boot_cpu = 0; 78 int cpu_hw_intr; 79 80 switch (current_cpu_type()) { 81 case CPU_BMIPS4350: 82 case CPU_BMIPS4380: 83 /* arbitration priority */ 84 clear_c0_brcm_cmt_ctrl(0x30); 85 86 /* NBK and weak order flags */ 87 set_c0_brcm_config_0(0x30000); 88 89 /* Find out if we are running on TP0 or TP1 */ 90 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31)); 91 92 /* 93 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other 94 * thread 95 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output 96 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output 97 */ 98 if (boot_cpu == 0) 99 cpu_hw_intr = 0x02; 100 else 101 cpu_hw_intr = 0x1d; 102 103 change_c0_brcm_cmt_intr(0xf8018000, 104 (cpu_hw_intr << 27) | (0x03 << 15)); 105 106 /* single core, 2 threads (2 pipelines) */ 107 max_cpus = 2; 108 109 break; 110 case CPU_BMIPS5000: 111 /* enable raceless SW interrupts */ 112 set_c0_brcm_config(0x03 << 22); 113 114 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */ 115 change_c0_brcm_mode(0x1f << 27, 0x02 << 27); 116 117 /* N cores, 2 threads per core */ 118 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1; 119 120 /* clear any pending SW interrupts */ 121 for (i = 0; i < max_cpus; i++) { 122 write_c0_brcm_action(ACTION_CLR_IPI(i, 0)); 123 write_c0_brcm_action(ACTION_CLR_IPI(i, 1)); 124 } 125 126 break; 127 default: 128 max_cpus = 1; 129 } 130 131 if (!bmips_smp_enabled) 132 max_cpus = 1; 133 134 /* this can be overridden by the BSP */ 135 if (!board_ebase_setup) 136 board_ebase_setup = &bmips_ebase_setup; 137 138 __cpu_number_map[boot_cpu] = 0; 139 __cpu_logical_map[0] = boot_cpu; 140 141 for (i = 0; i < max_cpus; i++) { 142 if (i != boot_cpu) { 143 __cpu_number_map[i] = cpu; 144 __cpu_logical_map[cpu] = i; 145 cpu++; 146 } 147 set_cpu_possible(i, 1); 148 set_cpu_present(i, 1); 149 } 150 } 151 152 /* 153 * IPI IRQ setup - runs on CPU0 154 */ 155 static void bmips_prepare_cpus(unsigned int max_cpus) 156 { 157 irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id); 158 159 switch (current_cpu_type()) { 160 case CPU_BMIPS4350: 161 case CPU_BMIPS4380: 162 bmips_ipi_interrupt = bmips43xx_ipi_interrupt; 163 break; 164 case CPU_BMIPS5000: 165 bmips_ipi_interrupt = bmips5000_ipi_interrupt; 166 break; 167 default: 168 return; 169 } 170 171 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU, 172 "smp_ipi0", NULL)) 173 panic("Can't request IPI0 interrupt"); 174 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU, 175 "smp_ipi1", NULL)) 176 panic("Can't request IPI1 interrupt"); 177 } 178 179 /* 180 * Tell the hardware to boot CPUx - runs on CPU0 181 */ 182 static void bmips_boot_secondary(int cpu, struct task_struct *idle) 183 { 184 bmips_smp_boot_sp = __KSTK_TOS(idle); 185 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle); 186 mb(); 187 188 /* 189 * Initial boot sequence for secondary CPU: 190 * bmips_reset_nmi_vec @ a000_0000 -> 191 * bmips_smp_entry -> 192 * plat_wired_tlb_setup (cached function call; optional) -> 193 * start_secondary (cached jump) 194 * 195 * Warm restart sequence: 196 * play_dead WAIT loop -> 197 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC -> 198 * eret to play_dead -> 199 * bmips_secondary_reentry -> 200 * start_secondary 201 */ 202 203 pr_info("SMP: Booting CPU%d...\n", cpu); 204 205 if (cpumask_test_cpu(cpu, &bmips_booted_mask)) { 206 /* kseg1 might not exist if this CPU enabled XKS01 */ 207 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0); 208 209 switch (current_cpu_type()) { 210 case CPU_BMIPS4350: 211 case CPU_BMIPS4380: 212 bmips43xx_send_ipi_single(cpu, 0); 213 break; 214 case CPU_BMIPS5000: 215 bmips5000_send_ipi_single(cpu, 0); 216 break; 217 } 218 } else { 219 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1); 220 221 switch (current_cpu_type()) { 222 case CPU_BMIPS4350: 223 case CPU_BMIPS4380: 224 /* Reset slave TP1 if booting from TP0 */ 225 if (cpu_logical_map(cpu) == 1) 226 set_c0_brcm_cmt_ctrl(0x01); 227 break; 228 case CPU_BMIPS5000: 229 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu)); 230 break; 231 } 232 cpumask_set_cpu(cpu, &bmips_booted_mask); 233 } 234 } 235 236 /* 237 * Early setup - runs on secondary CPU after cache probe 238 */ 239 static void bmips_init_secondary(void) 240 { 241 switch (current_cpu_type()) { 242 case CPU_BMIPS4350: 243 case CPU_BMIPS4380: 244 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0); 245 break; 246 case CPU_BMIPS5000: 247 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0)); 248 current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3; 249 break; 250 } 251 } 252 253 /* 254 * Late setup - runs on secondary CPU before entering the idle loop 255 */ 256 static void bmips_smp_finish(void) 257 { 258 pr_info("SMP: CPU%d is running\n", smp_processor_id()); 259 260 /* make sure there won't be a timer interrupt for a little while */ 261 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ); 262 263 irq_enable_hazard(); 264 set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE); 265 irq_enable_hazard(); 266 } 267 268 /* 269 * BMIPS5000 raceless IPIs 270 * 271 * Each CPU has two inbound SW IRQs which are independent of all other CPUs. 272 * IPI0 is used for SMP_RESCHEDULE_YOURSELF 273 * IPI1 is used for SMP_CALL_FUNCTION 274 */ 275 276 static void bmips5000_send_ipi_single(int cpu, unsigned int action) 277 { 278 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION)); 279 } 280 281 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id) 282 { 283 int action = irq - IPI0_IRQ; 284 285 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action)); 286 287 if (action == 0) 288 scheduler_ipi(); 289 else 290 generic_smp_call_function_interrupt(); 291 292 return IRQ_HANDLED; 293 } 294 295 static void bmips5000_send_ipi_mask(const struct cpumask *mask, 296 unsigned int action) 297 { 298 unsigned int i; 299 300 for_each_cpu(i, mask) 301 bmips5000_send_ipi_single(i, action); 302 } 303 304 /* 305 * BMIPS43xx racey IPIs 306 * 307 * We use one inbound SW IRQ for each CPU. 308 * 309 * A spinlock must be held in order to keep CPUx from accidentally clearing 310 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The 311 * same spinlock is used to protect the action masks. 312 */ 313 314 static DEFINE_SPINLOCK(ipi_lock); 315 static DEFINE_PER_CPU(int, ipi_action_mask); 316 317 static void bmips43xx_send_ipi_single(int cpu, unsigned int action) 318 { 319 unsigned long flags; 320 321 spin_lock_irqsave(&ipi_lock, flags); 322 set_c0_cause(cpu ? C_SW1 : C_SW0); 323 per_cpu(ipi_action_mask, cpu) |= action; 324 irq_enable_hazard(); 325 spin_unlock_irqrestore(&ipi_lock, flags); 326 } 327 328 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id) 329 { 330 unsigned long flags; 331 int action, cpu = irq - IPI0_IRQ; 332 333 spin_lock_irqsave(&ipi_lock, flags); 334 action = __this_cpu_read(ipi_action_mask); 335 per_cpu(ipi_action_mask, cpu) = 0; 336 clear_c0_cause(cpu ? C_SW1 : C_SW0); 337 spin_unlock_irqrestore(&ipi_lock, flags); 338 339 if (action & SMP_RESCHEDULE_YOURSELF) 340 scheduler_ipi(); 341 if (action & SMP_CALL_FUNCTION) 342 generic_smp_call_function_interrupt(); 343 344 return IRQ_HANDLED; 345 } 346 347 static void bmips43xx_send_ipi_mask(const struct cpumask *mask, 348 unsigned int action) 349 { 350 unsigned int i; 351 352 for_each_cpu(i, mask) 353 bmips43xx_send_ipi_single(i, action); 354 } 355 356 #ifdef CONFIG_HOTPLUG_CPU 357 358 static int bmips_cpu_disable(void) 359 { 360 unsigned int cpu = smp_processor_id(); 361 362 if (cpu == 0) 363 return -EBUSY; 364 365 pr_info("SMP: CPU%d is offline\n", cpu); 366 367 set_cpu_online(cpu, false); 368 calculate_cpu_foreign_map(); 369 irq_cpu_offline(); 370 clear_c0_status(IE_IRQ5); 371 372 local_flush_tlb_all(); 373 local_flush_icache_range(0, ~0); 374 375 return 0; 376 } 377 378 static void bmips_cpu_die(unsigned int cpu) 379 { 380 } 381 382 void __ref play_dead(void) 383 { 384 idle_task_exit(); 385 386 /* flush data cache */ 387 _dma_cache_wback_inv(0, ~0); 388 389 /* 390 * Wakeup is on SW0 or SW1; disable everything else 391 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux 392 * IRQ handlers; this clears ST0_IE and returns immediately. 393 */ 394 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1); 395 change_c0_status( 396 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV, 397 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV); 398 irq_disable_hazard(); 399 400 /* 401 * wait for SW interrupt from bmips_boot_secondary(), then jump 402 * back to start_secondary() 403 */ 404 __asm__ __volatile__( 405 " wait\n" 406 " j bmips_secondary_reentry\n" 407 : : : "memory"); 408 } 409 410 #endif /* CONFIG_HOTPLUG_CPU */ 411 412 struct plat_smp_ops bmips43xx_smp_ops = { 413 .smp_setup = bmips_smp_setup, 414 .prepare_cpus = bmips_prepare_cpus, 415 .boot_secondary = bmips_boot_secondary, 416 .smp_finish = bmips_smp_finish, 417 .init_secondary = bmips_init_secondary, 418 .send_ipi_single = bmips43xx_send_ipi_single, 419 .send_ipi_mask = bmips43xx_send_ipi_mask, 420 #ifdef CONFIG_HOTPLUG_CPU 421 .cpu_disable = bmips_cpu_disable, 422 .cpu_die = bmips_cpu_die, 423 #endif 424 }; 425 426 struct plat_smp_ops bmips5000_smp_ops = { 427 .smp_setup = bmips_smp_setup, 428 .prepare_cpus = bmips_prepare_cpus, 429 .boot_secondary = bmips_boot_secondary, 430 .smp_finish = bmips_smp_finish, 431 .init_secondary = bmips_init_secondary, 432 .send_ipi_single = bmips5000_send_ipi_single, 433 .send_ipi_mask = bmips5000_send_ipi_mask, 434 #ifdef CONFIG_HOTPLUG_CPU 435 .cpu_disable = bmips_cpu_disable, 436 .cpu_die = bmips_cpu_die, 437 #endif 438 }; 439 440 #endif /* CONFIG_SMP */ 441 442 /*********************************************************************** 443 * BMIPS vector relocation 444 * This is primarily used for SMP boot, but it is applicable to some 445 * UP BMIPS systems as well. 446 ***********************************************************************/ 447 448 static void bmips_wr_vec(unsigned long dst, char *start, char *end) 449 { 450 memcpy((void *)dst, start, end - start); 451 dma_cache_wback(dst, end - start); 452 local_flush_icache_range(dst, dst + (end - start)); 453 instruction_hazard(); 454 } 455 456 static inline void bmips_nmi_handler_setup(void) 457 { 458 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec, 459 &bmips_reset_nmi_vec_end); 460 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec, 461 &bmips_smp_int_vec_end); 462 } 463 464 struct reset_vec_info { 465 int cpu; 466 u32 val; 467 }; 468 469 static void bmips_set_reset_vec_remote(void *vinfo) 470 { 471 struct reset_vec_info *info = vinfo; 472 int shift = info->cpu & 0x01 ? 16 : 0; 473 u32 mask = ~(0xffff << shift), val = info->val >> 16; 474 475 preempt_disable(); 476 if (smp_processor_id() > 0) { 477 smp_call_function_single(0, &bmips_set_reset_vec_remote, 478 info, 1); 479 } else { 480 if (info->cpu & 0x02) { 481 /* BMIPS5200 "should" use mask/shift, but it's buggy */ 482 bmips_write_zscm_reg(0xa0, (val << 16) | val); 483 bmips_read_zscm_reg(0xa0); 484 } else { 485 write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) | 486 (val << shift)); 487 } 488 } 489 preempt_enable(); 490 } 491 492 static void bmips_set_reset_vec(int cpu, u32 val) 493 { 494 struct reset_vec_info info; 495 496 if (current_cpu_type() == CPU_BMIPS5000) { 497 /* this needs to run from CPU0 (which is always online) */ 498 info.cpu = cpu; 499 info.val = val; 500 bmips_set_reset_vec_remote(&info); 501 } else { 502 void __iomem *cbr = BMIPS_GET_CBR(); 503 504 if (cpu == 0) 505 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0); 506 else { 507 if (current_cpu_type() != CPU_BMIPS4380) 508 return; 509 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1); 510 } 511 } 512 __sync(); 513 back_to_back_c0_hazard(); 514 } 515 516 void bmips_ebase_setup(void) 517 { 518 unsigned long new_ebase = ebase; 519 520 BUG_ON(ebase != CKSEG0); 521 522 switch (current_cpu_type()) { 523 case CPU_BMIPS4350: 524 /* 525 * BMIPS4350 cannot relocate the normal vectors, but it 526 * can relocate the BEV=1 vectors. So CPU1 starts up at 527 * the relocated BEV=1, IV=0 general exception vector @ 528 * 0xa000_0380. 529 * 530 * set_uncached_handler() is used here because: 531 * - CPU1 will run this from uncached space 532 * - None of the cacheflush functions are set up yet 533 */ 534 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0, 535 &bmips_smp_int_vec, 0x80); 536 __sync(); 537 return; 538 case CPU_BMIPS3300: 539 case CPU_BMIPS4380: 540 /* 541 * 0x8000_0000: reset/NMI (initially in kseg1) 542 * 0x8000_0400: normal vectors 543 */ 544 new_ebase = 0x80000400; 545 bmips_set_reset_vec(0, RESET_FROM_KSEG0); 546 break; 547 case CPU_BMIPS5000: 548 /* 549 * 0x8000_0000: reset/NMI (initially in kseg1) 550 * 0x8000_1000: normal vectors 551 */ 552 new_ebase = 0x80001000; 553 bmips_set_reset_vec(0, RESET_FROM_KSEG0); 554 write_c0_ebase(new_ebase); 555 break; 556 default: 557 return; 558 } 559 560 board_nmi_handler_setup = &bmips_nmi_handler_setup; 561 ebase = new_ebase; 562 } 563 564 asmlinkage void __weak plat_wired_tlb_setup(void) 565 { 566 /* 567 * Called when starting/restarting a secondary CPU. 568 * Kernel stacks and other important data might only be accessible 569 * once the wired entries are present. 570 */ 571 } 572 573 void __init bmips_cpu_setup(void) 574 { 575 void __iomem __maybe_unused *cbr = BMIPS_GET_CBR(); 576 u32 __maybe_unused cfg; 577 578 switch (current_cpu_type()) { 579 case CPU_BMIPS3300: 580 /* Set BIU to async mode */ 581 set_c0_brcm_bus_pll(BIT(22)); 582 __sync(); 583 584 /* put the BIU back in sync mode */ 585 clear_c0_brcm_bus_pll(BIT(22)); 586 587 /* clear BHTD to enable branch history table */ 588 clear_c0_brcm_reset(BIT(16)); 589 590 /* Flush and enable RAC */ 591 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG); 592 __raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG); 593 __raw_readl(cbr + BMIPS_RAC_CONFIG); 594 595 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG); 596 __raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG); 597 __raw_readl(cbr + BMIPS_RAC_CONFIG); 598 599 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE); 600 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE); 601 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE); 602 break; 603 604 case CPU_BMIPS4380: 605 /* CBG workaround for early BMIPS4380 CPUs */ 606 switch (read_c0_prid()) { 607 case 0x2a040: 608 case 0x2a042: 609 case 0x2a044: 610 case 0x2a060: 611 cfg = __raw_readl(cbr + BMIPS_L2_CONFIG); 612 __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG); 613 __raw_readl(cbr + BMIPS_L2_CONFIG); 614 } 615 616 /* clear BHTD to enable branch history table */ 617 clear_c0_brcm_config_0(BIT(21)); 618 619 /* XI/ROTR enable */ 620 set_c0_brcm_config_0(BIT(23)); 621 set_c0_brcm_cmt_ctrl(BIT(15)); 622 break; 623 624 case CPU_BMIPS5000: 625 /* enable RDHWR, BRDHWR */ 626 set_c0_brcm_config(BIT(17) | BIT(21)); 627 628 /* Disable JTB */ 629 __asm__ __volatile__( 630 " .set noreorder\n" 631 " li $8, 0x5a455048\n" 632 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */ 633 " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */ 634 " li $9, 0x00008000\n" 635 " or $8, $8, $9\n" 636 " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */ 637 " sync\n" 638 " li $8, 0x0\n" 639 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */ 640 " .set reorder\n" 641 : : : "$8", "$9"); 642 643 /* XI enable */ 644 set_c0_brcm_config(BIT(27)); 645 646 /* enable MIPS32R2 ROR instruction for XI TLB handlers */ 647 __asm__ __volatile__( 648 " li $8, 0x5a455048\n" 649 " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */ 650 " nop; nop; nop\n" 651 " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */ 652 " lui $9, 0x0100\n" 653 " or $8, $9\n" 654 " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */ 655 : : : "$8", "$9"); 656 break; 657 } 658 } 659