xref: /linux/arch/mips/kernel/smp-bmips.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/reboot.h>
21 #include <linux/io.h>
22 #include <linux/compiler.h>
23 #include <linux/linkage.h>
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 
27 #include <asm/time.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/bootinfo.h>
31 #include <asm/pmon.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mipsregs.h>
35 #include <asm/bmips.h>
36 #include <asm/traps.h>
37 #include <asm/barrier.h>
38 #include <asm/cpu-features.h>
39 
40 static int __maybe_unused max_cpus = 1;
41 
42 /* these may be configured by the platform code */
43 int bmips_smp_enabled = 1;
44 int bmips_cpu_offset;
45 cpumask_t bmips_booted_mask;
46 unsigned long bmips_tp1_irqs = IE_IRQ1;
47 
48 #define RESET_FROM_KSEG0		0x80080800
49 #define RESET_FROM_KSEG1		0xa0080800
50 
51 static void bmips_set_reset_vec(int cpu, u32 val);
52 
53 #ifdef CONFIG_SMP
54 
55 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
56 unsigned long bmips_smp_boot_sp;
57 unsigned long bmips_smp_boot_gp;
58 
59 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
60 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
61 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
62 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
63 
64 /* SW interrupts 0,1 are used for interprocessor signaling */
65 #define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
66 #define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
67 
68 #define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
69 #define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
70 #define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
72 
73 static void __init bmips_smp_setup(void)
74 {
75 	int i, cpu = 1, boot_cpu = 0;
76 	int cpu_hw_intr;
77 
78 	switch (current_cpu_type()) {
79 	case CPU_BMIPS4350:
80 	case CPU_BMIPS4380:
81 		/* arbitration priority */
82 		clear_c0_brcm_cmt_ctrl(0x30);
83 
84 		/* NBK and weak order flags */
85 		set_c0_brcm_config_0(0x30000);
86 
87 		/* Find out if we are running on TP0 or TP1 */
88 		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
89 
90 		/*
91 		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
92 		 * thread
93 		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
94 		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
95 		 */
96 		if (boot_cpu == 0)
97 			cpu_hw_intr = 0x02;
98 		else
99 			cpu_hw_intr = 0x1d;
100 
101 		change_c0_brcm_cmt_intr(0xf8018000,
102 					(cpu_hw_intr << 27) | (0x03 << 15));
103 
104 		/* single core, 2 threads (2 pipelines) */
105 		max_cpus = 2;
106 
107 		break;
108 	case CPU_BMIPS5000:
109 		/* enable raceless SW interrupts */
110 		set_c0_brcm_config(0x03 << 22);
111 
112 		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
113 		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
114 
115 		/* N cores, 2 threads per core */
116 		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
117 
118 		/* clear any pending SW interrupts */
119 		for (i = 0; i < max_cpus; i++) {
120 			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
121 			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
122 		}
123 
124 		break;
125 	default:
126 		max_cpus = 1;
127 	}
128 
129 	if (!bmips_smp_enabled)
130 		max_cpus = 1;
131 
132 	/* this can be overridden by the BSP */
133 	if (!board_ebase_setup)
134 		board_ebase_setup = &bmips_ebase_setup;
135 
136 	__cpu_number_map[boot_cpu] = 0;
137 	__cpu_logical_map[0] = boot_cpu;
138 
139 	for (i = 0; i < max_cpus; i++) {
140 		if (i != boot_cpu) {
141 			__cpu_number_map[i] = cpu;
142 			__cpu_logical_map[cpu] = i;
143 			cpu++;
144 		}
145 		set_cpu_possible(i, 1);
146 		set_cpu_present(i, 1);
147 	}
148 }
149 
150 /*
151  * IPI IRQ setup - runs on CPU0
152  */
153 static void bmips_prepare_cpus(unsigned int max_cpus)
154 {
155 	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
156 
157 	switch (current_cpu_type()) {
158 	case CPU_BMIPS4350:
159 	case CPU_BMIPS4380:
160 		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
161 		break;
162 	case CPU_BMIPS5000:
163 		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
164 		break;
165 	default:
166 		return;
167 	}
168 
169 	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
170 			"smp_ipi0", NULL))
171 		panic("Can't request IPI0 interrupt");
172 	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
173 			"smp_ipi1", NULL))
174 		panic("Can't request IPI1 interrupt");
175 }
176 
177 /*
178  * Tell the hardware to boot CPUx - runs on CPU0
179  */
180 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
181 {
182 	bmips_smp_boot_sp = __KSTK_TOS(idle);
183 	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
184 	mb();
185 
186 	/*
187 	 * Initial boot sequence for secondary CPU:
188 	 *   bmips_reset_nmi_vec @ a000_0000 ->
189 	 *   bmips_smp_entry ->
190 	 *   plat_wired_tlb_setup (cached function call; optional) ->
191 	 *   start_secondary (cached jump)
192 	 *
193 	 * Warm restart sequence:
194 	 *   play_dead WAIT loop ->
195 	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
196 	 *   eret to play_dead ->
197 	 *   bmips_secondary_reentry ->
198 	 *   start_secondary
199 	 */
200 
201 	pr_info("SMP: Booting CPU%d...\n", cpu);
202 
203 	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
204 		/* kseg1 might not exist if this CPU enabled XKS01 */
205 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
206 
207 		switch (current_cpu_type()) {
208 		case CPU_BMIPS4350:
209 		case CPU_BMIPS4380:
210 			bmips43xx_send_ipi_single(cpu, 0);
211 			break;
212 		case CPU_BMIPS5000:
213 			bmips5000_send_ipi_single(cpu, 0);
214 			break;
215 		}
216 	} else {
217 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
218 
219 		switch (current_cpu_type()) {
220 		case CPU_BMIPS4350:
221 		case CPU_BMIPS4380:
222 			/* Reset slave TP1 if booting from TP0 */
223 			if (cpu_logical_map(cpu) == 1)
224 				set_c0_brcm_cmt_ctrl(0x01);
225 			break;
226 		case CPU_BMIPS5000:
227 			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
228 			break;
229 		}
230 		cpumask_set_cpu(cpu, &bmips_booted_mask);
231 	}
232 }
233 
234 /*
235  * Early setup - runs on secondary CPU after cache probe
236  */
237 static void bmips_init_secondary(void)
238 {
239 	switch (current_cpu_type()) {
240 	case CPU_BMIPS4350:
241 	case CPU_BMIPS4380:
242 		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
243 		break;
244 	case CPU_BMIPS5000:
245 		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
246 		break;
247 	}
248 }
249 
250 /*
251  * Late setup - runs on secondary CPU before entering the idle loop
252  */
253 static void bmips_smp_finish(void)
254 {
255 	pr_info("SMP: CPU%d is running\n", smp_processor_id());
256 
257 	/* make sure there won't be a timer interrupt for a little while */
258 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
259 
260 	irq_enable_hazard();
261 	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
262 	irq_enable_hazard();
263 }
264 
265 /*
266  * BMIPS5000 raceless IPIs
267  *
268  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
269  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
270  * IPI1 is used for SMP_CALL_FUNCTION
271  */
272 
273 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
274 {
275 	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
276 }
277 
278 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
279 {
280 	int action = irq - IPI0_IRQ;
281 
282 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
283 
284 	if (action == 0)
285 		scheduler_ipi();
286 	else
287 		generic_smp_call_function_interrupt();
288 
289 	return IRQ_HANDLED;
290 }
291 
292 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
293 	unsigned int action)
294 {
295 	unsigned int i;
296 
297 	for_each_cpu(i, mask)
298 		bmips5000_send_ipi_single(i, action);
299 }
300 
301 /*
302  * BMIPS43xx racey IPIs
303  *
304  * We use one inbound SW IRQ for each CPU.
305  *
306  * A spinlock must be held in order to keep CPUx from accidentally clearing
307  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
308  * same spinlock is used to protect the action masks.
309  */
310 
311 static DEFINE_SPINLOCK(ipi_lock);
312 static DEFINE_PER_CPU(int, ipi_action_mask);
313 
314 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
315 {
316 	unsigned long flags;
317 
318 	spin_lock_irqsave(&ipi_lock, flags);
319 	set_c0_cause(cpu ? C_SW1 : C_SW0);
320 	per_cpu(ipi_action_mask, cpu) |= action;
321 	irq_enable_hazard();
322 	spin_unlock_irqrestore(&ipi_lock, flags);
323 }
324 
325 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
326 {
327 	unsigned long flags;
328 	int action, cpu = irq - IPI0_IRQ;
329 
330 	spin_lock_irqsave(&ipi_lock, flags);
331 	action = __this_cpu_read(ipi_action_mask);
332 	per_cpu(ipi_action_mask, cpu) = 0;
333 	clear_c0_cause(cpu ? C_SW1 : C_SW0);
334 	spin_unlock_irqrestore(&ipi_lock, flags);
335 
336 	if (action & SMP_RESCHEDULE_YOURSELF)
337 		scheduler_ipi();
338 	if (action & SMP_CALL_FUNCTION)
339 		generic_smp_call_function_interrupt();
340 
341 	return IRQ_HANDLED;
342 }
343 
344 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
345 	unsigned int action)
346 {
347 	unsigned int i;
348 
349 	for_each_cpu(i, mask)
350 		bmips43xx_send_ipi_single(i, action);
351 }
352 
353 #ifdef CONFIG_HOTPLUG_CPU
354 
355 static int bmips_cpu_disable(void)
356 {
357 	unsigned int cpu = smp_processor_id();
358 
359 	if (cpu == 0)
360 		return -EBUSY;
361 
362 	pr_info("SMP: CPU%d is offline\n", cpu);
363 
364 	set_cpu_online(cpu, false);
365 	cpumask_clear_cpu(cpu, &cpu_callin_map);
366 	clear_c0_status(IE_IRQ5);
367 
368 	local_flush_tlb_all();
369 	local_flush_icache_range(0, ~0);
370 
371 	return 0;
372 }
373 
374 static void bmips_cpu_die(unsigned int cpu)
375 {
376 }
377 
378 void __ref play_dead(void)
379 {
380 	idle_task_exit();
381 
382 	/* flush data cache */
383 	_dma_cache_wback_inv(0, ~0);
384 
385 	/*
386 	 * Wakeup is on SW0 or SW1; disable everything else
387 	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
388 	 * IRQ handlers; this clears ST0_IE and returns immediately.
389 	 */
390 	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
391 	change_c0_status(
392 		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
393 		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
394 	irq_disable_hazard();
395 
396 	/*
397 	 * wait for SW interrupt from bmips_boot_secondary(), then jump
398 	 * back to start_secondary()
399 	 */
400 	__asm__ __volatile__(
401 	"	wait\n"
402 	"	j	bmips_secondary_reentry\n"
403 	: : : "memory");
404 }
405 
406 #endif /* CONFIG_HOTPLUG_CPU */
407 
408 struct plat_smp_ops bmips43xx_smp_ops = {
409 	.smp_setup		= bmips_smp_setup,
410 	.prepare_cpus		= bmips_prepare_cpus,
411 	.boot_secondary		= bmips_boot_secondary,
412 	.smp_finish		= bmips_smp_finish,
413 	.init_secondary		= bmips_init_secondary,
414 	.send_ipi_single	= bmips43xx_send_ipi_single,
415 	.send_ipi_mask		= bmips43xx_send_ipi_mask,
416 #ifdef CONFIG_HOTPLUG_CPU
417 	.cpu_disable		= bmips_cpu_disable,
418 	.cpu_die		= bmips_cpu_die,
419 #endif
420 };
421 
422 struct plat_smp_ops bmips5000_smp_ops = {
423 	.smp_setup		= bmips_smp_setup,
424 	.prepare_cpus		= bmips_prepare_cpus,
425 	.boot_secondary		= bmips_boot_secondary,
426 	.smp_finish		= bmips_smp_finish,
427 	.init_secondary		= bmips_init_secondary,
428 	.send_ipi_single	= bmips5000_send_ipi_single,
429 	.send_ipi_mask		= bmips5000_send_ipi_mask,
430 #ifdef CONFIG_HOTPLUG_CPU
431 	.cpu_disable		= bmips_cpu_disable,
432 	.cpu_die		= bmips_cpu_die,
433 #endif
434 };
435 
436 #endif /* CONFIG_SMP */
437 
438 /***********************************************************************
439  * BMIPS vector relocation
440  * This is primarily used for SMP boot, but it is applicable to some
441  * UP BMIPS systems as well.
442  ***********************************************************************/
443 
444 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
445 {
446 	memcpy((void *)dst, start, end - start);
447 	dma_cache_wback(dst, end - start);
448 	local_flush_icache_range(dst, dst + (end - start));
449 	instruction_hazard();
450 }
451 
452 static inline void bmips_nmi_handler_setup(void)
453 {
454 	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
455 		&bmips_reset_nmi_vec_end);
456 	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
457 		&bmips_smp_int_vec_end);
458 }
459 
460 struct reset_vec_info {
461 	int cpu;
462 	u32 val;
463 };
464 
465 static void bmips_set_reset_vec_remote(void *vinfo)
466 {
467 	struct reset_vec_info *info = vinfo;
468 	int shift = info->cpu & 0x01 ? 16 : 0;
469 	u32 mask = ~(0xffff << shift), val = info->val >> 16;
470 
471 	preempt_disable();
472 	if (smp_processor_id() > 0) {
473 		smp_call_function_single(0, &bmips_set_reset_vec_remote,
474 					 info, 1);
475 	} else {
476 		if (info->cpu & 0x02) {
477 			/* BMIPS5200 "should" use mask/shift, but it's buggy */
478 			bmips_write_zscm_reg(0xa0, (val << 16) | val);
479 			bmips_read_zscm_reg(0xa0);
480 		} else {
481 			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
482 					      (val << shift));
483 		}
484 	}
485 	preempt_enable();
486 }
487 
488 static void bmips_set_reset_vec(int cpu, u32 val)
489 {
490 	struct reset_vec_info info;
491 
492 	if (current_cpu_type() == CPU_BMIPS5000) {
493 		/* this needs to run from CPU0 (which is always online) */
494 		info.cpu = cpu;
495 		info.val = val;
496 		bmips_set_reset_vec_remote(&info);
497 	} else {
498 		void __iomem *cbr = BMIPS_GET_CBR();
499 
500 		if (cpu == 0)
501 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
502 		else {
503 			if (current_cpu_type() != CPU_BMIPS4380)
504 				return;
505 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
506 		}
507 	}
508 	__sync();
509 	back_to_back_c0_hazard();
510 }
511 
512 void bmips_ebase_setup(void)
513 {
514 	unsigned long new_ebase = ebase;
515 
516 	BUG_ON(ebase != CKSEG0);
517 
518 	switch (current_cpu_type()) {
519 	case CPU_BMIPS4350:
520 		/*
521 		 * BMIPS4350 cannot relocate the normal vectors, but it
522 		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
523 		 * the relocated BEV=1, IV=0 general exception vector @
524 		 * 0xa000_0380.
525 		 *
526 		 * set_uncached_handler() is used here because:
527 		 *  - CPU1 will run this from uncached space
528 		 *  - None of the cacheflush functions are set up yet
529 		 */
530 		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
531 			&bmips_smp_int_vec, 0x80);
532 		__sync();
533 		return;
534 	case CPU_BMIPS3300:
535 	case CPU_BMIPS4380:
536 		/*
537 		 * 0x8000_0000: reset/NMI (initially in kseg1)
538 		 * 0x8000_0400: normal vectors
539 		 */
540 		new_ebase = 0x80000400;
541 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
542 		break;
543 	case CPU_BMIPS5000:
544 		/*
545 		 * 0x8000_0000: reset/NMI (initially in kseg1)
546 		 * 0x8000_1000: normal vectors
547 		 */
548 		new_ebase = 0x80001000;
549 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
550 		write_c0_ebase(new_ebase);
551 		break;
552 	default:
553 		return;
554 	}
555 
556 	board_nmi_handler_setup = &bmips_nmi_handler_setup;
557 	ebase = new_ebase;
558 }
559 
560 asmlinkage void __weak plat_wired_tlb_setup(void)
561 {
562 	/*
563 	 * Called when starting/restarting a secondary CPU.
564 	 * Kernel stacks and other important data might only be accessible
565 	 * once the wired entries are present.
566 	 */
567 }
568