xref: /linux/arch/mips/kernel/smp-bmips.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10 
11 #include <linux/version.h>
12 #include <linux/init.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/spinlock.h>
19 #include <linux/init.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 
29 #include <asm/time.h>
30 #include <asm/pgtable.h>
31 #include <asm/processor.h>
32 #include <asm/system.h>
33 #include <asm/bootinfo.h>
34 #include <asm/pmon.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mipsregs.h>
38 #include <asm/bmips.h>
39 #include <asm/traps.h>
40 #include <asm/barrier.h>
41 
42 static int __maybe_unused max_cpus = 1;
43 
44 /* these may be configured by the platform code */
45 int bmips_smp_enabled = 1;
46 int bmips_cpu_offset;
47 cpumask_t bmips_booted_mask;
48 
49 #ifdef CONFIG_SMP
50 
51 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
52 unsigned long bmips_smp_boot_sp;
53 unsigned long bmips_smp_boot_gp;
54 
55 static void bmips_send_ipi_single(int cpu, unsigned int action);
56 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id);
57 
58 /* SW interrupts 0,1 are used for interprocessor signaling */
59 #define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
60 #define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
61 
62 #define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
63 #define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
64 #define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
65 #define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
66 
67 static void __init bmips_smp_setup(void)
68 {
69 	int i;
70 
71 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
72 	/* arbitration priority */
73 	clear_c0_brcm_cmt_ctrl(0x30);
74 
75 	/* NBK and weak order flags */
76 	set_c0_brcm_config_0(0x30000);
77 
78 	/*
79 	 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other thread
80 	 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
81 	 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
82 	 */
83 	change_c0_brcm_cmt_intr(0xf8018000,
84 		(0x02 << 27) | (0x03 << 15));
85 
86 	/* single core, 2 threads (2 pipelines) */
87 	max_cpus = 2;
88 #elif defined(CONFIG_CPU_BMIPS5000)
89 	/* enable raceless SW interrupts */
90 	set_c0_brcm_config(0x03 << 22);
91 
92 	/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
93 	change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
94 
95 	/* N cores, 2 threads per core */
96 	max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
97 
98 	/* clear any pending SW interrupts */
99 	for (i = 0; i < max_cpus; i++) {
100 		write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
101 		write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
102 	}
103 #endif
104 
105 	if (!bmips_smp_enabled)
106 		max_cpus = 1;
107 
108 	/* this can be overridden by the BSP */
109 	if (!board_ebase_setup)
110 		board_ebase_setup = &bmips_ebase_setup;
111 
112 	for (i = 0; i < max_cpus; i++) {
113 		__cpu_number_map[i] = 1;
114 		__cpu_logical_map[i] = 1;
115 		set_cpu_possible(i, 1);
116 		set_cpu_present(i, 1);
117 	}
118 }
119 
120 /*
121  * IPI IRQ setup - runs on CPU0
122  */
123 static void bmips_prepare_cpus(unsigned int max_cpus)
124 {
125 	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
126 			"smp_ipi0", NULL))
127 		panic("Can't request IPI0 interrupt\n");
128 	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
129 			"smp_ipi1", NULL))
130 		panic("Can't request IPI1 interrupt\n");
131 }
132 
133 /*
134  * Tell the hardware to boot CPUx - runs on CPU0
135  */
136 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
137 {
138 	bmips_smp_boot_sp = __KSTK_TOS(idle);
139 	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
140 	mb();
141 
142 	/*
143 	 * Initial boot sequence for secondary CPU:
144 	 *   bmips_reset_nmi_vec @ a000_0000 ->
145 	 *   bmips_smp_entry ->
146 	 *   plat_wired_tlb_setup (cached function call; optional) ->
147 	 *   start_secondary (cached jump)
148 	 *
149 	 * Warm restart sequence:
150 	 *   play_dead WAIT loop ->
151 	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
152 	 *   eret to play_dead ->
153 	 *   bmips_secondary_reentry ->
154 	 *   start_secondary
155 	 */
156 
157 	pr_info("SMP: Booting CPU%d...\n", cpu);
158 
159 	if (cpumask_test_cpu(cpu, &bmips_booted_mask))
160 		bmips_send_ipi_single(cpu, 0);
161 	else {
162 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
163 		set_c0_brcm_cmt_ctrl(0x01);
164 #elif defined(CONFIG_CPU_BMIPS5000)
165 		if (cpu & 0x01)
166 			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
167 		else {
168 			/*
169 			 * core N thread 0 was already booted; just
170 			 * pulse the NMI line
171 			 */
172 			bmips_write_zscm_reg(0x210, 0xc0000000);
173 			udelay(10);
174 			bmips_write_zscm_reg(0x210, 0x00);
175 		}
176 #endif
177 		cpumask_set_cpu(cpu, &bmips_booted_mask);
178 	}
179 }
180 
181 /*
182  * Early setup - runs on secondary CPU after cache probe
183  */
184 static void bmips_init_secondary(void)
185 {
186 	/* move NMI vector to kseg0, in case XKS01 is enabled */
187 
188 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
189 	void __iomem *cbr = BMIPS_GET_CBR();
190 	unsigned long old_vec;
191 
192 	old_vec = __raw_readl(cbr + BMIPS_RELO_VECTOR_CONTROL_1);
193 	__raw_writel(old_vec & ~0x20000000, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
194 
195 	clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
196 #elif defined(CONFIG_CPU_BMIPS5000)
197 	write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
198 		(smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
199 
200 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
201 #endif
202 
203 	/* make sure there won't be a timer interrupt for a little while */
204 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
205 
206 	irq_enable_hazard();
207 	set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
208 	irq_enable_hazard();
209 }
210 
211 /*
212  * Late setup - runs on secondary CPU before entering the idle loop
213  */
214 static void bmips_smp_finish(void)
215 {
216 	pr_info("SMP: CPU%d is running\n", smp_processor_id());
217 }
218 
219 /*
220  * Runs on CPU0 after all CPUs have been booted
221  */
222 static void bmips_cpus_done(void)
223 {
224 }
225 
226 #if defined(CONFIG_CPU_BMIPS5000)
227 
228 /*
229  * BMIPS5000 raceless IPIs
230  *
231  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
232  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
233  * IPI1 is used for SMP_CALL_FUNCTION
234  */
235 
236 static void bmips_send_ipi_single(int cpu, unsigned int action)
237 {
238 	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
239 }
240 
241 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
242 {
243 	int action = irq - IPI0_IRQ;
244 
245 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
246 
247 	if (action == 0)
248 		scheduler_ipi();
249 	else
250 		smp_call_function_interrupt();
251 
252 	return IRQ_HANDLED;
253 }
254 
255 #else
256 
257 /*
258  * BMIPS43xx racey IPIs
259  *
260  * We use one inbound SW IRQ for each CPU.
261  *
262  * A spinlock must be held in order to keep CPUx from accidentally clearing
263  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
264  * same spinlock is used to protect the action masks.
265  */
266 
267 static DEFINE_SPINLOCK(ipi_lock);
268 static DEFINE_PER_CPU(int, ipi_action_mask);
269 
270 static void bmips_send_ipi_single(int cpu, unsigned int action)
271 {
272 	unsigned long flags;
273 
274 	spin_lock_irqsave(&ipi_lock, flags);
275 	set_c0_cause(cpu ? C_SW1 : C_SW0);
276 	per_cpu(ipi_action_mask, cpu) |= action;
277 	irq_enable_hazard();
278 	spin_unlock_irqrestore(&ipi_lock, flags);
279 }
280 
281 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
282 {
283 	unsigned long flags;
284 	int action, cpu = irq - IPI0_IRQ;
285 
286 	spin_lock_irqsave(&ipi_lock, flags);
287 	action = __get_cpu_var(ipi_action_mask);
288 	per_cpu(ipi_action_mask, cpu) = 0;
289 	clear_c0_cause(cpu ? C_SW1 : C_SW0);
290 	spin_unlock_irqrestore(&ipi_lock, flags);
291 
292 	if (action & SMP_RESCHEDULE_YOURSELF)
293 		scheduler_ipi();
294 	if (action & SMP_CALL_FUNCTION)
295 		smp_call_function_interrupt();
296 
297 	return IRQ_HANDLED;
298 }
299 
300 #endif /* BMIPS type */
301 
302 static void bmips_send_ipi_mask(const struct cpumask *mask,
303 	unsigned int action)
304 {
305 	unsigned int i;
306 
307 	for_each_cpu(i, mask)
308 		bmips_send_ipi_single(i, action);
309 }
310 
311 #ifdef CONFIG_HOTPLUG_CPU
312 
313 static int bmips_cpu_disable(void)
314 {
315 	unsigned int cpu = smp_processor_id();
316 
317 	if (cpu == 0)
318 		return -EBUSY;
319 
320 	pr_info("SMP: CPU%d is offline\n", cpu);
321 
322 	cpu_clear(cpu, cpu_online_map);
323 	cpu_clear(cpu, cpu_callin_map);
324 
325 	local_flush_tlb_all();
326 	local_flush_icache_range(0, ~0);
327 
328 	return 0;
329 }
330 
331 static void bmips_cpu_die(unsigned int cpu)
332 {
333 }
334 
335 void __ref play_dead(void)
336 {
337 	idle_task_exit();
338 
339 	/* flush data cache */
340 	_dma_cache_wback_inv(0, ~0);
341 
342 	/*
343 	 * Wakeup is on SW0 or SW1; disable everything else
344 	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
345 	 * IRQ handlers; this clears ST0_IE and returns immediately.
346 	 */
347 	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
348 	change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
349 		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
350 	irq_disable_hazard();
351 
352 	/*
353 	 * wait for SW interrupt from bmips_boot_secondary(), then jump
354 	 * back to start_secondary()
355 	 */
356 	__asm__ __volatile__(
357 	"	wait\n"
358 	"	j	bmips_secondary_reentry\n"
359 	: : : "memory");
360 }
361 
362 #endif /* CONFIG_HOTPLUG_CPU */
363 
364 struct plat_smp_ops bmips_smp_ops = {
365 	.smp_setup		= bmips_smp_setup,
366 	.prepare_cpus		= bmips_prepare_cpus,
367 	.boot_secondary		= bmips_boot_secondary,
368 	.smp_finish		= bmips_smp_finish,
369 	.init_secondary		= bmips_init_secondary,
370 	.cpus_done		= bmips_cpus_done,
371 	.send_ipi_single	= bmips_send_ipi_single,
372 	.send_ipi_mask		= bmips_send_ipi_mask,
373 #ifdef CONFIG_HOTPLUG_CPU
374 	.cpu_disable		= bmips_cpu_disable,
375 	.cpu_die		= bmips_cpu_die,
376 #endif
377 };
378 
379 #endif /* CONFIG_SMP */
380 
381 /***********************************************************************
382  * BMIPS vector relocation
383  * This is primarily used for SMP boot, but it is applicable to some
384  * UP BMIPS systems as well.
385  ***********************************************************************/
386 
387 static void __cpuinit bmips_wr_vec(unsigned long dst, char *start, char *end)
388 {
389 	memcpy((void *)dst, start, end - start);
390 	dma_cache_wback((unsigned long)start, end - start);
391 	local_flush_icache_range(dst, dst + (end - start));
392 	instruction_hazard();
393 }
394 
395 static inline void __cpuinit bmips_nmi_handler_setup(void)
396 {
397 	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
398 		&bmips_reset_nmi_vec_end);
399 	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
400 		&bmips_smp_int_vec_end);
401 }
402 
403 void __cpuinit bmips_ebase_setup(void)
404 {
405 	unsigned long new_ebase = ebase;
406 	void __iomem __maybe_unused *cbr;
407 
408 	BUG_ON(ebase != CKSEG0);
409 
410 #if defined(CONFIG_CPU_BMIPS4350)
411 	/*
412 	 * BMIPS4350 cannot relocate the normal vectors, but it
413 	 * can relocate the BEV=1 vectors.  So CPU1 starts up at
414 	 * the relocated BEV=1, IV=0 general exception vector @
415 	 * 0xa000_0380.
416 	 *
417 	 * set_uncached_handler() is used here because:
418 	 *  - CPU1 will run this from uncached space
419 	 *  - None of the cacheflush functions are set up yet
420 	 */
421 	set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
422 		&bmips_smp_int_vec, 0x80);
423 	__sync();
424 	return;
425 #elif defined(CONFIG_CPU_BMIPS4380)
426 	/*
427 	 * 0x8000_0000: reset/NMI (initially in kseg1)
428 	 * 0x8000_0400: normal vectors
429 	 */
430 	new_ebase = 0x80000400;
431 	cbr = BMIPS_GET_CBR();
432 	__raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
433 	__raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
434 #elif defined(CONFIG_CPU_BMIPS5000)
435 	/*
436 	 * 0x8000_0000: reset/NMI (initially in kseg1)
437 	 * 0x8000_1000: normal vectors
438 	 */
439 	new_ebase = 0x80001000;
440 	write_c0_brcm_bootvec(0xa0088008);
441 	write_c0_ebase(new_ebase);
442 	if (max_cpus > 2)
443 		bmips_write_zscm_reg(0xa0, 0xa008a008);
444 #else
445 	return;
446 #endif
447 	board_nmi_handler_setup = &bmips_nmi_handler_setup;
448 	ebase = new_ebase;
449 }
450 
451 asmlinkage void __weak plat_wired_tlb_setup(void)
452 {
453 	/*
454 	 * Called when starting/restarting a secondary CPU.
455 	 * Kernel stacks and other important data might only be accessible
456 	 * once the wired entries are present.
457 	 */
458 }
459