xref: /linux/arch/mips/kernel/smp-bmips.c (revision 38fe0e0156c037c060f81fe4e36549fae760322d)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 
30 #include <asm/time.h>
31 #include <asm/processor.h>
32 #include <asm/bootinfo.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mipsregs.h>
36 #include <asm/bmips.h>
37 #include <asm/traps.h>
38 #include <asm/barrier.h>
39 #include <asm/cpu-features.h>
40 
41 static int __maybe_unused max_cpus = 1;
42 
43 /* these may be configured by the platform code */
44 int bmips_smp_enabled = 1;
45 int bmips_cpu_offset;
46 cpumask_t bmips_booted_mask;
47 unsigned long bmips_tp1_irqs = IE_IRQ1;
48 
49 #define RESET_FROM_KSEG0		0x80080800
50 #define RESET_FROM_KSEG1		0xa0080800
51 
52 static void bmips_set_reset_vec(int cpu, u32 val);
53 
54 #ifdef CONFIG_SMP
55 
56 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
57 unsigned long bmips_smp_boot_sp;
58 unsigned long bmips_smp_boot_gp;
59 
60 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
61 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
62 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
63 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
64 
65 /* SW interrupts 0,1 are used for interprocessor signaling */
66 #define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
67 #define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
68 
69 #define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
70 #define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
73 
74 static void __init bmips_smp_setup(void)
75 {
76 	int i, cpu = 1, boot_cpu = 0;
77 	int cpu_hw_intr;
78 
79 	switch (current_cpu_type()) {
80 	case CPU_BMIPS4350:
81 	case CPU_BMIPS4380:
82 		/* arbitration priority */
83 		clear_c0_brcm_cmt_ctrl(0x30);
84 
85 		/* NBK and weak order flags */
86 		set_c0_brcm_config_0(0x30000);
87 
88 		/* Find out if we are running on TP0 or TP1 */
89 		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
90 
91 		/*
92 		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
93 		 * thread
94 		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
95 		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
96 		 */
97 		if (boot_cpu == 0)
98 			cpu_hw_intr = 0x02;
99 		else
100 			cpu_hw_intr = 0x1d;
101 
102 		change_c0_brcm_cmt_intr(0xf8018000,
103 					(cpu_hw_intr << 27) | (0x03 << 15));
104 
105 		/* single core, 2 threads (2 pipelines) */
106 		max_cpus = 2;
107 
108 		break;
109 	case CPU_BMIPS5000:
110 		/* enable raceless SW interrupts */
111 		set_c0_brcm_config(0x03 << 22);
112 
113 		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114 		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115 
116 		/* N cores, 2 threads per core */
117 		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118 
119 		/* clear any pending SW interrupts */
120 		for (i = 0; i < max_cpus; i++) {
121 			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122 			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
123 		}
124 
125 		break;
126 	default:
127 		max_cpus = 1;
128 	}
129 
130 	if (!bmips_smp_enabled)
131 		max_cpus = 1;
132 
133 	/* this can be overridden by the BSP */
134 	if (!board_ebase_setup)
135 		board_ebase_setup = &bmips_ebase_setup;
136 
137 	if (max_cpus > 1) {
138 		__cpu_number_map[boot_cpu] = 0;
139 		__cpu_logical_map[0] = boot_cpu;
140 
141 		for (i = 0; i < max_cpus; i++) {
142 			if (i != boot_cpu) {
143 				__cpu_number_map[i] = cpu;
144 				__cpu_logical_map[cpu] = i;
145 				cpu++;
146 			}
147 			set_cpu_possible(i, 1);
148 			set_cpu_present(i, 1);
149 		}
150 	} else {
151 		__cpu_number_map[0] = boot_cpu;
152 		__cpu_logical_map[0] = 0;
153 		set_cpu_possible(0, 1);
154 		set_cpu_present(0, 1);
155 	}
156 }
157 
158 /*
159  * IPI IRQ setup - runs on CPU0
160  */
161 static void bmips_prepare_cpus(unsigned int max_cpus)
162 {
163 	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
164 
165 	switch (current_cpu_type()) {
166 	case CPU_BMIPS4350:
167 	case CPU_BMIPS4380:
168 		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
169 		break;
170 	case CPU_BMIPS5000:
171 		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
172 		break;
173 	default:
174 		return;
175 	}
176 
177 	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
178 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
179 		panic("Can't request IPI0 interrupt");
180 	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
181 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
182 		panic("Can't request IPI1 interrupt");
183 }
184 
185 /*
186  * Tell the hardware to boot CPUx - runs on CPU0
187  */
188 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
189 {
190 	bmips_smp_boot_sp = __KSTK_TOS(idle);
191 	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
192 	mb();
193 
194 	/*
195 	 * Initial boot sequence for secondary CPU:
196 	 *   bmips_reset_nmi_vec @ a000_0000 ->
197 	 *   bmips_smp_entry ->
198 	 *   plat_wired_tlb_setup (cached function call; optional) ->
199 	 *   start_secondary (cached jump)
200 	 *
201 	 * Warm restart sequence:
202 	 *   play_dead WAIT loop ->
203 	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
204 	 *   eret to play_dead ->
205 	 *   bmips_secondary_reentry ->
206 	 *   start_secondary
207 	 */
208 
209 	pr_info("SMP: Booting CPU%d...\n", cpu);
210 
211 	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
212 		/* kseg1 might not exist if this CPU enabled XKS01 */
213 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
214 
215 		switch (current_cpu_type()) {
216 		case CPU_BMIPS4350:
217 		case CPU_BMIPS4380:
218 			bmips43xx_send_ipi_single(cpu, 0);
219 			break;
220 		case CPU_BMIPS5000:
221 			bmips5000_send_ipi_single(cpu, 0);
222 			break;
223 		}
224 	} else {
225 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
226 
227 		switch (current_cpu_type()) {
228 		case CPU_BMIPS4350:
229 		case CPU_BMIPS4380:
230 			/* Reset slave TP1 if booting from TP0 */
231 			if (cpu_logical_map(cpu) == 1)
232 				set_c0_brcm_cmt_ctrl(0x01);
233 			break;
234 		case CPU_BMIPS5000:
235 			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
236 			break;
237 		}
238 		cpumask_set_cpu(cpu, &bmips_booted_mask);
239 	}
240 
241 	return 0;
242 }
243 
244 /*
245  * Early setup - runs on secondary CPU after cache probe
246  */
247 static void bmips_init_secondary(void)
248 {
249 	bmips_cpu_setup();
250 
251 	switch (current_cpu_type()) {
252 	case CPU_BMIPS4350:
253 	case CPU_BMIPS4380:
254 		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
255 		break;
256 	case CPU_BMIPS5000:
257 		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
258 		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
259 		break;
260 	}
261 }
262 
263 /*
264  * Late setup - runs on secondary CPU before entering the idle loop
265  */
266 static void bmips_smp_finish(void)
267 {
268 	pr_info("SMP: CPU%d is running\n", smp_processor_id());
269 
270 	/* make sure there won't be a timer interrupt for a little while */
271 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
272 
273 	irq_enable_hazard();
274 	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
275 	irq_enable_hazard();
276 }
277 
278 /*
279  * BMIPS5000 raceless IPIs
280  *
281  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
282  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
283  * IPI1 is used for SMP_CALL_FUNCTION
284  */
285 
286 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
287 {
288 	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
289 }
290 
291 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
292 {
293 	int action = irq - IPI0_IRQ;
294 
295 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
296 
297 	if (action == 0)
298 		scheduler_ipi();
299 	else
300 		generic_smp_call_function_interrupt();
301 
302 	return IRQ_HANDLED;
303 }
304 
305 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
306 	unsigned int action)
307 {
308 	unsigned int i;
309 
310 	for_each_cpu(i, mask)
311 		bmips5000_send_ipi_single(i, action);
312 }
313 
314 /*
315  * BMIPS43xx racey IPIs
316  *
317  * We use one inbound SW IRQ for each CPU.
318  *
319  * A spinlock must be held in order to keep CPUx from accidentally clearing
320  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
321  * same spinlock is used to protect the action masks.
322  */
323 
324 static DEFINE_SPINLOCK(ipi_lock);
325 static DEFINE_PER_CPU(int, ipi_action_mask);
326 
327 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
328 {
329 	unsigned long flags;
330 
331 	spin_lock_irqsave(&ipi_lock, flags);
332 	set_c0_cause(cpu ? C_SW1 : C_SW0);
333 	per_cpu(ipi_action_mask, cpu) |= action;
334 	irq_enable_hazard();
335 	spin_unlock_irqrestore(&ipi_lock, flags);
336 }
337 
338 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
339 {
340 	unsigned long flags;
341 	int action, cpu = irq - IPI0_IRQ;
342 
343 	spin_lock_irqsave(&ipi_lock, flags);
344 	action = __this_cpu_read(ipi_action_mask);
345 	per_cpu(ipi_action_mask, cpu) = 0;
346 	clear_c0_cause(cpu ? C_SW1 : C_SW0);
347 	spin_unlock_irqrestore(&ipi_lock, flags);
348 
349 	if (action & SMP_RESCHEDULE_YOURSELF)
350 		scheduler_ipi();
351 	if (action & SMP_CALL_FUNCTION)
352 		generic_smp_call_function_interrupt();
353 
354 	return IRQ_HANDLED;
355 }
356 
357 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
358 	unsigned int action)
359 {
360 	unsigned int i;
361 
362 	for_each_cpu(i, mask)
363 		bmips43xx_send_ipi_single(i, action);
364 }
365 
366 #ifdef CONFIG_HOTPLUG_CPU
367 
368 static int bmips_cpu_disable(void)
369 {
370 	unsigned int cpu = smp_processor_id();
371 
372 	pr_info("SMP: CPU%d is offline\n", cpu);
373 
374 	set_cpu_online(cpu, false);
375 	calculate_cpu_foreign_map();
376 	irq_cpu_offline();
377 	clear_c0_status(IE_IRQ5);
378 
379 	local_flush_tlb_all();
380 	local_flush_icache_range(0, ~0);
381 
382 	return 0;
383 }
384 
385 static void bmips_cpu_die(unsigned int cpu)
386 {
387 }
388 
389 void __ref play_dead(void)
390 {
391 	idle_task_exit();
392 
393 	/* flush data cache */
394 	_dma_cache_wback_inv(0, ~0);
395 
396 	/*
397 	 * Wakeup is on SW0 or SW1; disable everything else
398 	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
399 	 * IRQ handlers; this clears ST0_IE and returns immediately.
400 	 */
401 	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
402 	change_c0_status(
403 		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
404 		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
405 	irq_disable_hazard();
406 
407 	/*
408 	 * wait for SW interrupt from bmips_boot_secondary(), then jump
409 	 * back to start_secondary()
410 	 */
411 	__asm__ __volatile__(
412 	"	wait\n"
413 	"	j	bmips_secondary_reentry\n"
414 	: : : "memory");
415 }
416 
417 #endif /* CONFIG_HOTPLUG_CPU */
418 
419 const struct plat_smp_ops bmips43xx_smp_ops = {
420 	.smp_setup		= bmips_smp_setup,
421 	.prepare_cpus		= bmips_prepare_cpus,
422 	.boot_secondary		= bmips_boot_secondary,
423 	.smp_finish		= bmips_smp_finish,
424 	.init_secondary		= bmips_init_secondary,
425 	.send_ipi_single	= bmips43xx_send_ipi_single,
426 	.send_ipi_mask		= bmips43xx_send_ipi_mask,
427 #ifdef CONFIG_HOTPLUG_CPU
428 	.cpu_disable		= bmips_cpu_disable,
429 	.cpu_die		= bmips_cpu_die,
430 #endif
431 #ifdef CONFIG_KEXEC
432 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
433 #endif
434 };
435 
436 const struct plat_smp_ops bmips5000_smp_ops = {
437 	.smp_setup		= bmips_smp_setup,
438 	.prepare_cpus		= bmips_prepare_cpus,
439 	.boot_secondary		= bmips_boot_secondary,
440 	.smp_finish		= bmips_smp_finish,
441 	.init_secondary		= bmips_init_secondary,
442 	.send_ipi_single	= bmips5000_send_ipi_single,
443 	.send_ipi_mask		= bmips5000_send_ipi_mask,
444 #ifdef CONFIG_HOTPLUG_CPU
445 	.cpu_disable		= bmips_cpu_disable,
446 	.cpu_die		= bmips_cpu_die,
447 #endif
448 #ifdef CONFIG_KEXEC
449 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
450 #endif
451 };
452 
453 #endif /* CONFIG_SMP */
454 
455 /***********************************************************************
456  * BMIPS vector relocation
457  * This is primarily used for SMP boot, but it is applicable to some
458  * UP BMIPS systems as well.
459  ***********************************************************************/
460 
461 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
462 {
463 	memcpy((void *)dst, start, end - start);
464 	dma_cache_wback(dst, end - start);
465 	local_flush_icache_range(dst, dst + (end - start));
466 	instruction_hazard();
467 }
468 
469 static inline void bmips_nmi_handler_setup(void)
470 {
471 	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
472 		bmips_reset_nmi_vec_end);
473 	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
474 		bmips_smp_int_vec_end);
475 }
476 
477 struct reset_vec_info {
478 	int cpu;
479 	u32 val;
480 };
481 
482 static void bmips_set_reset_vec_remote(void *vinfo)
483 {
484 	struct reset_vec_info *info = vinfo;
485 	int shift = info->cpu & 0x01 ? 16 : 0;
486 	u32 mask = ~(0xffff << shift), val = info->val >> 16;
487 
488 	preempt_disable();
489 	if (smp_processor_id() > 0) {
490 		smp_call_function_single(0, &bmips_set_reset_vec_remote,
491 					 info, 1);
492 	} else {
493 		if (info->cpu & 0x02) {
494 			/* BMIPS5200 "should" use mask/shift, but it's buggy */
495 			bmips_write_zscm_reg(0xa0, (val << 16) | val);
496 			bmips_read_zscm_reg(0xa0);
497 		} else {
498 			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
499 					      (val << shift));
500 		}
501 	}
502 	preempt_enable();
503 }
504 
505 static void bmips_set_reset_vec(int cpu, u32 val)
506 {
507 	struct reset_vec_info info;
508 
509 	if (current_cpu_type() == CPU_BMIPS5000) {
510 		/* this needs to run from CPU0 (which is always online) */
511 		info.cpu = cpu;
512 		info.val = val;
513 		bmips_set_reset_vec_remote(&info);
514 	} else {
515 		void __iomem *cbr = BMIPS_GET_CBR();
516 
517 		if (cpu == 0)
518 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
519 		else {
520 			if (current_cpu_type() != CPU_BMIPS4380)
521 				return;
522 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
523 		}
524 	}
525 	__sync();
526 	back_to_back_c0_hazard();
527 }
528 
529 void bmips_ebase_setup(void)
530 {
531 	unsigned long new_ebase = ebase;
532 
533 	BUG_ON(ebase != CKSEG0);
534 
535 	switch (current_cpu_type()) {
536 	case CPU_BMIPS4350:
537 		/*
538 		 * BMIPS4350 cannot relocate the normal vectors, but it
539 		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
540 		 * the relocated BEV=1, IV=0 general exception vector @
541 		 * 0xa000_0380.
542 		 *
543 		 * set_uncached_handler() is used here because:
544 		 *  - CPU1 will run this from uncached space
545 		 *  - None of the cacheflush functions are set up yet
546 		 */
547 		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
548 			&bmips_smp_int_vec, 0x80);
549 		__sync();
550 		return;
551 	case CPU_BMIPS3300:
552 	case CPU_BMIPS4380:
553 		/*
554 		 * 0x8000_0000: reset/NMI (initially in kseg1)
555 		 * 0x8000_0400: normal vectors
556 		 */
557 		new_ebase = 0x80000400;
558 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
559 		break;
560 	case CPU_BMIPS5000:
561 		/*
562 		 * 0x8000_0000: reset/NMI (initially in kseg1)
563 		 * 0x8000_1000: normal vectors
564 		 */
565 		new_ebase = 0x80001000;
566 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
567 		write_c0_ebase(new_ebase);
568 		break;
569 	default:
570 		return;
571 	}
572 
573 	board_nmi_handler_setup = &bmips_nmi_handler_setup;
574 	ebase = new_ebase;
575 }
576 
577 asmlinkage void __weak plat_wired_tlb_setup(void)
578 {
579 	/*
580 	 * Called when starting/restarting a secondary CPU.
581 	 * Kernel stacks and other important data might only be accessible
582 	 * once the wired entries are present.
583 	 */
584 }
585 
586 void bmips_cpu_setup(void)
587 {
588 	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
589 	u32 __maybe_unused cfg;
590 
591 	switch (current_cpu_type()) {
592 	case CPU_BMIPS3300:
593 		/* Set BIU to async mode */
594 		set_c0_brcm_bus_pll(BIT(22));
595 		__sync();
596 
597 		/* put the BIU back in sync mode */
598 		clear_c0_brcm_bus_pll(BIT(22));
599 
600 		/* clear BHTD to enable branch history table */
601 		clear_c0_brcm_reset(BIT(16));
602 
603 		/* Flush and enable RAC */
604 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
605 		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
606 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
607 
608 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
609 		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
610 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
611 
612 		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
613 		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
614 		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
615 		break;
616 
617 	case CPU_BMIPS4380:
618 		/* CBG workaround for early BMIPS4380 CPUs */
619 		switch (read_c0_prid()) {
620 		case 0x2a040:
621 		case 0x2a042:
622 		case 0x2a044:
623 		case 0x2a060:
624 			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
625 			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
626 			__raw_readl(cbr + BMIPS_L2_CONFIG);
627 		}
628 
629 		/* clear BHTD to enable branch history table */
630 		clear_c0_brcm_config_0(BIT(21));
631 
632 		/* XI/ROTR enable */
633 		set_c0_brcm_config_0(BIT(23));
634 		set_c0_brcm_cmt_ctrl(BIT(15));
635 		break;
636 
637 	case CPU_BMIPS5000:
638 		/* enable RDHWR, BRDHWR */
639 		set_c0_brcm_config(BIT(17) | BIT(21));
640 
641 		/* Disable JTB */
642 		__asm__ __volatile__(
643 		"	.set	noreorder\n"
644 		"	li	$8, 0x5a455048\n"
645 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
646 		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
647 		"	li	$9, 0x00008000\n"
648 		"	or	$8, $8, $9\n"
649 		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
650 		"	sync\n"
651 		"	li	$8, 0x0\n"
652 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
653 		"	.set	reorder\n"
654 		: : : "$8", "$9");
655 
656 		/* XI enable */
657 		set_c0_brcm_config(BIT(27));
658 
659 		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
660 		__asm__ __volatile__(
661 		"	li	$8, 0x5a455048\n"
662 		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
663 		"	nop; nop; nop\n"
664 		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
665 		"	lui	$9, 0x0100\n"
666 		"	or	$8, $9\n"
667 		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
668 		: : : "$8", "$9");
669 		break;
670 	}
671 }
672