xref: /linux/arch/mips/kernel/setup.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31 
32 #include <asm/addrspace.h>
33 #include <asm/bootinfo.h>
34 #include <asm/bugs.h>
35 #include <asm/cache.h>
36 #include <asm/cdmm.h>
37 #include <asm/cpu.h>
38 #include <asm/debug.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/sections.h>
41 #include <asm/setup.h>
42 #include <asm/smp-ops.h>
43 #include <asm/prom.h>
44 
45 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
46 const char __section(.appended_dtb) __appended_dtb[0x100000];
47 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
48 
49 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
50 
51 EXPORT_SYMBOL(cpu_data);
52 
53 #ifdef CONFIG_VT
54 struct screen_info screen_info;
55 #endif
56 
57 /*
58  * Setup information
59  *
60  * These are initialized so they are in the .data section
61  */
62 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
63 
64 EXPORT_SYMBOL(mips_machtype);
65 
66 struct boot_mem_map boot_mem_map;
67 
68 static char __initdata command_line[COMMAND_LINE_SIZE];
69 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
70 
71 #ifdef CONFIG_CMDLINE_BOOL
72 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
73 #endif
74 
75 /*
76  * mips_io_port_base is the begin of the address space to which x86 style
77  * I/O ports are mapped.
78  */
79 const unsigned long mips_io_port_base = -1;
80 EXPORT_SYMBOL(mips_io_port_base);
81 
82 static struct resource code_resource = { .name = "Kernel code", };
83 static struct resource data_resource = { .name = "Kernel data", };
84 static struct resource bss_resource = { .name = "Kernel bss", };
85 
86 static void *detect_magic __initdata = detect_memory_region;
87 
88 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
89 unsigned long ARCH_PFN_OFFSET;
90 EXPORT_SYMBOL(ARCH_PFN_OFFSET);
91 #endif
92 
93 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
94 {
95 	int x = boot_mem_map.nr_map;
96 	int i;
97 
98 	/*
99 	 * If the region reaches the top of the physical address space, adjust
100 	 * the size slightly so that (start + size) doesn't overflow
101 	 */
102 	if (start + size - 1 == PHYS_ADDR_MAX)
103 		--size;
104 
105 	/* Sanity check */
106 	if (start + size < start) {
107 		pr_warn("Trying to add an invalid memory region, skipped\n");
108 		return;
109 	}
110 
111 	/*
112 	 * Try to merge with existing entry, if any.
113 	 */
114 	for (i = 0; i < boot_mem_map.nr_map; i++) {
115 		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
116 		unsigned long top;
117 
118 		if (entry->type != type)
119 			continue;
120 
121 		if (start + size < entry->addr)
122 			continue;			/* no overlap */
123 
124 		if (entry->addr + entry->size < start)
125 			continue;			/* no overlap */
126 
127 		top = max(entry->addr + entry->size, start + size);
128 		entry->addr = min(entry->addr, start);
129 		entry->size = top - entry->addr;
130 
131 		return;
132 	}
133 
134 	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
135 		pr_err("Ooops! Too many entries in the memory map!\n");
136 		return;
137 	}
138 
139 	boot_mem_map.map[x].addr = start;
140 	boot_mem_map.map[x].size = size;
141 	boot_mem_map.map[x].type = type;
142 	boot_mem_map.nr_map++;
143 }
144 
145 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
146 {
147 	void *dm = &detect_magic;
148 	phys_addr_t size;
149 
150 	for (size = sz_min; size < sz_max; size <<= 1) {
151 		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
152 			break;
153 	}
154 
155 	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
156 		((unsigned long long) size) / SZ_1M,
157 		(unsigned long long) start,
158 		((unsigned long long) sz_min) / SZ_1M,
159 		((unsigned long long) sz_max) / SZ_1M);
160 
161 	add_memory_region(start, size, BOOT_MEM_RAM);
162 }
163 
164 static bool __init __maybe_unused memory_region_available(phys_addr_t start,
165 							  phys_addr_t size)
166 {
167 	int i;
168 	bool in_ram = false, free = true;
169 
170 	for (i = 0; i < boot_mem_map.nr_map; i++) {
171 		phys_addr_t start_, end_;
172 
173 		start_ = boot_mem_map.map[i].addr;
174 		end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
175 
176 		switch (boot_mem_map.map[i].type) {
177 		case BOOT_MEM_RAM:
178 			if (start >= start_ && start + size <= end_)
179 				in_ram = true;
180 			break;
181 		case BOOT_MEM_RESERVED:
182 			if ((start >= start_ && start < end_) ||
183 			    (start < start_ && start + size >= start_))
184 				free = false;
185 			break;
186 		default:
187 			continue;
188 		}
189 	}
190 
191 	return in_ram && free;
192 }
193 
194 static void __init print_memory_map(void)
195 {
196 	int i;
197 	const int field = 2 * sizeof(unsigned long);
198 
199 	for (i = 0; i < boot_mem_map.nr_map; i++) {
200 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
201 		       field, (unsigned long long) boot_mem_map.map[i].size,
202 		       field, (unsigned long long) boot_mem_map.map[i].addr);
203 
204 		switch (boot_mem_map.map[i].type) {
205 		case BOOT_MEM_RAM:
206 			printk(KERN_CONT "(usable)\n");
207 			break;
208 		case BOOT_MEM_INIT_RAM:
209 			printk(KERN_CONT "(usable after init)\n");
210 			break;
211 		case BOOT_MEM_ROM_DATA:
212 			printk(KERN_CONT "(ROM data)\n");
213 			break;
214 		case BOOT_MEM_RESERVED:
215 			printk(KERN_CONT "(reserved)\n");
216 			break;
217 		default:
218 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
219 			break;
220 		}
221 	}
222 }
223 
224 /*
225  * Manage initrd
226  */
227 #ifdef CONFIG_BLK_DEV_INITRD
228 
229 static int __init rd_start_early(char *p)
230 {
231 	unsigned long start = memparse(p, &p);
232 
233 #ifdef CONFIG_64BIT
234 	/* Guess if the sign extension was forgotten by bootloader */
235 	if (start < XKPHYS)
236 		start = (int)start;
237 #endif
238 	initrd_start = start;
239 	initrd_end += start;
240 	return 0;
241 }
242 early_param("rd_start", rd_start_early);
243 
244 static int __init rd_size_early(char *p)
245 {
246 	initrd_end += memparse(p, &p);
247 	return 0;
248 }
249 early_param("rd_size", rd_size_early);
250 
251 /* it returns the next free pfn after initrd */
252 static unsigned long __init init_initrd(void)
253 {
254 	unsigned long end;
255 
256 	/*
257 	 * Board specific code or command line parser should have
258 	 * already set up initrd_start and initrd_end. In these cases
259 	 * perfom sanity checks and use them if all looks good.
260 	 */
261 	if (!initrd_start || initrd_end <= initrd_start)
262 		goto disable;
263 
264 	if (initrd_start & ~PAGE_MASK) {
265 		pr_err("initrd start must be page aligned\n");
266 		goto disable;
267 	}
268 	if (initrd_start < PAGE_OFFSET) {
269 		pr_err("initrd start < PAGE_OFFSET\n");
270 		goto disable;
271 	}
272 
273 	/*
274 	 * Sanitize initrd addresses. For example firmware
275 	 * can't guess if they need to pass them through
276 	 * 64-bits values if the kernel has been built in pure
277 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
278 	 * addresses now, so the code can now safely use __pa().
279 	 */
280 	end = __pa(initrd_end);
281 	initrd_end = (unsigned long)__va(end);
282 	initrd_start = (unsigned long)__va(__pa(initrd_start));
283 
284 	ROOT_DEV = Root_RAM0;
285 	return PFN_UP(end);
286 disable:
287 	initrd_start = 0;
288 	initrd_end = 0;
289 	return 0;
290 }
291 
292 /* In some conditions (e.g. big endian bootloader with a little endian
293    kernel), the initrd might appear byte swapped.  Try to detect this and
294    byte swap it if needed.  */
295 static void __init maybe_bswap_initrd(void)
296 {
297 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
298 	u64 buf;
299 
300 	/* Check for CPIO signature */
301 	if (!memcmp((void *)initrd_start, "070701", 6))
302 		return;
303 
304 	/* Check for compressed initrd */
305 	if (decompress_method((unsigned char *)initrd_start, 8, NULL))
306 		return;
307 
308 	/* Try again with a byte swapped header */
309 	buf = swab64p((u64 *)initrd_start);
310 	if (!memcmp(&buf, "070701", 6) ||
311 	    decompress_method((unsigned char *)(&buf), 8, NULL)) {
312 		unsigned long i;
313 
314 		pr_info("Byteswapped initrd detected\n");
315 		for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
316 			swab64s((u64 *)i);
317 	}
318 #endif
319 }
320 
321 static void __init finalize_initrd(void)
322 {
323 	unsigned long size = initrd_end - initrd_start;
324 
325 	if (size == 0) {
326 		printk(KERN_INFO "Initrd not found or empty");
327 		goto disable;
328 	}
329 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
330 		printk(KERN_ERR "Initrd extends beyond end of memory");
331 		goto disable;
332 	}
333 
334 	maybe_bswap_initrd();
335 
336 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
337 	initrd_below_start_ok = 1;
338 
339 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
340 		initrd_start, size);
341 	return;
342 disable:
343 	printk(KERN_CONT " - disabling initrd\n");
344 	initrd_start = 0;
345 	initrd_end = 0;
346 }
347 
348 #else  /* !CONFIG_BLK_DEV_INITRD */
349 
350 static unsigned long __init init_initrd(void)
351 {
352 	return 0;
353 }
354 
355 #define finalize_initrd()	do {} while (0)
356 
357 #endif
358 
359 /*
360  * Initialize the bootmem allocator. It also setup initrd related data
361  * if needed.
362  */
363 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
364 
365 static void __init bootmem_init(void)
366 {
367 	init_initrd();
368 	finalize_initrd();
369 }
370 
371 #else  /* !CONFIG_SGI_IP27 */
372 
373 static unsigned long __init bootmap_bytes(unsigned long pages)
374 {
375 	unsigned long bytes = DIV_ROUND_UP(pages, 8);
376 
377 	return ALIGN(bytes, sizeof(long));
378 }
379 
380 static void __init bootmem_init(void)
381 {
382 	unsigned long reserved_end;
383 	unsigned long mapstart = ~0UL;
384 	unsigned long bootmap_size;
385 	phys_addr_t ramstart = PHYS_ADDR_MAX;
386 	bool bootmap_valid = false;
387 	int i;
388 
389 	/*
390 	 * Sanity check any INITRD first. We don't take it into account
391 	 * for bootmem setup initially, rely on the end-of-kernel-code
392 	 * as our memory range starting point. Once bootmem is inited we
393 	 * will reserve the area used for the initrd.
394 	 */
395 	init_initrd();
396 	reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
397 
398 	/*
399 	 * max_low_pfn is not a number of pages. The number of pages
400 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
401 	 */
402 	min_low_pfn = ~0UL;
403 	max_low_pfn = 0;
404 
405 	/*
406 	 * Find the highest page frame number we have available
407 	 * and the lowest used RAM address
408 	 */
409 	for (i = 0; i < boot_mem_map.nr_map; i++) {
410 		unsigned long start, end;
411 
412 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
413 			continue;
414 
415 		start = PFN_UP(boot_mem_map.map[i].addr);
416 		end = PFN_DOWN(boot_mem_map.map[i].addr
417 				+ boot_mem_map.map[i].size);
418 
419 		ramstart = min(ramstart, boot_mem_map.map[i].addr);
420 
421 #ifndef CONFIG_HIGHMEM
422 		/*
423 		 * Skip highmem here so we get an accurate max_low_pfn if low
424 		 * memory stops short of high memory.
425 		 * If the region overlaps HIGHMEM_START, end is clipped so
426 		 * max_pfn excludes the highmem portion.
427 		 */
428 		if (start >= PFN_DOWN(HIGHMEM_START))
429 			continue;
430 		if (end > PFN_DOWN(HIGHMEM_START))
431 			end = PFN_DOWN(HIGHMEM_START);
432 #endif
433 
434 		if (end > max_low_pfn)
435 			max_low_pfn = end;
436 		if (start < min_low_pfn)
437 			min_low_pfn = start;
438 		if (end <= reserved_end)
439 			continue;
440 #ifdef CONFIG_BLK_DEV_INITRD
441 		/* Skip zones before initrd and initrd itself */
442 		if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
443 			continue;
444 #endif
445 		if (start >= mapstart)
446 			continue;
447 		mapstart = max(reserved_end, start);
448 	}
449 
450 	if (min_low_pfn >= max_low_pfn)
451 		panic("Incorrect memory mapping !!!");
452 
453 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
454 	ARCH_PFN_OFFSET = PFN_UP(ramstart);
455 #else
456 	/*
457 	 * Reserve any memory between the start of RAM and PHYS_OFFSET
458 	 */
459 	if (ramstart > PHYS_OFFSET)
460 		add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
461 				  BOOT_MEM_RESERVED);
462 
463 	if (min_low_pfn > ARCH_PFN_OFFSET) {
464 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
465 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
466 			min_low_pfn - ARCH_PFN_OFFSET);
467 	} else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) {
468 		pr_info("%lu free pages won't be used\n",
469 			ARCH_PFN_OFFSET - min_low_pfn);
470 	}
471 	min_low_pfn = ARCH_PFN_OFFSET;
472 #endif
473 
474 	/*
475 	 * Determine low and high memory ranges
476 	 */
477 	max_pfn = max_low_pfn;
478 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
479 #ifdef CONFIG_HIGHMEM
480 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
481 		highend_pfn = max_low_pfn;
482 #endif
483 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
484 	}
485 
486 #ifdef CONFIG_BLK_DEV_INITRD
487 	/*
488 	 * mapstart should be after initrd_end
489 	 */
490 	if (initrd_end)
491 		mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
492 #endif
493 
494 	/*
495 	 * check that mapstart doesn't overlap with any of
496 	 * memory regions that have been reserved through eg. DTB
497 	 */
498 	bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
499 
500 	bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
501 						bootmap_size);
502 	for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
503 		unsigned long mapstart_addr;
504 
505 		switch (boot_mem_map.map[i].type) {
506 		case BOOT_MEM_RESERVED:
507 			mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
508 						boot_mem_map.map[i].size);
509 			if (PHYS_PFN(mapstart_addr) < mapstart)
510 				break;
511 
512 			bootmap_valid = memory_region_available(mapstart_addr,
513 								bootmap_size);
514 			if (bootmap_valid)
515 				mapstart = PHYS_PFN(mapstart_addr);
516 			break;
517 		default:
518 			break;
519 		}
520 	}
521 
522 	if (!bootmap_valid)
523 		panic("No memory area to place a bootmap bitmap");
524 
525 	/*
526 	 * Initialize the boot-time allocator with low memory only.
527 	 */
528 	if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
529 					 min_low_pfn, max_low_pfn))
530 		panic("Unexpected memory size required for bootmap");
531 
532 	for (i = 0; i < boot_mem_map.nr_map; i++) {
533 		unsigned long start, end;
534 
535 		start = PFN_UP(boot_mem_map.map[i].addr);
536 		end = PFN_DOWN(boot_mem_map.map[i].addr
537 				+ boot_mem_map.map[i].size);
538 
539 		if (start <= min_low_pfn)
540 			start = min_low_pfn;
541 		if (start >= end)
542 			continue;
543 
544 #ifndef CONFIG_HIGHMEM
545 		if (end > max_low_pfn)
546 			end = max_low_pfn;
547 
548 		/*
549 		 * ... finally, is the area going away?
550 		 */
551 		if (end <= start)
552 			continue;
553 #endif
554 
555 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
556 	}
557 
558 	/*
559 	 * Register fully available low RAM pages with the bootmem allocator.
560 	 */
561 	for (i = 0; i < boot_mem_map.nr_map; i++) {
562 		unsigned long start, end, size;
563 
564 		start = PFN_UP(boot_mem_map.map[i].addr);
565 		end   = PFN_DOWN(boot_mem_map.map[i].addr
566 				    + boot_mem_map.map[i].size);
567 
568 		/*
569 		 * Reserve usable memory.
570 		 */
571 		switch (boot_mem_map.map[i].type) {
572 		case BOOT_MEM_RAM:
573 			break;
574 		case BOOT_MEM_INIT_RAM:
575 			memory_present(0, start, end);
576 			continue;
577 		default:
578 			/* Not usable memory */
579 			if (start > min_low_pfn && end < max_low_pfn)
580 				reserve_bootmem(boot_mem_map.map[i].addr,
581 						boot_mem_map.map[i].size,
582 						BOOTMEM_DEFAULT);
583 			continue;
584 		}
585 
586 		/*
587 		 * We are rounding up the start address of usable memory
588 		 * and at the end of the usable range downwards.
589 		 */
590 		if (start >= max_low_pfn)
591 			continue;
592 		if (start < reserved_end)
593 			start = reserved_end;
594 		if (end > max_low_pfn)
595 			end = max_low_pfn;
596 
597 		/*
598 		 * ... finally, is the area going away?
599 		 */
600 		if (end <= start)
601 			continue;
602 		size = end - start;
603 
604 		/* Register lowmem ranges */
605 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
606 		memory_present(0, start, end);
607 	}
608 
609 	/*
610 	 * Reserve the bootmap memory.
611 	 */
612 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
613 
614 #ifdef CONFIG_RELOCATABLE
615 	/*
616 	 * The kernel reserves all memory below its _end symbol as bootmem,
617 	 * but the kernel may now be at a much higher address. The memory
618 	 * between the original and new locations may be returned to the system.
619 	 */
620 	if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
621 		unsigned long offset;
622 		extern void show_kernel_relocation(const char *level);
623 
624 		offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
625 		free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
626 
627 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
628 		/*
629 		 * This information is necessary when debugging the kernel
630 		 * But is a security vulnerability otherwise!
631 		 */
632 		show_kernel_relocation(KERN_INFO);
633 #endif
634 	}
635 #endif
636 
637 	/*
638 	 * Reserve initrd memory if needed.
639 	 */
640 	finalize_initrd();
641 }
642 
643 #endif	/* CONFIG_SGI_IP27 */
644 
645 /*
646  * arch_mem_init - initialize memory management subsystem
647  *
648  *  o plat_mem_setup() detects the memory configuration and will record detected
649  *    memory areas using add_memory_region.
650  *
651  * At this stage the memory configuration of the system is known to the
652  * kernel but generic memory management system is still entirely uninitialized.
653  *
654  *  o bootmem_init()
655  *  o sparse_init()
656  *  o paging_init()
657  *  o dma_contiguous_reserve()
658  *
659  * At this stage the bootmem allocator is ready to use.
660  *
661  * NOTE: historically plat_mem_setup did the entire platform initialization.
662  *	 This was rather impractical because it meant plat_mem_setup had to
663  * get away without any kind of memory allocator.  To keep old code from
664  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
665  * initialization hook for anything else was introduced.
666  */
667 
668 static int usermem __initdata;
669 
670 static int __init early_parse_mem(char *p)
671 {
672 	phys_addr_t start, size;
673 
674 	/*
675 	 * If a user specifies memory size, we
676 	 * blow away any automatically generated
677 	 * size.
678 	 */
679 	if (usermem == 0) {
680 		boot_mem_map.nr_map = 0;
681 		usermem = 1;
682 	}
683 	start = 0;
684 	size = memparse(p, &p);
685 	if (*p == '@')
686 		start = memparse(p + 1, &p);
687 
688 	add_memory_region(start, size, BOOT_MEM_RAM);
689 
690 	return 0;
691 }
692 early_param("mem", early_parse_mem);
693 
694 static int __init early_parse_memmap(char *p)
695 {
696 	char *oldp;
697 	u64 start_at, mem_size;
698 
699 	if (!p)
700 		return -EINVAL;
701 
702 	if (!strncmp(p, "exactmap", 8)) {
703 		pr_err("\"memmap=exactmap\" invalid on MIPS\n");
704 		return 0;
705 	}
706 
707 	oldp = p;
708 	mem_size = memparse(p, &p);
709 	if (p == oldp)
710 		return -EINVAL;
711 
712 	if (*p == '@') {
713 		start_at = memparse(p+1, &p);
714 		add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
715 	} else if (*p == '#') {
716 		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
717 		return -EINVAL;
718 	} else if (*p == '$') {
719 		start_at = memparse(p+1, &p);
720 		add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
721 	} else {
722 		pr_err("\"memmap\" invalid format!\n");
723 		return -EINVAL;
724 	}
725 
726 	if (*p == '\0') {
727 		usermem = 1;
728 		return 0;
729 	} else
730 		return -EINVAL;
731 }
732 early_param("memmap", early_parse_memmap);
733 
734 #ifdef CONFIG_PROC_VMCORE
735 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
736 static int __init early_parse_elfcorehdr(char *p)
737 {
738 	int i;
739 
740 	setup_elfcorehdr = memparse(p, &p);
741 
742 	for (i = 0; i < boot_mem_map.nr_map; i++) {
743 		unsigned long start = boot_mem_map.map[i].addr;
744 		unsigned long end = (boot_mem_map.map[i].addr +
745 				     boot_mem_map.map[i].size);
746 		if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
747 			/*
748 			 * Reserve from the elf core header to the end of
749 			 * the memory segment, that should all be kdump
750 			 * reserved memory.
751 			 */
752 			setup_elfcorehdr_size = end - setup_elfcorehdr;
753 			break;
754 		}
755 	}
756 	/*
757 	 * If we don't find it in the memory map, then we shouldn't
758 	 * have to worry about it, as the new kernel won't use it.
759 	 */
760 	return 0;
761 }
762 early_param("elfcorehdr", early_parse_elfcorehdr);
763 #endif
764 
765 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
766 {
767 	phys_addr_t size;
768 	int i;
769 
770 	size = end - mem;
771 	if (!size)
772 		return;
773 
774 	/* Make sure it is in the boot_mem_map */
775 	for (i = 0; i < boot_mem_map.nr_map; i++) {
776 		if (mem >= boot_mem_map.map[i].addr &&
777 		    mem < (boot_mem_map.map[i].addr +
778 			   boot_mem_map.map[i].size))
779 			return;
780 	}
781 	add_memory_region(mem, size, type);
782 }
783 
784 #ifdef CONFIG_KEXEC
785 static inline unsigned long long get_total_mem(void)
786 {
787 	unsigned long long total;
788 
789 	total = max_pfn - min_low_pfn;
790 	return total << PAGE_SHIFT;
791 }
792 
793 static void __init mips_parse_crashkernel(void)
794 {
795 	unsigned long long total_mem;
796 	unsigned long long crash_size, crash_base;
797 	int ret;
798 
799 	total_mem = get_total_mem();
800 	ret = parse_crashkernel(boot_command_line, total_mem,
801 				&crash_size, &crash_base);
802 	if (ret != 0 || crash_size <= 0)
803 		return;
804 
805 	if (!memory_region_available(crash_base, crash_size)) {
806 		pr_warn("Invalid memory region reserved for crash kernel\n");
807 		return;
808 	}
809 
810 	crashk_res.start = crash_base;
811 	crashk_res.end	 = crash_base + crash_size - 1;
812 }
813 
814 static void __init request_crashkernel(struct resource *res)
815 {
816 	int ret;
817 
818 	if (crashk_res.start == crashk_res.end)
819 		return;
820 
821 	ret = request_resource(res, &crashk_res);
822 	if (!ret)
823 		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
824 			(unsigned long)((crashk_res.end -
825 					 crashk_res.start + 1) >> 20),
826 			(unsigned long)(crashk_res.start  >> 20));
827 }
828 #else /* !defined(CONFIG_KEXEC)		*/
829 static void __init mips_parse_crashkernel(void)
830 {
831 }
832 
833 static void __init request_crashkernel(struct resource *res)
834 {
835 }
836 #endif /* !defined(CONFIG_KEXEC)  */
837 
838 #define USE_PROM_CMDLINE	IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
839 #define USE_DTB_CMDLINE		IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
840 #define EXTEND_WITH_PROM	IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
841 #define BUILTIN_EXTEND_WITH_PROM	\
842 	IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
843 
844 static void __init arch_mem_init(char **cmdline_p)
845 {
846 	struct memblock_region *reg;
847 	extern void plat_mem_setup(void);
848 
849 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
850 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
851 #else
852 	if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
853 	    (USE_DTB_CMDLINE && !boot_command_line[0]))
854 		strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
855 
856 	if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
857 		if (boot_command_line[0])
858 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
859 		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
860 	}
861 
862 #if defined(CONFIG_CMDLINE_BOOL)
863 	if (builtin_cmdline[0]) {
864 		if (boot_command_line[0])
865 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
866 		strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
867 	}
868 
869 	if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
870 		if (boot_command_line[0])
871 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
872 		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
873 	}
874 #endif
875 #endif
876 
877 	/* call board setup routine */
878 	plat_mem_setup();
879 
880 	/*
881 	 * Make sure all kernel memory is in the maps.  The "UP" and
882 	 * "DOWN" are opposite for initdata since if it crosses over
883 	 * into another memory section you don't want that to be
884 	 * freed when the initdata is freed.
885 	 */
886 	arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
887 			 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
888 			 BOOT_MEM_RAM);
889 	arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
890 			 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
891 			 BOOT_MEM_INIT_RAM);
892 
893 	pr_info("Determined physical RAM map:\n");
894 	print_memory_map();
895 
896 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
897 
898 	*cmdline_p = command_line;
899 
900 	parse_early_param();
901 
902 	if (usermem) {
903 		pr_info("User-defined physical RAM map:\n");
904 		print_memory_map();
905 	}
906 
907 	early_init_fdt_reserve_self();
908 	early_init_fdt_scan_reserved_mem();
909 
910 	bootmem_init();
911 #ifdef CONFIG_PROC_VMCORE
912 	if (setup_elfcorehdr && setup_elfcorehdr_size) {
913 		printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
914 		       setup_elfcorehdr, setup_elfcorehdr_size);
915 		reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
916 				BOOTMEM_DEFAULT);
917 	}
918 #endif
919 
920 	mips_parse_crashkernel();
921 #ifdef CONFIG_KEXEC
922 	if (crashk_res.start != crashk_res.end)
923 		reserve_bootmem(crashk_res.start,
924 				crashk_res.end - crashk_res.start + 1,
925 				BOOTMEM_DEFAULT);
926 #endif
927 	device_tree_init();
928 	sparse_init();
929 	plat_swiotlb_setup();
930 
931 	dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
932 	/* Tell bootmem about cma reserved memblock section */
933 	for_each_memblock(reserved, reg)
934 		if (reg->size != 0)
935 			reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
936 
937 	reserve_bootmem_region(__pa_symbol(&__nosave_begin),
938 			__pa_symbol(&__nosave_end)); /* Reserve for hibernation */
939 }
940 
941 static void __init resource_init(void)
942 {
943 	int i;
944 
945 	if (UNCAC_BASE != IO_BASE)
946 		return;
947 
948 	code_resource.start = __pa_symbol(&_text);
949 	code_resource.end = __pa_symbol(&_etext) - 1;
950 	data_resource.start = __pa_symbol(&_etext);
951 	data_resource.end = __pa_symbol(&_edata) - 1;
952 	bss_resource.start = __pa_symbol(&__bss_start);
953 	bss_resource.end = __pa_symbol(&__bss_stop) - 1;
954 
955 	for (i = 0; i < boot_mem_map.nr_map; i++) {
956 		struct resource *res;
957 		unsigned long start, end;
958 
959 		start = boot_mem_map.map[i].addr;
960 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
961 		if (start >= HIGHMEM_START)
962 			continue;
963 		if (end >= HIGHMEM_START)
964 			end = HIGHMEM_START - 1;
965 
966 		res = alloc_bootmem(sizeof(struct resource));
967 
968 		res->start = start;
969 		res->end = end;
970 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
971 
972 		switch (boot_mem_map.map[i].type) {
973 		case BOOT_MEM_RAM:
974 		case BOOT_MEM_INIT_RAM:
975 		case BOOT_MEM_ROM_DATA:
976 			res->name = "System RAM";
977 			res->flags |= IORESOURCE_SYSRAM;
978 			break;
979 		case BOOT_MEM_RESERVED:
980 		default:
981 			res->name = "reserved";
982 		}
983 
984 		request_resource(&iomem_resource, res);
985 
986 		/*
987 		 *  We don't know which RAM region contains kernel data,
988 		 *  so we try it repeatedly and let the resource manager
989 		 *  test it.
990 		 */
991 		request_resource(res, &code_resource);
992 		request_resource(res, &data_resource);
993 		request_resource(res, &bss_resource);
994 		request_crashkernel(res);
995 	}
996 }
997 
998 #ifdef CONFIG_SMP
999 static void __init prefill_possible_map(void)
1000 {
1001 	int i, possible = num_possible_cpus();
1002 
1003 	if (possible > nr_cpu_ids)
1004 		possible = nr_cpu_ids;
1005 
1006 	for (i = 0; i < possible; i++)
1007 		set_cpu_possible(i, true);
1008 	for (; i < NR_CPUS; i++)
1009 		set_cpu_possible(i, false);
1010 
1011 	nr_cpu_ids = possible;
1012 }
1013 #else
1014 static inline void prefill_possible_map(void) {}
1015 #endif
1016 
1017 void __init setup_arch(char **cmdline_p)
1018 {
1019 	cpu_probe();
1020 	mips_cm_probe();
1021 	prom_init();
1022 
1023 	setup_early_fdc_console();
1024 #ifdef CONFIG_EARLY_PRINTK
1025 	setup_early_printk();
1026 #endif
1027 	cpu_report();
1028 	check_bugs_early();
1029 
1030 #if defined(CONFIG_VT)
1031 #if defined(CONFIG_VGA_CONSOLE)
1032 	conswitchp = &vga_con;
1033 #elif defined(CONFIG_DUMMY_CONSOLE)
1034 	conswitchp = &dummy_con;
1035 #endif
1036 #endif
1037 
1038 	arch_mem_init(cmdline_p);
1039 
1040 	resource_init();
1041 	plat_smp_setup();
1042 	prefill_possible_map();
1043 
1044 	cpu_cache_init();
1045 	paging_init();
1046 }
1047 
1048 unsigned long kernelsp[NR_CPUS];
1049 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1050 
1051 #ifdef CONFIG_USE_OF
1052 unsigned long fw_passed_dtb;
1053 #endif
1054 
1055 #ifdef CONFIG_DEBUG_FS
1056 struct dentry *mips_debugfs_dir;
1057 static int __init debugfs_mips(void)
1058 {
1059 	struct dentry *d;
1060 
1061 	d = debugfs_create_dir("mips", NULL);
1062 	if (!d)
1063 		return -ENOMEM;
1064 	mips_debugfs_dir = d;
1065 	return 0;
1066 }
1067 arch_initcall(debugfs_mips);
1068 #endif
1069 
1070 #if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
1071 /* User defined DMA coherency from command line. */
1072 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
1073 EXPORT_SYMBOL_GPL(coherentio);
1074 int hw_coherentio = 0;	/* Actual hardware supported DMA coherency setting. */
1075 
1076 static int __init setcoherentio(char *str)
1077 {
1078 	coherentio = IO_COHERENCE_ENABLED;
1079 	pr_info("Hardware DMA cache coherency (command line)\n");
1080 	return 0;
1081 }
1082 early_param("coherentio", setcoherentio);
1083 
1084 static int __init setnocoherentio(char *str)
1085 {
1086 	coherentio = IO_COHERENCE_DISABLED;
1087 	pr_info("Software DMA cache coherency (command line)\n");
1088 	return 0;
1089 }
1090 early_param("nocoherentio", setnocoherentio);
1091 #endif
1092