1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 #include <linux/kexec.h> 26 #include <linux/sizes.h> 27 #include <linux/device.h> 28 #include <linux/dma-contiguous.h> 29 #include <linux/decompress/generic.h> 30 #include <linux/of_fdt.h> 31 32 #include <asm/addrspace.h> 33 #include <asm/bootinfo.h> 34 #include <asm/bugs.h> 35 #include <asm/cache.h> 36 #include <asm/cdmm.h> 37 #include <asm/cpu.h> 38 #include <asm/debug.h> 39 #include <asm/dma-coherence.h> 40 #include <asm/sections.h> 41 #include <asm/setup.h> 42 #include <asm/smp-ops.h> 43 #include <asm/prom.h> 44 45 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 46 const char __section(.appended_dtb) __appended_dtb[0x100000]; 47 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ 48 49 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 50 51 EXPORT_SYMBOL(cpu_data); 52 53 #ifdef CONFIG_VT 54 struct screen_info screen_info; 55 #endif 56 57 /* 58 * Setup information 59 * 60 * These are initialized so they are in the .data section 61 */ 62 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 63 64 EXPORT_SYMBOL(mips_machtype); 65 66 struct boot_mem_map boot_mem_map; 67 68 static char __initdata command_line[COMMAND_LINE_SIZE]; 69 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 70 71 #ifdef CONFIG_CMDLINE_BOOL 72 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 73 #endif 74 75 /* 76 * mips_io_port_base is the begin of the address space to which x86 style 77 * I/O ports are mapped. 78 */ 79 const unsigned long mips_io_port_base = -1; 80 EXPORT_SYMBOL(mips_io_port_base); 81 82 static struct resource code_resource = { .name = "Kernel code", }; 83 static struct resource data_resource = { .name = "Kernel data", }; 84 static struct resource bss_resource = { .name = "Kernel bss", }; 85 86 static void *detect_magic __initdata = detect_memory_region; 87 88 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET 89 unsigned long ARCH_PFN_OFFSET; 90 EXPORT_SYMBOL(ARCH_PFN_OFFSET); 91 #endif 92 93 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) 94 { 95 int x = boot_mem_map.nr_map; 96 int i; 97 98 /* 99 * If the region reaches the top of the physical address space, adjust 100 * the size slightly so that (start + size) doesn't overflow 101 */ 102 if (start + size - 1 == PHYS_ADDR_MAX) 103 --size; 104 105 /* Sanity check */ 106 if (start + size < start) { 107 pr_warn("Trying to add an invalid memory region, skipped\n"); 108 return; 109 } 110 111 /* 112 * Try to merge with existing entry, if any. 113 */ 114 for (i = 0; i < boot_mem_map.nr_map; i++) { 115 struct boot_mem_map_entry *entry = boot_mem_map.map + i; 116 unsigned long top; 117 118 if (entry->type != type) 119 continue; 120 121 if (start + size < entry->addr) 122 continue; /* no overlap */ 123 124 if (entry->addr + entry->size < start) 125 continue; /* no overlap */ 126 127 top = max(entry->addr + entry->size, start + size); 128 entry->addr = min(entry->addr, start); 129 entry->size = top - entry->addr; 130 131 return; 132 } 133 134 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { 135 pr_err("Ooops! Too many entries in the memory map!\n"); 136 return; 137 } 138 139 boot_mem_map.map[x].addr = start; 140 boot_mem_map.map[x].size = size; 141 boot_mem_map.map[x].type = type; 142 boot_mem_map.nr_map++; 143 } 144 145 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) 146 { 147 void *dm = &detect_magic; 148 phys_addr_t size; 149 150 for (size = sz_min; size < sz_max; size <<= 1) { 151 if (!memcmp(dm, dm + size, sizeof(detect_magic))) 152 break; 153 } 154 155 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", 156 ((unsigned long long) size) / SZ_1M, 157 (unsigned long long) start, 158 ((unsigned long long) sz_min) / SZ_1M, 159 ((unsigned long long) sz_max) / SZ_1M); 160 161 add_memory_region(start, size, BOOT_MEM_RAM); 162 } 163 164 static bool __init __maybe_unused memory_region_available(phys_addr_t start, 165 phys_addr_t size) 166 { 167 int i; 168 bool in_ram = false, free = true; 169 170 for (i = 0; i < boot_mem_map.nr_map; i++) { 171 phys_addr_t start_, end_; 172 173 start_ = boot_mem_map.map[i].addr; 174 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size; 175 176 switch (boot_mem_map.map[i].type) { 177 case BOOT_MEM_RAM: 178 if (start >= start_ && start + size <= end_) 179 in_ram = true; 180 break; 181 case BOOT_MEM_RESERVED: 182 if ((start >= start_ && start < end_) || 183 (start < start_ && start + size >= start_)) 184 free = false; 185 break; 186 default: 187 continue; 188 } 189 } 190 191 return in_ram && free; 192 } 193 194 static void __init print_memory_map(void) 195 { 196 int i; 197 const int field = 2 * sizeof(unsigned long); 198 199 for (i = 0; i < boot_mem_map.nr_map; i++) { 200 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 201 field, (unsigned long long) boot_mem_map.map[i].size, 202 field, (unsigned long long) boot_mem_map.map[i].addr); 203 204 switch (boot_mem_map.map[i].type) { 205 case BOOT_MEM_RAM: 206 printk(KERN_CONT "(usable)\n"); 207 break; 208 case BOOT_MEM_INIT_RAM: 209 printk(KERN_CONT "(usable after init)\n"); 210 break; 211 case BOOT_MEM_ROM_DATA: 212 printk(KERN_CONT "(ROM data)\n"); 213 break; 214 case BOOT_MEM_RESERVED: 215 printk(KERN_CONT "(reserved)\n"); 216 break; 217 default: 218 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 219 break; 220 } 221 } 222 } 223 224 /* 225 * Manage initrd 226 */ 227 #ifdef CONFIG_BLK_DEV_INITRD 228 229 static int __init rd_start_early(char *p) 230 { 231 unsigned long start = memparse(p, &p); 232 233 #ifdef CONFIG_64BIT 234 /* Guess if the sign extension was forgotten by bootloader */ 235 if (start < XKPHYS) 236 start = (int)start; 237 #endif 238 initrd_start = start; 239 initrd_end += start; 240 return 0; 241 } 242 early_param("rd_start", rd_start_early); 243 244 static int __init rd_size_early(char *p) 245 { 246 initrd_end += memparse(p, &p); 247 return 0; 248 } 249 early_param("rd_size", rd_size_early); 250 251 /* it returns the next free pfn after initrd */ 252 static unsigned long __init init_initrd(void) 253 { 254 unsigned long end; 255 256 /* 257 * Board specific code or command line parser should have 258 * already set up initrd_start and initrd_end. In these cases 259 * perfom sanity checks and use them if all looks good. 260 */ 261 if (!initrd_start || initrd_end <= initrd_start) 262 goto disable; 263 264 if (initrd_start & ~PAGE_MASK) { 265 pr_err("initrd start must be page aligned\n"); 266 goto disable; 267 } 268 if (initrd_start < PAGE_OFFSET) { 269 pr_err("initrd start < PAGE_OFFSET\n"); 270 goto disable; 271 } 272 273 /* 274 * Sanitize initrd addresses. For example firmware 275 * can't guess if they need to pass them through 276 * 64-bits values if the kernel has been built in pure 277 * 32-bit. We need also to switch from KSEG0 to XKPHYS 278 * addresses now, so the code can now safely use __pa(). 279 */ 280 end = __pa(initrd_end); 281 initrd_end = (unsigned long)__va(end); 282 initrd_start = (unsigned long)__va(__pa(initrd_start)); 283 284 ROOT_DEV = Root_RAM0; 285 return PFN_UP(end); 286 disable: 287 initrd_start = 0; 288 initrd_end = 0; 289 return 0; 290 } 291 292 /* In some conditions (e.g. big endian bootloader with a little endian 293 kernel), the initrd might appear byte swapped. Try to detect this and 294 byte swap it if needed. */ 295 static void __init maybe_bswap_initrd(void) 296 { 297 #if defined(CONFIG_CPU_CAVIUM_OCTEON) 298 u64 buf; 299 300 /* Check for CPIO signature */ 301 if (!memcmp((void *)initrd_start, "070701", 6)) 302 return; 303 304 /* Check for compressed initrd */ 305 if (decompress_method((unsigned char *)initrd_start, 8, NULL)) 306 return; 307 308 /* Try again with a byte swapped header */ 309 buf = swab64p((u64 *)initrd_start); 310 if (!memcmp(&buf, "070701", 6) || 311 decompress_method((unsigned char *)(&buf), 8, NULL)) { 312 unsigned long i; 313 314 pr_info("Byteswapped initrd detected\n"); 315 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) 316 swab64s((u64 *)i); 317 } 318 #endif 319 } 320 321 static void __init finalize_initrd(void) 322 { 323 unsigned long size = initrd_end - initrd_start; 324 325 if (size == 0) { 326 printk(KERN_INFO "Initrd not found or empty"); 327 goto disable; 328 } 329 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 330 printk(KERN_ERR "Initrd extends beyond end of memory"); 331 goto disable; 332 } 333 334 maybe_bswap_initrd(); 335 336 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 337 initrd_below_start_ok = 1; 338 339 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 340 initrd_start, size); 341 return; 342 disable: 343 printk(KERN_CONT " - disabling initrd\n"); 344 initrd_start = 0; 345 initrd_end = 0; 346 } 347 348 #else /* !CONFIG_BLK_DEV_INITRD */ 349 350 static unsigned long __init init_initrd(void) 351 { 352 return 0; 353 } 354 355 #define finalize_initrd() do {} while (0) 356 357 #endif 358 359 /* 360 * Initialize the bootmem allocator. It also setup initrd related data 361 * if needed. 362 */ 363 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA)) 364 365 static void __init bootmem_init(void) 366 { 367 init_initrd(); 368 finalize_initrd(); 369 } 370 371 #else /* !CONFIG_SGI_IP27 */ 372 373 static unsigned long __init bootmap_bytes(unsigned long pages) 374 { 375 unsigned long bytes = DIV_ROUND_UP(pages, 8); 376 377 return ALIGN(bytes, sizeof(long)); 378 } 379 380 static void __init bootmem_init(void) 381 { 382 unsigned long reserved_end; 383 unsigned long mapstart = ~0UL; 384 unsigned long bootmap_size; 385 phys_addr_t ramstart = PHYS_ADDR_MAX; 386 bool bootmap_valid = false; 387 int i; 388 389 /* 390 * Sanity check any INITRD first. We don't take it into account 391 * for bootmem setup initially, rely on the end-of-kernel-code 392 * as our memory range starting point. Once bootmem is inited we 393 * will reserve the area used for the initrd. 394 */ 395 init_initrd(); 396 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end)); 397 398 /* 399 * max_low_pfn is not a number of pages. The number of pages 400 * of the system is given by 'max_low_pfn - min_low_pfn'. 401 */ 402 min_low_pfn = ~0UL; 403 max_low_pfn = 0; 404 405 /* 406 * Find the highest page frame number we have available 407 * and the lowest used RAM address 408 */ 409 for (i = 0; i < boot_mem_map.nr_map; i++) { 410 unsigned long start, end; 411 412 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 413 continue; 414 415 start = PFN_UP(boot_mem_map.map[i].addr); 416 end = PFN_DOWN(boot_mem_map.map[i].addr 417 + boot_mem_map.map[i].size); 418 419 ramstart = min(ramstart, boot_mem_map.map[i].addr); 420 421 #ifndef CONFIG_HIGHMEM 422 /* 423 * Skip highmem here so we get an accurate max_low_pfn if low 424 * memory stops short of high memory. 425 * If the region overlaps HIGHMEM_START, end is clipped so 426 * max_pfn excludes the highmem portion. 427 */ 428 if (start >= PFN_DOWN(HIGHMEM_START)) 429 continue; 430 if (end > PFN_DOWN(HIGHMEM_START)) 431 end = PFN_DOWN(HIGHMEM_START); 432 #endif 433 434 if (end > max_low_pfn) 435 max_low_pfn = end; 436 if (start < min_low_pfn) 437 min_low_pfn = start; 438 if (end <= reserved_end) 439 continue; 440 #ifdef CONFIG_BLK_DEV_INITRD 441 /* Skip zones before initrd and initrd itself */ 442 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end))) 443 continue; 444 #endif 445 if (start >= mapstart) 446 continue; 447 mapstart = max(reserved_end, start); 448 } 449 450 if (min_low_pfn >= max_low_pfn) 451 panic("Incorrect memory mapping !!!"); 452 453 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET 454 ARCH_PFN_OFFSET = PFN_UP(ramstart); 455 #else 456 /* 457 * Reserve any memory between the start of RAM and PHYS_OFFSET 458 */ 459 if (ramstart > PHYS_OFFSET) 460 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET, 461 BOOT_MEM_RESERVED); 462 463 if (min_low_pfn > ARCH_PFN_OFFSET) { 464 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 465 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 466 min_low_pfn - ARCH_PFN_OFFSET); 467 } else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) { 468 pr_info("%lu free pages won't be used\n", 469 ARCH_PFN_OFFSET - min_low_pfn); 470 } 471 min_low_pfn = ARCH_PFN_OFFSET; 472 #endif 473 474 /* 475 * Determine low and high memory ranges 476 */ 477 max_pfn = max_low_pfn; 478 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 479 #ifdef CONFIG_HIGHMEM 480 highstart_pfn = PFN_DOWN(HIGHMEM_START); 481 highend_pfn = max_low_pfn; 482 #endif 483 max_low_pfn = PFN_DOWN(HIGHMEM_START); 484 } 485 486 #ifdef CONFIG_BLK_DEV_INITRD 487 /* 488 * mapstart should be after initrd_end 489 */ 490 if (initrd_end) 491 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end))); 492 #endif 493 494 /* 495 * check that mapstart doesn't overlap with any of 496 * memory regions that have been reserved through eg. DTB 497 */ 498 bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn); 499 500 bootmap_valid = memory_region_available(PFN_PHYS(mapstart), 501 bootmap_size); 502 for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) { 503 unsigned long mapstart_addr; 504 505 switch (boot_mem_map.map[i].type) { 506 case BOOT_MEM_RESERVED: 507 mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr + 508 boot_mem_map.map[i].size); 509 if (PHYS_PFN(mapstart_addr) < mapstart) 510 break; 511 512 bootmap_valid = memory_region_available(mapstart_addr, 513 bootmap_size); 514 if (bootmap_valid) 515 mapstart = PHYS_PFN(mapstart_addr); 516 break; 517 default: 518 break; 519 } 520 } 521 522 if (!bootmap_valid) 523 panic("No memory area to place a bootmap bitmap"); 524 525 /* 526 * Initialize the boot-time allocator with low memory only. 527 */ 528 if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart, 529 min_low_pfn, max_low_pfn)) 530 panic("Unexpected memory size required for bootmap"); 531 532 for (i = 0; i < boot_mem_map.nr_map; i++) { 533 unsigned long start, end; 534 535 start = PFN_UP(boot_mem_map.map[i].addr); 536 end = PFN_DOWN(boot_mem_map.map[i].addr 537 + boot_mem_map.map[i].size); 538 539 if (start <= min_low_pfn) 540 start = min_low_pfn; 541 if (start >= end) 542 continue; 543 544 #ifndef CONFIG_HIGHMEM 545 if (end > max_low_pfn) 546 end = max_low_pfn; 547 548 /* 549 * ... finally, is the area going away? 550 */ 551 if (end <= start) 552 continue; 553 #endif 554 555 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 556 } 557 558 /* 559 * Register fully available low RAM pages with the bootmem allocator. 560 */ 561 for (i = 0; i < boot_mem_map.nr_map; i++) { 562 unsigned long start, end, size; 563 564 start = PFN_UP(boot_mem_map.map[i].addr); 565 end = PFN_DOWN(boot_mem_map.map[i].addr 566 + boot_mem_map.map[i].size); 567 568 /* 569 * Reserve usable memory. 570 */ 571 switch (boot_mem_map.map[i].type) { 572 case BOOT_MEM_RAM: 573 break; 574 case BOOT_MEM_INIT_RAM: 575 memory_present(0, start, end); 576 continue; 577 default: 578 /* Not usable memory */ 579 if (start > min_low_pfn && end < max_low_pfn) 580 reserve_bootmem(boot_mem_map.map[i].addr, 581 boot_mem_map.map[i].size, 582 BOOTMEM_DEFAULT); 583 continue; 584 } 585 586 /* 587 * We are rounding up the start address of usable memory 588 * and at the end of the usable range downwards. 589 */ 590 if (start >= max_low_pfn) 591 continue; 592 if (start < reserved_end) 593 start = reserved_end; 594 if (end > max_low_pfn) 595 end = max_low_pfn; 596 597 /* 598 * ... finally, is the area going away? 599 */ 600 if (end <= start) 601 continue; 602 size = end - start; 603 604 /* Register lowmem ranges */ 605 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 606 memory_present(0, start, end); 607 } 608 609 /* 610 * Reserve the bootmap memory. 611 */ 612 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 613 614 #ifdef CONFIG_RELOCATABLE 615 /* 616 * The kernel reserves all memory below its _end symbol as bootmem, 617 * but the kernel may now be at a much higher address. The memory 618 * between the original and new locations may be returned to the system. 619 */ 620 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) { 621 unsigned long offset; 622 extern void show_kernel_relocation(const char *level); 623 624 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS); 625 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset); 626 627 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO) 628 /* 629 * This information is necessary when debugging the kernel 630 * But is a security vulnerability otherwise! 631 */ 632 show_kernel_relocation(KERN_INFO); 633 #endif 634 } 635 #endif 636 637 /* 638 * Reserve initrd memory if needed. 639 */ 640 finalize_initrd(); 641 } 642 643 #endif /* CONFIG_SGI_IP27 */ 644 645 /* 646 * arch_mem_init - initialize memory management subsystem 647 * 648 * o plat_mem_setup() detects the memory configuration and will record detected 649 * memory areas using add_memory_region. 650 * 651 * At this stage the memory configuration of the system is known to the 652 * kernel but generic memory management system is still entirely uninitialized. 653 * 654 * o bootmem_init() 655 * o sparse_init() 656 * o paging_init() 657 * o dma_contiguous_reserve() 658 * 659 * At this stage the bootmem allocator is ready to use. 660 * 661 * NOTE: historically plat_mem_setup did the entire platform initialization. 662 * This was rather impractical because it meant plat_mem_setup had to 663 * get away without any kind of memory allocator. To keep old code from 664 * breaking plat_setup was just renamed to plat_mem_setup and a second platform 665 * initialization hook for anything else was introduced. 666 */ 667 668 static int usermem __initdata; 669 670 static int __init early_parse_mem(char *p) 671 { 672 phys_addr_t start, size; 673 674 /* 675 * If a user specifies memory size, we 676 * blow away any automatically generated 677 * size. 678 */ 679 if (usermem == 0) { 680 boot_mem_map.nr_map = 0; 681 usermem = 1; 682 } 683 start = 0; 684 size = memparse(p, &p); 685 if (*p == '@') 686 start = memparse(p + 1, &p); 687 688 add_memory_region(start, size, BOOT_MEM_RAM); 689 690 return 0; 691 } 692 early_param("mem", early_parse_mem); 693 694 static int __init early_parse_memmap(char *p) 695 { 696 char *oldp; 697 u64 start_at, mem_size; 698 699 if (!p) 700 return -EINVAL; 701 702 if (!strncmp(p, "exactmap", 8)) { 703 pr_err("\"memmap=exactmap\" invalid on MIPS\n"); 704 return 0; 705 } 706 707 oldp = p; 708 mem_size = memparse(p, &p); 709 if (p == oldp) 710 return -EINVAL; 711 712 if (*p == '@') { 713 start_at = memparse(p+1, &p); 714 add_memory_region(start_at, mem_size, BOOT_MEM_RAM); 715 } else if (*p == '#') { 716 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n"); 717 return -EINVAL; 718 } else if (*p == '$') { 719 start_at = memparse(p+1, &p); 720 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED); 721 } else { 722 pr_err("\"memmap\" invalid format!\n"); 723 return -EINVAL; 724 } 725 726 if (*p == '\0') { 727 usermem = 1; 728 return 0; 729 } else 730 return -EINVAL; 731 } 732 early_param("memmap", early_parse_memmap); 733 734 #ifdef CONFIG_PROC_VMCORE 735 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; 736 static int __init early_parse_elfcorehdr(char *p) 737 { 738 int i; 739 740 setup_elfcorehdr = memparse(p, &p); 741 742 for (i = 0; i < boot_mem_map.nr_map; i++) { 743 unsigned long start = boot_mem_map.map[i].addr; 744 unsigned long end = (boot_mem_map.map[i].addr + 745 boot_mem_map.map[i].size); 746 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { 747 /* 748 * Reserve from the elf core header to the end of 749 * the memory segment, that should all be kdump 750 * reserved memory. 751 */ 752 setup_elfcorehdr_size = end - setup_elfcorehdr; 753 break; 754 } 755 } 756 /* 757 * If we don't find it in the memory map, then we shouldn't 758 * have to worry about it, as the new kernel won't use it. 759 */ 760 return 0; 761 } 762 early_param("elfcorehdr", early_parse_elfcorehdr); 763 #endif 764 765 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type) 766 { 767 phys_addr_t size; 768 int i; 769 770 size = end - mem; 771 if (!size) 772 return; 773 774 /* Make sure it is in the boot_mem_map */ 775 for (i = 0; i < boot_mem_map.nr_map; i++) { 776 if (mem >= boot_mem_map.map[i].addr && 777 mem < (boot_mem_map.map[i].addr + 778 boot_mem_map.map[i].size)) 779 return; 780 } 781 add_memory_region(mem, size, type); 782 } 783 784 #ifdef CONFIG_KEXEC 785 static inline unsigned long long get_total_mem(void) 786 { 787 unsigned long long total; 788 789 total = max_pfn - min_low_pfn; 790 return total << PAGE_SHIFT; 791 } 792 793 static void __init mips_parse_crashkernel(void) 794 { 795 unsigned long long total_mem; 796 unsigned long long crash_size, crash_base; 797 int ret; 798 799 total_mem = get_total_mem(); 800 ret = parse_crashkernel(boot_command_line, total_mem, 801 &crash_size, &crash_base); 802 if (ret != 0 || crash_size <= 0) 803 return; 804 805 if (!memory_region_available(crash_base, crash_size)) { 806 pr_warn("Invalid memory region reserved for crash kernel\n"); 807 return; 808 } 809 810 crashk_res.start = crash_base; 811 crashk_res.end = crash_base + crash_size - 1; 812 } 813 814 static void __init request_crashkernel(struct resource *res) 815 { 816 int ret; 817 818 if (crashk_res.start == crashk_res.end) 819 return; 820 821 ret = request_resource(res, &crashk_res); 822 if (!ret) 823 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 824 (unsigned long)((crashk_res.end - 825 crashk_res.start + 1) >> 20), 826 (unsigned long)(crashk_res.start >> 20)); 827 } 828 #else /* !defined(CONFIG_KEXEC) */ 829 static void __init mips_parse_crashkernel(void) 830 { 831 } 832 833 static void __init request_crashkernel(struct resource *res) 834 { 835 } 836 #endif /* !defined(CONFIG_KEXEC) */ 837 838 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER) 839 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) 840 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) 841 #define BUILTIN_EXTEND_WITH_PROM \ 842 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND) 843 844 static void __init arch_mem_init(char **cmdline_p) 845 { 846 struct memblock_region *reg; 847 extern void plat_mem_setup(void); 848 849 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) 850 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 851 #else 852 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) || 853 (USE_DTB_CMDLINE && !boot_command_line[0])) 854 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 855 856 if (EXTEND_WITH_PROM && arcs_cmdline[0]) { 857 if (boot_command_line[0]) 858 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 859 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 860 } 861 862 #if defined(CONFIG_CMDLINE_BOOL) 863 if (builtin_cmdline[0]) { 864 if (boot_command_line[0]) 865 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 866 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 867 } 868 869 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) { 870 if (boot_command_line[0]) 871 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 872 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 873 } 874 #endif 875 #endif 876 877 /* call board setup routine */ 878 plat_mem_setup(); 879 880 /* 881 * Make sure all kernel memory is in the maps. The "UP" and 882 * "DOWN" are opposite for initdata since if it crosses over 883 * into another memory section you don't want that to be 884 * freed when the initdata is freed. 885 */ 886 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, 887 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, 888 BOOT_MEM_RAM); 889 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, 890 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, 891 BOOT_MEM_INIT_RAM); 892 893 pr_info("Determined physical RAM map:\n"); 894 print_memory_map(); 895 896 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 897 898 *cmdline_p = command_line; 899 900 parse_early_param(); 901 902 if (usermem) { 903 pr_info("User-defined physical RAM map:\n"); 904 print_memory_map(); 905 } 906 907 early_init_fdt_reserve_self(); 908 early_init_fdt_scan_reserved_mem(); 909 910 bootmem_init(); 911 #ifdef CONFIG_PROC_VMCORE 912 if (setup_elfcorehdr && setup_elfcorehdr_size) { 913 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", 914 setup_elfcorehdr, setup_elfcorehdr_size); 915 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, 916 BOOTMEM_DEFAULT); 917 } 918 #endif 919 920 mips_parse_crashkernel(); 921 #ifdef CONFIG_KEXEC 922 if (crashk_res.start != crashk_res.end) 923 reserve_bootmem(crashk_res.start, 924 crashk_res.end - crashk_res.start + 1, 925 BOOTMEM_DEFAULT); 926 #endif 927 device_tree_init(); 928 sparse_init(); 929 plat_swiotlb_setup(); 930 931 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); 932 /* Tell bootmem about cma reserved memblock section */ 933 for_each_memblock(reserved, reg) 934 if (reg->size != 0) 935 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); 936 937 reserve_bootmem_region(__pa_symbol(&__nosave_begin), 938 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */ 939 } 940 941 static void __init resource_init(void) 942 { 943 int i; 944 945 if (UNCAC_BASE != IO_BASE) 946 return; 947 948 code_resource.start = __pa_symbol(&_text); 949 code_resource.end = __pa_symbol(&_etext) - 1; 950 data_resource.start = __pa_symbol(&_etext); 951 data_resource.end = __pa_symbol(&_edata) - 1; 952 bss_resource.start = __pa_symbol(&__bss_start); 953 bss_resource.end = __pa_symbol(&__bss_stop) - 1; 954 955 for (i = 0; i < boot_mem_map.nr_map; i++) { 956 struct resource *res; 957 unsigned long start, end; 958 959 start = boot_mem_map.map[i].addr; 960 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 961 if (start >= HIGHMEM_START) 962 continue; 963 if (end >= HIGHMEM_START) 964 end = HIGHMEM_START - 1; 965 966 res = alloc_bootmem(sizeof(struct resource)); 967 968 res->start = start; 969 res->end = end; 970 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 971 972 switch (boot_mem_map.map[i].type) { 973 case BOOT_MEM_RAM: 974 case BOOT_MEM_INIT_RAM: 975 case BOOT_MEM_ROM_DATA: 976 res->name = "System RAM"; 977 res->flags |= IORESOURCE_SYSRAM; 978 break; 979 case BOOT_MEM_RESERVED: 980 default: 981 res->name = "reserved"; 982 } 983 984 request_resource(&iomem_resource, res); 985 986 /* 987 * We don't know which RAM region contains kernel data, 988 * so we try it repeatedly and let the resource manager 989 * test it. 990 */ 991 request_resource(res, &code_resource); 992 request_resource(res, &data_resource); 993 request_resource(res, &bss_resource); 994 request_crashkernel(res); 995 } 996 } 997 998 #ifdef CONFIG_SMP 999 static void __init prefill_possible_map(void) 1000 { 1001 int i, possible = num_possible_cpus(); 1002 1003 if (possible > nr_cpu_ids) 1004 possible = nr_cpu_ids; 1005 1006 for (i = 0; i < possible; i++) 1007 set_cpu_possible(i, true); 1008 for (; i < NR_CPUS; i++) 1009 set_cpu_possible(i, false); 1010 1011 nr_cpu_ids = possible; 1012 } 1013 #else 1014 static inline void prefill_possible_map(void) {} 1015 #endif 1016 1017 void __init setup_arch(char **cmdline_p) 1018 { 1019 cpu_probe(); 1020 mips_cm_probe(); 1021 prom_init(); 1022 1023 setup_early_fdc_console(); 1024 #ifdef CONFIG_EARLY_PRINTK 1025 setup_early_printk(); 1026 #endif 1027 cpu_report(); 1028 check_bugs_early(); 1029 1030 #if defined(CONFIG_VT) 1031 #if defined(CONFIG_VGA_CONSOLE) 1032 conswitchp = &vga_con; 1033 #elif defined(CONFIG_DUMMY_CONSOLE) 1034 conswitchp = &dummy_con; 1035 #endif 1036 #endif 1037 1038 arch_mem_init(cmdline_p); 1039 1040 resource_init(); 1041 plat_smp_setup(); 1042 prefill_possible_map(); 1043 1044 cpu_cache_init(); 1045 paging_init(); 1046 } 1047 1048 unsigned long kernelsp[NR_CPUS]; 1049 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 1050 1051 #ifdef CONFIG_USE_OF 1052 unsigned long fw_passed_dtb; 1053 #endif 1054 1055 #ifdef CONFIG_DEBUG_FS 1056 struct dentry *mips_debugfs_dir; 1057 static int __init debugfs_mips(void) 1058 { 1059 struct dentry *d; 1060 1061 d = debugfs_create_dir("mips", NULL); 1062 if (!d) 1063 return -ENOMEM; 1064 mips_debugfs_dir = d; 1065 return 0; 1066 } 1067 arch_initcall(debugfs_mips); 1068 #endif 1069 1070 #if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT) 1071 /* User defined DMA coherency from command line. */ 1072 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT; 1073 EXPORT_SYMBOL_GPL(coherentio); 1074 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */ 1075 1076 static int __init setcoherentio(char *str) 1077 { 1078 coherentio = IO_COHERENCE_ENABLED; 1079 pr_info("Hardware DMA cache coherency (command line)\n"); 1080 return 0; 1081 } 1082 early_param("coherentio", setcoherentio); 1083 1084 static int __init setnocoherentio(char *str) 1085 { 1086 coherentio = IO_COHERENCE_DISABLED; 1087 pr_info("Software DMA cache coherency (command line)\n"); 1088 return 0; 1089 } 1090 early_param("nocoherentio", setnocoherentio); 1091 #endif 1092