xref: /linux/arch/mips/kernel/setup.c (revision cf02820041668b14cbfa0fbd2bab45ac79bd6174)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 
26 #include <asm/addrspace.h>
27 #include <asm/bootinfo.h>
28 #include <asm/bugs.h>
29 #include <asm/cache.h>
30 #include <asm/cpu.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <asm/smp-ops.h>
34 #include <asm/prom.h>
35 
36 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
37 
38 EXPORT_SYMBOL(cpu_data);
39 
40 #ifdef CONFIG_VT
41 struct screen_info screen_info;
42 #endif
43 
44 /*
45  * Despite it's name this variable is even if we don't have PCI
46  */
47 unsigned int PCI_DMA_BUS_IS_PHYS;
48 
49 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
50 
51 /*
52  * Setup information
53  *
54  * These are initialized so they are in the .data section
55  */
56 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
57 
58 EXPORT_SYMBOL(mips_machtype);
59 
60 struct boot_mem_map boot_mem_map;
61 
62 static char __initdata command_line[COMMAND_LINE_SIZE];
63 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
64 
65 #ifdef CONFIG_CMDLINE_BOOL
66 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
67 #endif
68 
69 /*
70  * mips_io_port_base is the begin of the address space to which x86 style
71  * I/O ports are mapped.
72  */
73 const unsigned long mips_io_port_base = -1;
74 EXPORT_SYMBOL(mips_io_port_base);
75 
76 static struct resource code_resource = { .name = "Kernel code", };
77 static struct resource data_resource = { .name = "Kernel data", };
78 
79 void __init add_memory_region(phys_t start, phys_t size, long type)
80 {
81 	int x = boot_mem_map.nr_map;
82 	int i;
83 
84 	/* Sanity check */
85 	if (start + size < start) {
86 		pr_warning("Trying to add an invalid memory region, skipped\n");
87 		return;
88 	}
89 
90 	/*
91 	 * Try to merge with existing entry, if any.
92 	 */
93 	for (i = 0; i < boot_mem_map.nr_map; i++) {
94 		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
95 		unsigned long top;
96 
97 		if (entry->type != type)
98 			continue;
99 
100 		if (start + size < entry->addr)
101 			continue;			/* no overlap */
102 
103 		if (entry->addr + entry->size < start)
104 			continue;			/* no overlap */
105 
106 		top = max(entry->addr + entry->size, start + size);
107 		entry->addr = min(entry->addr, start);
108 		entry->size = top - entry->addr;
109 
110 		return;
111 	}
112 
113 	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
114 		pr_err("Ooops! Too many entries in the memory map!\n");
115 		return;
116 	}
117 
118 	boot_mem_map.map[x].addr = start;
119 	boot_mem_map.map[x].size = size;
120 	boot_mem_map.map[x].type = type;
121 	boot_mem_map.nr_map++;
122 }
123 
124 static void __init print_memory_map(void)
125 {
126 	int i;
127 	const int field = 2 * sizeof(unsigned long);
128 
129 	for (i = 0; i < boot_mem_map.nr_map; i++) {
130 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
131 		       field, (unsigned long long) boot_mem_map.map[i].size,
132 		       field, (unsigned long long) boot_mem_map.map[i].addr);
133 
134 		switch (boot_mem_map.map[i].type) {
135 		case BOOT_MEM_RAM:
136 			printk(KERN_CONT "(usable)\n");
137 			break;
138 		case BOOT_MEM_INIT_RAM:
139 			printk(KERN_CONT "(usable after init)\n");
140 			break;
141 		case BOOT_MEM_ROM_DATA:
142 			printk(KERN_CONT "(ROM data)\n");
143 			break;
144 		case BOOT_MEM_RESERVED:
145 			printk(KERN_CONT "(reserved)\n");
146 			break;
147 		default:
148 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
149 			break;
150 		}
151 	}
152 }
153 
154 /*
155  * Manage initrd
156  */
157 #ifdef CONFIG_BLK_DEV_INITRD
158 
159 static int __init rd_start_early(char *p)
160 {
161 	unsigned long start = memparse(p, &p);
162 
163 #ifdef CONFIG_64BIT
164 	/* Guess if the sign extension was forgotten by bootloader */
165 	if (start < XKPHYS)
166 		start = (int)start;
167 #endif
168 	initrd_start = start;
169 	initrd_end += start;
170 	return 0;
171 }
172 early_param("rd_start", rd_start_early);
173 
174 static int __init rd_size_early(char *p)
175 {
176 	initrd_end += memparse(p, &p);
177 	return 0;
178 }
179 early_param("rd_size", rd_size_early);
180 
181 /* it returns the next free pfn after initrd */
182 static unsigned long __init init_initrd(void)
183 {
184 	unsigned long end;
185 
186 	/*
187 	 * Board specific code or command line parser should have
188 	 * already set up initrd_start and initrd_end. In these cases
189 	 * perfom sanity checks and use them if all looks good.
190 	 */
191 	if (!initrd_start || initrd_end <= initrd_start)
192 		goto disable;
193 
194 	if (initrd_start & ~PAGE_MASK) {
195 		pr_err("initrd start must be page aligned\n");
196 		goto disable;
197 	}
198 	if (initrd_start < PAGE_OFFSET) {
199 		pr_err("initrd start < PAGE_OFFSET\n");
200 		goto disable;
201 	}
202 
203 	/*
204 	 * Sanitize initrd addresses. For example firmware
205 	 * can't guess if they need to pass them through
206 	 * 64-bits values if the kernel has been built in pure
207 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
208 	 * addresses now, so the code can now safely use __pa().
209 	 */
210 	end = __pa(initrd_end);
211 	initrd_end = (unsigned long)__va(end);
212 	initrd_start = (unsigned long)__va(__pa(initrd_start));
213 
214 	ROOT_DEV = Root_RAM0;
215 	return PFN_UP(end);
216 disable:
217 	initrd_start = 0;
218 	initrd_end = 0;
219 	return 0;
220 }
221 
222 static void __init finalize_initrd(void)
223 {
224 	unsigned long size = initrd_end - initrd_start;
225 
226 	if (size == 0) {
227 		printk(KERN_INFO "Initrd not found or empty");
228 		goto disable;
229 	}
230 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
231 		printk(KERN_ERR "Initrd extends beyond end of memory");
232 		goto disable;
233 	}
234 
235 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
236 	initrd_below_start_ok = 1;
237 
238 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
239 		initrd_start, size);
240 	return;
241 disable:
242 	printk(KERN_CONT " - disabling initrd\n");
243 	initrd_start = 0;
244 	initrd_end = 0;
245 }
246 
247 #else  /* !CONFIG_BLK_DEV_INITRD */
248 
249 static unsigned long __init init_initrd(void)
250 {
251 	return 0;
252 }
253 
254 #define finalize_initrd()	do {} while (0)
255 
256 #endif
257 
258 /*
259  * Initialize the bootmem allocator. It also setup initrd related data
260  * if needed.
261  */
262 #ifdef CONFIG_SGI_IP27
263 
264 static void __init bootmem_init(void)
265 {
266 	init_initrd();
267 	finalize_initrd();
268 }
269 
270 #else  /* !CONFIG_SGI_IP27 */
271 
272 static void __init bootmem_init(void)
273 {
274 	unsigned long reserved_end;
275 	unsigned long mapstart = ~0UL;
276 	unsigned long bootmap_size;
277 	int i;
278 
279 	/*
280 	 * Init any data related to initrd. It's a nop if INITRD is
281 	 * not selected. Once that done we can determine the low bound
282 	 * of usable memory.
283 	 */
284 	reserved_end = max(init_initrd(),
285 			   (unsigned long) PFN_UP(__pa_symbol(&_end)));
286 
287 	/*
288 	 * max_low_pfn is not a number of pages. The number of pages
289 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
290 	 */
291 	min_low_pfn = ~0UL;
292 	max_low_pfn = 0;
293 
294 	/*
295 	 * Find the highest page frame number we have available.
296 	 */
297 	for (i = 0; i < boot_mem_map.nr_map; i++) {
298 		unsigned long start, end;
299 
300 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
301 			continue;
302 
303 		start = PFN_UP(boot_mem_map.map[i].addr);
304 		end = PFN_DOWN(boot_mem_map.map[i].addr
305 				+ boot_mem_map.map[i].size);
306 
307 		if (end > max_low_pfn)
308 			max_low_pfn = end;
309 		if (start < min_low_pfn)
310 			min_low_pfn = start;
311 		if (end <= reserved_end)
312 			continue;
313 		if (start >= mapstart)
314 			continue;
315 		mapstart = max(reserved_end, start);
316 	}
317 
318 	if (min_low_pfn >= max_low_pfn)
319 		panic("Incorrect memory mapping !!!");
320 	if (min_low_pfn > ARCH_PFN_OFFSET) {
321 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
322 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
323 			min_low_pfn - ARCH_PFN_OFFSET);
324 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
325 		pr_info("%lu free pages won't be used\n",
326 			ARCH_PFN_OFFSET - min_low_pfn);
327 	}
328 	min_low_pfn = ARCH_PFN_OFFSET;
329 
330 	/*
331 	 * Determine low and high memory ranges
332 	 */
333 	max_pfn = max_low_pfn;
334 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
335 #ifdef CONFIG_HIGHMEM
336 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
337 		highend_pfn = max_low_pfn;
338 #endif
339 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
340 	}
341 
342 	/*
343 	 * Initialize the boot-time allocator with low memory only.
344 	 */
345 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
346 					 min_low_pfn, max_low_pfn);
347 
348 
349 	for (i = 0; i < boot_mem_map.nr_map; i++) {
350 		unsigned long start, end;
351 
352 		start = PFN_UP(boot_mem_map.map[i].addr);
353 		end = PFN_DOWN(boot_mem_map.map[i].addr
354 				+ boot_mem_map.map[i].size);
355 
356 		if (start <= min_low_pfn)
357 			start = min_low_pfn;
358 		if (start >= end)
359 			continue;
360 
361 #ifndef CONFIG_HIGHMEM
362 		if (end > max_low_pfn)
363 			end = max_low_pfn;
364 
365 		/*
366 		 * ... finally, is the area going away?
367 		 */
368 		if (end <= start)
369 			continue;
370 #endif
371 
372 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
373 	}
374 
375 	/*
376 	 * Register fully available low RAM pages with the bootmem allocator.
377 	 */
378 	for (i = 0; i < boot_mem_map.nr_map; i++) {
379 		unsigned long start, end, size;
380 
381 		start = PFN_UP(boot_mem_map.map[i].addr);
382 		end   = PFN_DOWN(boot_mem_map.map[i].addr
383 				    + boot_mem_map.map[i].size);
384 
385 		/*
386 		 * Reserve usable memory.
387 		 */
388 		switch (boot_mem_map.map[i].type) {
389 		case BOOT_MEM_RAM:
390 			break;
391 		case BOOT_MEM_INIT_RAM:
392 			memory_present(0, start, end);
393 			continue;
394 		default:
395 			/* Not usable memory */
396 			continue;
397 		}
398 
399 		/*
400 		 * We are rounding up the start address of usable memory
401 		 * and at the end of the usable range downwards.
402 		 */
403 		if (start >= max_low_pfn)
404 			continue;
405 		if (start < reserved_end)
406 			start = reserved_end;
407 		if (end > max_low_pfn)
408 			end = max_low_pfn;
409 
410 		/*
411 		 * ... finally, is the area going away?
412 		 */
413 		if (end <= start)
414 			continue;
415 		size = end - start;
416 
417 		/* Register lowmem ranges */
418 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
419 		memory_present(0, start, end);
420 	}
421 
422 	/*
423 	 * Reserve the bootmap memory.
424 	 */
425 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
426 
427 	/*
428 	 * Reserve initrd memory if needed.
429 	 */
430 	finalize_initrd();
431 }
432 
433 #endif	/* CONFIG_SGI_IP27 */
434 
435 /*
436  * arch_mem_init - initialize memory management subsystem
437  *
438  *  o plat_mem_setup() detects the memory configuration and will record detected
439  *    memory areas using add_memory_region.
440  *
441  * At this stage the memory configuration of the system is known to the
442  * kernel but generic memory management system is still entirely uninitialized.
443  *
444  *  o bootmem_init()
445  *  o sparse_init()
446  *  o paging_init()
447  *
448  * At this stage the bootmem allocator is ready to use.
449  *
450  * NOTE: historically plat_mem_setup did the entire platform initialization.
451  *       This was rather impractical because it meant plat_mem_setup had to
452  * get away without any kind of memory allocator.  To keep old code from
453  * breaking plat_setup was just renamed to plat_setup and a second platform
454  * initialization hook for anything else was introduced.
455  */
456 
457 static int usermem __initdata;
458 
459 static int __init early_parse_mem(char *p)
460 {
461 	unsigned long start, size;
462 
463 	/*
464 	 * If a user specifies memory size, we
465 	 * blow away any automatically generated
466 	 * size.
467 	 */
468 	if (usermem == 0) {
469 		boot_mem_map.nr_map = 0;
470 		usermem = 1;
471  	}
472 	start = 0;
473 	size = memparse(p, &p);
474 	if (*p == '@')
475 		start = memparse(p + 1, &p);
476 
477 	add_memory_region(start, size, BOOT_MEM_RAM);
478 	return 0;
479 }
480 early_param("mem", early_parse_mem);
481 
482 static void __init arch_mem_init(char **cmdline_p)
483 {
484 	phys_t init_mem, init_end, init_size;
485 
486 	extern void plat_mem_setup(void);
487 
488 	/* call board setup routine */
489 	plat_mem_setup();
490 
491 	init_mem = PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT;
492 	init_end = PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT;
493 	init_size = init_end - init_mem;
494 	if (init_size) {
495 		/* Make sure it is in the boot_mem_map */
496 		int i, found;
497 		found = 0;
498 		for (i = 0; i < boot_mem_map.nr_map; i++) {
499 			if (init_mem >= boot_mem_map.map[i].addr &&
500 			    init_mem < (boot_mem_map.map[i].addr +
501 					boot_mem_map.map[i].size)) {
502 				found = 1;
503 				break;
504 			}
505 		}
506 		if (!found)
507 			add_memory_region(init_mem, init_size,
508 					  BOOT_MEM_INIT_RAM);
509 	}
510 
511 	pr_info("Determined physical RAM map:\n");
512 	print_memory_map();
513 
514 #ifdef CONFIG_CMDLINE_BOOL
515 #ifdef CONFIG_CMDLINE_OVERRIDE
516 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
517 #else
518 	if (builtin_cmdline[0]) {
519 		strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
520 		strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
521 	}
522 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
523 #endif
524 #else
525 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
526 #endif
527 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
528 
529 	*cmdline_p = command_line;
530 
531 	parse_early_param();
532 
533 	if (usermem) {
534 		pr_info("User-defined physical RAM map:\n");
535 		print_memory_map();
536 	}
537 
538 	bootmem_init();
539 	device_tree_init();
540 	sparse_init();
541 	plat_swiotlb_setup();
542 	paging_init();
543 }
544 
545 static void __init resource_init(void)
546 {
547 	int i;
548 
549 	if (UNCAC_BASE != IO_BASE)
550 		return;
551 
552 	code_resource.start = __pa_symbol(&_text);
553 	code_resource.end = __pa_symbol(&_etext) - 1;
554 	data_resource.start = __pa_symbol(&_etext);
555 	data_resource.end = __pa_symbol(&_edata) - 1;
556 
557 	/*
558 	 * Request address space for all standard RAM.
559 	 */
560 	for (i = 0; i < boot_mem_map.nr_map; i++) {
561 		struct resource *res;
562 		unsigned long start, end;
563 
564 		start = boot_mem_map.map[i].addr;
565 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
566 		if (start >= HIGHMEM_START)
567 			continue;
568 		if (end >= HIGHMEM_START)
569 			end = HIGHMEM_START - 1;
570 
571 		res = alloc_bootmem(sizeof(struct resource));
572 		switch (boot_mem_map.map[i].type) {
573 		case BOOT_MEM_RAM:
574 		case BOOT_MEM_INIT_RAM:
575 		case BOOT_MEM_ROM_DATA:
576 			res->name = "System RAM";
577 			break;
578 		case BOOT_MEM_RESERVED:
579 		default:
580 			res->name = "reserved";
581 		}
582 
583 		res->start = start;
584 		res->end = end;
585 
586 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
587 		request_resource(&iomem_resource, res);
588 
589 		/*
590 		 *  We don't know which RAM region contains kernel data,
591 		 *  so we try it repeatedly and let the resource manager
592 		 *  test it.
593 		 */
594 		request_resource(res, &code_resource);
595 		request_resource(res, &data_resource);
596 	}
597 }
598 
599 void __init setup_arch(char **cmdline_p)
600 {
601 	cpu_probe();
602 	prom_init();
603 
604 #ifdef CONFIG_EARLY_PRINTK
605 	setup_early_printk();
606 #endif
607 	cpu_report();
608 	check_bugs_early();
609 
610 #if defined(CONFIG_VT)
611 #if defined(CONFIG_VGA_CONSOLE)
612 	conswitchp = &vga_con;
613 #elif defined(CONFIG_DUMMY_CONSOLE)
614 	conswitchp = &dummy_con;
615 #endif
616 #endif
617 
618 	arch_mem_init(cmdline_p);
619 
620 	resource_init();
621 	plat_smp_setup();
622 
623 	cpu_cache_init();
624 }
625 
626 unsigned long kernelsp[NR_CPUS];
627 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
628 
629 #ifdef CONFIG_DEBUG_FS
630 struct dentry *mips_debugfs_dir;
631 static int __init debugfs_mips(void)
632 {
633 	struct dentry *d;
634 
635 	d = debugfs_create_dir("mips", NULL);
636 	if (!d)
637 		return -ENOMEM;
638 	mips_debugfs_dir = d;
639 	return 0;
640 }
641 arch_initcall(debugfs_mips);
642 #endif
643