1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 #include <linux/kexec.h> 26 #include <linux/sizes.h> 27 #include <linux/device.h> 28 #include <linux/dma-contiguous.h> 29 #include <linux/decompress/generic.h> 30 #include <linux/of_fdt.h> 31 32 #include <asm/addrspace.h> 33 #include <asm/bootinfo.h> 34 #include <asm/bugs.h> 35 #include <asm/cache.h> 36 #include <asm/cdmm.h> 37 #include <asm/cpu.h> 38 #include <asm/debug.h> 39 #include <asm/dma-coherence.h> 40 #include <asm/sections.h> 41 #include <asm/setup.h> 42 #include <asm/smp-ops.h> 43 #include <asm/prom.h> 44 45 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 46 const char __section(.appended_dtb) __appended_dtb[0x100000]; 47 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ 48 49 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 50 51 EXPORT_SYMBOL(cpu_data); 52 53 #ifdef CONFIG_VT 54 struct screen_info screen_info; 55 #endif 56 57 /* 58 * Setup information 59 * 60 * These are initialized so they are in the .data section 61 */ 62 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 63 64 EXPORT_SYMBOL(mips_machtype); 65 66 struct boot_mem_map boot_mem_map; 67 68 static char __initdata command_line[COMMAND_LINE_SIZE]; 69 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 70 71 #ifdef CONFIG_CMDLINE_BOOL 72 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 73 #endif 74 75 /* 76 * mips_io_port_base is the begin of the address space to which x86 style 77 * I/O ports are mapped. 78 */ 79 const unsigned long mips_io_port_base = -1; 80 EXPORT_SYMBOL(mips_io_port_base); 81 82 static struct resource code_resource = { .name = "Kernel code", }; 83 static struct resource data_resource = { .name = "Kernel data", }; 84 static struct resource bss_resource = { .name = "Kernel bss", }; 85 86 static void *detect_magic __initdata = detect_memory_region; 87 88 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET 89 unsigned long ARCH_PFN_OFFSET; 90 EXPORT_SYMBOL(ARCH_PFN_OFFSET); 91 #endif 92 93 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) 94 { 95 int x = boot_mem_map.nr_map; 96 int i; 97 98 /* 99 * If the region reaches the top of the physical address space, adjust 100 * the size slightly so that (start + size) doesn't overflow 101 */ 102 if (start + size - 1 == PHYS_ADDR_MAX) 103 --size; 104 105 /* Sanity check */ 106 if (start + size < start) { 107 pr_warn("Trying to add an invalid memory region, skipped\n"); 108 return; 109 } 110 111 /* 112 * Try to merge with existing entry, if any. 113 */ 114 for (i = 0; i < boot_mem_map.nr_map; i++) { 115 struct boot_mem_map_entry *entry = boot_mem_map.map + i; 116 unsigned long top; 117 118 if (entry->type != type) 119 continue; 120 121 if (start + size < entry->addr) 122 continue; /* no overlap */ 123 124 if (entry->addr + entry->size < start) 125 continue; /* no overlap */ 126 127 top = max(entry->addr + entry->size, start + size); 128 entry->addr = min(entry->addr, start); 129 entry->size = top - entry->addr; 130 131 return; 132 } 133 134 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { 135 pr_err("Ooops! Too many entries in the memory map!\n"); 136 return; 137 } 138 139 boot_mem_map.map[x].addr = start; 140 boot_mem_map.map[x].size = size; 141 boot_mem_map.map[x].type = type; 142 boot_mem_map.nr_map++; 143 } 144 145 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) 146 { 147 void *dm = &detect_magic; 148 phys_addr_t size; 149 150 for (size = sz_min; size < sz_max; size <<= 1) { 151 if (!memcmp(dm, dm + size, sizeof(detect_magic))) 152 break; 153 } 154 155 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", 156 ((unsigned long long) size) / SZ_1M, 157 (unsigned long long) start, 158 ((unsigned long long) sz_min) / SZ_1M, 159 ((unsigned long long) sz_max) / SZ_1M); 160 161 add_memory_region(start, size, BOOT_MEM_RAM); 162 } 163 164 static bool __init __maybe_unused memory_region_available(phys_addr_t start, 165 phys_addr_t size) 166 { 167 int i; 168 bool in_ram = false, free = true; 169 170 for (i = 0; i < boot_mem_map.nr_map; i++) { 171 phys_addr_t start_, end_; 172 173 start_ = boot_mem_map.map[i].addr; 174 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size; 175 176 switch (boot_mem_map.map[i].type) { 177 case BOOT_MEM_RAM: 178 if (start >= start_ && start + size <= end_) 179 in_ram = true; 180 break; 181 case BOOT_MEM_RESERVED: 182 if ((start >= start_ && start < end_) || 183 (start < start_ && start + size >= start_)) 184 free = false; 185 break; 186 default: 187 continue; 188 } 189 } 190 191 return in_ram && free; 192 } 193 194 static void __init print_memory_map(void) 195 { 196 int i; 197 const int field = 2 * sizeof(unsigned long); 198 199 for (i = 0; i < boot_mem_map.nr_map; i++) { 200 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 201 field, (unsigned long long) boot_mem_map.map[i].size, 202 field, (unsigned long long) boot_mem_map.map[i].addr); 203 204 switch (boot_mem_map.map[i].type) { 205 case BOOT_MEM_RAM: 206 printk(KERN_CONT "(usable)\n"); 207 break; 208 case BOOT_MEM_INIT_RAM: 209 printk(KERN_CONT "(usable after init)\n"); 210 break; 211 case BOOT_MEM_ROM_DATA: 212 printk(KERN_CONT "(ROM data)\n"); 213 break; 214 case BOOT_MEM_RESERVED: 215 printk(KERN_CONT "(reserved)\n"); 216 break; 217 default: 218 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 219 break; 220 } 221 } 222 } 223 224 /* 225 * Manage initrd 226 */ 227 #ifdef CONFIG_BLK_DEV_INITRD 228 229 static int __init rd_start_early(char *p) 230 { 231 unsigned long start = memparse(p, &p); 232 233 #ifdef CONFIG_64BIT 234 /* Guess if the sign extension was forgotten by bootloader */ 235 if (start < XKPHYS) 236 start = (int)start; 237 #endif 238 initrd_start = start; 239 initrd_end += start; 240 return 0; 241 } 242 early_param("rd_start", rd_start_early); 243 244 static int __init rd_size_early(char *p) 245 { 246 initrd_end += memparse(p, &p); 247 return 0; 248 } 249 early_param("rd_size", rd_size_early); 250 251 /* it returns the next free pfn after initrd */ 252 static unsigned long __init init_initrd(void) 253 { 254 unsigned long end; 255 256 /* 257 * Board specific code or command line parser should have 258 * already set up initrd_start and initrd_end. In these cases 259 * perfom sanity checks and use them if all looks good. 260 */ 261 if (!initrd_start || initrd_end <= initrd_start) 262 goto disable; 263 264 if (initrd_start & ~PAGE_MASK) { 265 pr_err("initrd start must be page aligned\n"); 266 goto disable; 267 } 268 if (initrd_start < PAGE_OFFSET) { 269 pr_err("initrd start < PAGE_OFFSET\n"); 270 goto disable; 271 } 272 273 /* 274 * Sanitize initrd addresses. For example firmware 275 * can't guess if they need to pass them through 276 * 64-bits values if the kernel has been built in pure 277 * 32-bit. We need also to switch from KSEG0 to XKPHYS 278 * addresses now, so the code can now safely use __pa(). 279 */ 280 end = __pa(initrd_end); 281 initrd_end = (unsigned long)__va(end); 282 initrd_start = (unsigned long)__va(__pa(initrd_start)); 283 284 ROOT_DEV = Root_RAM0; 285 return PFN_UP(end); 286 disable: 287 initrd_start = 0; 288 initrd_end = 0; 289 return 0; 290 } 291 292 /* In some conditions (e.g. big endian bootloader with a little endian 293 kernel), the initrd might appear byte swapped. Try to detect this and 294 byte swap it if needed. */ 295 static void __init maybe_bswap_initrd(void) 296 { 297 #if defined(CONFIG_CPU_CAVIUM_OCTEON) 298 u64 buf; 299 300 /* Check for CPIO signature */ 301 if (!memcmp((void *)initrd_start, "070701", 6)) 302 return; 303 304 /* Check for compressed initrd */ 305 if (decompress_method((unsigned char *)initrd_start, 8, NULL)) 306 return; 307 308 /* Try again with a byte swapped header */ 309 buf = swab64p((u64 *)initrd_start); 310 if (!memcmp(&buf, "070701", 6) || 311 decompress_method((unsigned char *)(&buf), 8, NULL)) { 312 unsigned long i; 313 314 pr_info("Byteswapped initrd detected\n"); 315 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) 316 swab64s((u64 *)i); 317 } 318 #endif 319 } 320 321 static void __init finalize_initrd(void) 322 { 323 unsigned long size = initrd_end - initrd_start; 324 325 if (size == 0) { 326 printk(KERN_INFO "Initrd not found or empty"); 327 goto disable; 328 } 329 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 330 printk(KERN_ERR "Initrd extends beyond end of memory"); 331 goto disable; 332 } 333 334 maybe_bswap_initrd(); 335 336 memblock_reserve(__pa(initrd_start), size); 337 initrd_below_start_ok = 1; 338 339 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 340 initrd_start, size); 341 return; 342 disable: 343 printk(KERN_CONT " - disabling initrd\n"); 344 initrd_start = 0; 345 initrd_end = 0; 346 } 347 348 #else /* !CONFIG_BLK_DEV_INITRD */ 349 350 static unsigned long __init init_initrd(void) 351 { 352 return 0; 353 } 354 355 #define finalize_initrd() do {} while (0) 356 357 #endif 358 359 /* 360 * Initialize the bootmem allocator. It also setup initrd related data 361 * if needed. 362 */ 363 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA)) 364 365 static void __init bootmem_init(void) 366 { 367 init_initrd(); 368 finalize_initrd(); 369 } 370 371 #else /* !CONFIG_SGI_IP27 */ 372 373 static void __init bootmem_init(void) 374 { 375 unsigned long reserved_end; 376 phys_addr_t ramstart = PHYS_ADDR_MAX; 377 int i; 378 379 /* 380 * Sanity check any INITRD first. We don't take it into account 381 * for bootmem setup initially, rely on the end-of-kernel-code 382 * as our memory range starting point. Once bootmem is inited we 383 * will reserve the area used for the initrd. 384 */ 385 init_initrd(); 386 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end)); 387 388 memblock_reserve(PHYS_OFFSET, reserved_end << PAGE_SHIFT); 389 390 /* 391 * max_low_pfn is not a number of pages. The number of pages 392 * of the system is given by 'max_low_pfn - min_low_pfn'. 393 */ 394 min_low_pfn = ~0UL; 395 max_low_pfn = 0; 396 397 /* 398 * Find the highest page frame number we have available 399 * and the lowest used RAM address 400 */ 401 for (i = 0; i < boot_mem_map.nr_map; i++) { 402 unsigned long start, end; 403 404 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 405 continue; 406 407 start = PFN_UP(boot_mem_map.map[i].addr); 408 end = PFN_DOWN(boot_mem_map.map[i].addr 409 + boot_mem_map.map[i].size); 410 411 ramstart = min(ramstart, boot_mem_map.map[i].addr); 412 413 #ifndef CONFIG_HIGHMEM 414 /* 415 * Skip highmem here so we get an accurate max_low_pfn if low 416 * memory stops short of high memory. 417 * If the region overlaps HIGHMEM_START, end is clipped so 418 * max_pfn excludes the highmem portion. 419 */ 420 if (start >= PFN_DOWN(HIGHMEM_START)) 421 continue; 422 if (end > PFN_DOWN(HIGHMEM_START)) 423 end = PFN_DOWN(HIGHMEM_START); 424 #endif 425 426 if (end > max_low_pfn) 427 max_low_pfn = end; 428 if (start < min_low_pfn) 429 min_low_pfn = start; 430 if (end <= reserved_end) 431 continue; 432 #ifdef CONFIG_BLK_DEV_INITRD 433 /* Skip zones before initrd and initrd itself */ 434 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end))) 435 continue; 436 #endif 437 } 438 439 if (min_low_pfn >= max_low_pfn) 440 panic("Incorrect memory mapping !!!"); 441 442 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET 443 ARCH_PFN_OFFSET = PFN_UP(ramstart); 444 #else 445 /* 446 * Reserve any memory between the start of RAM and PHYS_OFFSET 447 */ 448 if (ramstart > PHYS_OFFSET) { 449 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET, 450 BOOT_MEM_RESERVED); 451 memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET); 452 } 453 454 if (min_low_pfn > ARCH_PFN_OFFSET) { 455 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 456 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 457 min_low_pfn - ARCH_PFN_OFFSET); 458 } else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) { 459 pr_info("%lu free pages won't be used\n", 460 ARCH_PFN_OFFSET - min_low_pfn); 461 } 462 min_low_pfn = ARCH_PFN_OFFSET; 463 #endif 464 465 /* 466 * Determine low and high memory ranges 467 */ 468 max_pfn = max_low_pfn; 469 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 470 #ifdef CONFIG_HIGHMEM 471 highstart_pfn = PFN_DOWN(HIGHMEM_START); 472 highend_pfn = max_low_pfn; 473 #endif 474 max_low_pfn = PFN_DOWN(HIGHMEM_START); 475 } 476 477 for (i = 0; i < boot_mem_map.nr_map; i++) { 478 unsigned long start, end; 479 480 start = PFN_UP(boot_mem_map.map[i].addr); 481 end = PFN_DOWN(boot_mem_map.map[i].addr 482 + boot_mem_map.map[i].size); 483 484 if (start <= min_low_pfn) 485 start = min_low_pfn; 486 if (start >= end) 487 continue; 488 489 #ifndef CONFIG_HIGHMEM 490 if (end > max_low_pfn) 491 end = max_low_pfn; 492 493 /* 494 * ... finally, is the area going away? 495 */ 496 if (end <= start) 497 continue; 498 #endif 499 500 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 501 } 502 503 /* 504 * Register fully available low RAM pages with the bootmem allocator. 505 */ 506 for (i = 0; i < boot_mem_map.nr_map; i++) { 507 unsigned long start, end, size; 508 509 start = PFN_UP(boot_mem_map.map[i].addr); 510 end = PFN_DOWN(boot_mem_map.map[i].addr 511 + boot_mem_map.map[i].size); 512 513 /* 514 * Reserve usable memory. 515 */ 516 switch (boot_mem_map.map[i].type) { 517 case BOOT_MEM_RAM: 518 break; 519 case BOOT_MEM_INIT_RAM: 520 memory_present(0, start, end); 521 continue; 522 default: 523 /* Not usable memory */ 524 if (start > min_low_pfn && end < max_low_pfn) 525 memblock_reserve(boot_mem_map.map[i].addr, 526 boot_mem_map.map[i].size); 527 528 continue; 529 } 530 531 /* 532 * We are rounding up the start address of usable memory 533 * and at the end of the usable range downwards. 534 */ 535 if (start >= max_low_pfn) 536 continue; 537 if (start < reserved_end) 538 start = reserved_end; 539 if (end > max_low_pfn) 540 end = max_low_pfn; 541 542 /* 543 * ... finally, is the area going away? 544 */ 545 if (end <= start) 546 continue; 547 size = end - start; 548 549 /* Register lowmem ranges */ 550 memory_present(0, start, end); 551 } 552 553 #ifdef CONFIG_RELOCATABLE 554 /* 555 * The kernel reserves all memory below its _end symbol as bootmem, 556 * but the kernel may now be at a much higher address. The memory 557 * between the original and new locations may be returned to the system. 558 */ 559 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) { 560 unsigned long offset; 561 extern void show_kernel_relocation(const char *level); 562 563 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS); 564 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset); 565 566 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO) 567 /* 568 * This information is necessary when debugging the kernel 569 * But is a security vulnerability otherwise! 570 */ 571 show_kernel_relocation(KERN_INFO); 572 #endif 573 } 574 #endif 575 576 /* 577 * Reserve initrd memory if needed. 578 */ 579 finalize_initrd(); 580 } 581 582 #endif /* CONFIG_SGI_IP27 */ 583 584 static int usermem __initdata; 585 586 static int __init early_parse_mem(char *p) 587 { 588 phys_addr_t start, size; 589 590 /* 591 * If a user specifies memory size, we 592 * blow away any automatically generated 593 * size. 594 */ 595 if (usermem == 0) { 596 boot_mem_map.nr_map = 0; 597 usermem = 1; 598 } 599 start = 0; 600 size = memparse(p, &p); 601 if (*p == '@') 602 start = memparse(p + 1, &p); 603 604 add_memory_region(start, size, BOOT_MEM_RAM); 605 606 return 0; 607 } 608 early_param("mem", early_parse_mem); 609 610 static int __init early_parse_memmap(char *p) 611 { 612 char *oldp; 613 u64 start_at, mem_size; 614 615 if (!p) 616 return -EINVAL; 617 618 if (!strncmp(p, "exactmap", 8)) { 619 pr_err("\"memmap=exactmap\" invalid on MIPS\n"); 620 return 0; 621 } 622 623 oldp = p; 624 mem_size = memparse(p, &p); 625 if (p == oldp) 626 return -EINVAL; 627 628 if (*p == '@') { 629 start_at = memparse(p+1, &p); 630 add_memory_region(start_at, mem_size, BOOT_MEM_RAM); 631 } else if (*p == '#') { 632 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n"); 633 return -EINVAL; 634 } else if (*p == '$') { 635 start_at = memparse(p+1, &p); 636 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED); 637 } else { 638 pr_err("\"memmap\" invalid format!\n"); 639 return -EINVAL; 640 } 641 642 if (*p == '\0') { 643 usermem = 1; 644 return 0; 645 } else 646 return -EINVAL; 647 } 648 early_param("memmap", early_parse_memmap); 649 650 #ifdef CONFIG_PROC_VMCORE 651 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; 652 static int __init early_parse_elfcorehdr(char *p) 653 { 654 int i; 655 656 setup_elfcorehdr = memparse(p, &p); 657 658 for (i = 0; i < boot_mem_map.nr_map; i++) { 659 unsigned long start = boot_mem_map.map[i].addr; 660 unsigned long end = (boot_mem_map.map[i].addr + 661 boot_mem_map.map[i].size); 662 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { 663 /* 664 * Reserve from the elf core header to the end of 665 * the memory segment, that should all be kdump 666 * reserved memory. 667 */ 668 setup_elfcorehdr_size = end - setup_elfcorehdr; 669 break; 670 } 671 } 672 /* 673 * If we don't find it in the memory map, then we shouldn't 674 * have to worry about it, as the new kernel won't use it. 675 */ 676 return 0; 677 } 678 early_param("elfcorehdr", early_parse_elfcorehdr); 679 #endif 680 681 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type) 682 { 683 phys_addr_t size; 684 int i; 685 686 size = end - mem; 687 if (!size) 688 return; 689 690 /* Make sure it is in the boot_mem_map */ 691 for (i = 0; i < boot_mem_map.nr_map; i++) { 692 if (mem >= boot_mem_map.map[i].addr && 693 mem < (boot_mem_map.map[i].addr + 694 boot_mem_map.map[i].size)) 695 return; 696 } 697 add_memory_region(mem, size, type); 698 } 699 700 #ifdef CONFIG_KEXEC 701 static inline unsigned long long get_total_mem(void) 702 { 703 unsigned long long total; 704 705 total = max_pfn - min_low_pfn; 706 return total << PAGE_SHIFT; 707 } 708 709 static void __init mips_parse_crashkernel(void) 710 { 711 unsigned long long total_mem; 712 unsigned long long crash_size, crash_base; 713 int ret; 714 715 total_mem = get_total_mem(); 716 ret = parse_crashkernel(boot_command_line, total_mem, 717 &crash_size, &crash_base); 718 if (ret != 0 || crash_size <= 0) 719 return; 720 721 if (!memory_region_available(crash_base, crash_size)) { 722 pr_warn("Invalid memory region reserved for crash kernel\n"); 723 return; 724 } 725 726 crashk_res.start = crash_base; 727 crashk_res.end = crash_base + crash_size - 1; 728 } 729 730 static void __init request_crashkernel(struct resource *res) 731 { 732 int ret; 733 734 if (crashk_res.start == crashk_res.end) 735 return; 736 737 ret = request_resource(res, &crashk_res); 738 if (!ret) 739 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 740 (unsigned long)((crashk_res.end - 741 crashk_res.start + 1) >> 20), 742 (unsigned long)(crashk_res.start >> 20)); 743 } 744 #else /* !defined(CONFIG_KEXEC) */ 745 static void __init mips_parse_crashkernel(void) 746 { 747 } 748 749 static void __init request_crashkernel(struct resource *res) 750 { 751 } 752 #endif /* !defined(CONFIG_KEXEC) */ 753 754 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER) 755 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) 756 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) 757 #define BUILTIN_EXTEND_WITH_PROM \ 758 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND) 759 760 /* 761 * arch_mem_init - initialize memory management subsystem 762 * 763 * o plat_mem_setup() detects the memory configuration and will record detected 764 * memory areas using add_memory_region. 765 * 766 * At this stage the memory configuration of the system is known to the 767 * kernel but generic memory management system is still entirely uninitialized. 768 * 769 * o bootmem_init() 770 * o sparse_init() 771 * o paging_init() 772 * o dma_contiguous_reserve() 773 * 774 * At this stage the bootmem allocator is ready to use. 775 * 776 * NOTE: historically plat_mem_setup did the entire platform initialization. 777 * This was rather impractical because it meant plat_mem_setup had to 778 * get away without any kind of memory allocator. To keep old code from 779 * breaking plat_setup was just renamed to plat_mem_setup and a second platform 780 * initialization hook for anything else was introduced. 781 */ 782 static void __init arch_mem_init(char **cmdline_p) 783 { 784 struct memblock_region *reg; 785 extern void plat_mem_setup(void); 786 787 /* 788 * Initialize boot_command_line to an innocuous but non-empty string in 789 * order to prevent early_init_dt_scan_chosen() from copying 790 * CONFIG_CMDLINE into it without our knowledge. We handle 791 * CONFIG_CMDLINE ourselves below & don't want to duplicate its 792 * content because repeating arguments can be problematic. 793 */ 794 strlcpy(boot_command_line, " ", COMMAND_LINE_SIZE); 795 796 /* call board setup routine */ 797 plat_mem_setup(); 798 799 /* 800 * Make sure all kernel memory is in the maps. The "UP" and 801 * "DOWN" are opposite for initdata since if it crosses over 802 * into another memory section you don't want that to be 803 * freed when the initdata is freed. 804 */ 805 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, 806 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, 807 BOOT_MEM_RAM); 808 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, 809 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, 810 BOOT_MEM_INIT_RAM); 811 812 pr_info("Determined physical RAM map:\n"); 813 print_memory_map(); 814 815 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) 816 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 817 #else 818 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) || 819 (USE_DTB_CMDLINE && !boot_command_line[0])) 820 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 821 822 if (EXTEND_WITH_PROM && arcs_cmdline[0]) { 823 if (boot_command_line[0]) 824 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 825 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 826 } 827 828 #if defined(CONFIG_CMDLINE_BOOL) 829 if (builtin_cmdline[0]) { 830 if (boot_command_line[0]) 831 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 832 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 833 } 834 835 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) { 836 if (boot_command_line[0]) 837 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 838 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 839 } 840 #endif 841 #endif 842 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 843 844 *cmdline_p = command_line; 845 846 parse_early_param(); 847 848 if (usermem) { 849 pr_info("User-defined physical RAM map:\n"); 850 print_memory_map(); 851 } 852 853 early_init_fdt_reserve_self(); 854 early_init_fdt_scan_reserved_mem(); 855 856 bootmem_init(); 857 858 /* 859 * Prevent memblock from allocating high memory. 860 * This cannot be done before max_low_pfn is detected, so up 861 * to this point is possible to only reserve physical memory 862 * with memblock_reserve; memblock_virt_alloc* can be used 863 * only after this point 864 */ 865 memblock_set_current_limit(PFN_PHYS(max_low_pfn)); 866 867 #ifdef CONFIG_PROC_VMCORE 868 if (setup_elfcorehdr && setup_elfcorehdr_size) { 869 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", 870 setup_elfcorehdr, setup_elfcorehdr_size); 871 memblock_reserve(setup_elfcorehdr, setup_elfcorehdr_size); 872 } 873 #endif 874 875 mips_parse_crashkernel(); 876 #ifdef CONFIG_KEXEC 877 if (crashk_res.start != crashk_res.end) 878 memblock_reserve(crashk_res.start, 879 crashk_res.end - crashk_res.start + 1); 880 #endif 881 device_tree_init(); 882 sparse_init(); 883 plat_swiotlb_setup(); 884 885 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); 886 /* Tell bootmem about cma reserved memblock section */ 887 for_each_memblock(reserved, reg) 888 if (reg->size != 0) 889 memblock_reserve(reg->base, reg->size); 890 891 reserve_bootmem_region(__pa_symbol(&__nosave_begin), 892 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */ 893 } 894 895 static void __init resource_init(void) 896 { 897 int i; 898 899 if (UNCAC_BASE != IO_BASE) 900 return; 901 902 code_resource.start = __pa_symbol(&_text); 903 code_resource.end = __pa_symbol(&_etext) - 1; 904 data_resource.start = __pa_symbol(&_etext); 905 data_resource.end = __pa_symbol(&_edata) - 1; 906 bss_resource.start = __pa_symbol(&__bss_start); 907 bss_resource.end = __pa_symbol(&__bss_stop) - 1; 908 909 for (i = 0; i < boot_mem_map.nr_map; i++) { 910 struct resource *res; 911 unsigned long start, end; 912 913 start = boot_mem_map.map[i].addr; 914 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 915 if (start >= HIGHMEM_START) 916 continue; 917 if (end >= HIGHMEM_START) 918 end = HIGHMEM_START - 1; 919 920 res = alloc_bootmem(sizeof(struct resource)); 921 922 res->start = start; 923 res->end = end; 924 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 925 926 switch (boot_mem_map.map[i].type) { 927 case BOOT_MEM_RAM: 928 case BOOT_MEM_INIT_RAM: 929 case BOOT_MEM_ROM_DATA: 930 res->name = "System RAM"; 931 res->flags |= IORESOURCE_SYSRAM; 932 break; 933 case BOOT_MEM_RESERVED: 934 default: 935 res->name = "reserved"; 936 } 937 938 request_resource(&iomem_resource, res); 939 940 /* 941 * We don't know which RAM region contains kernel data, 942 * so we try it repeatedly and let the resource manager 943 * test it. 944 */ 945 request_resource(res, &code_resource); 946 request_resource(res, &data_resource); 947 request_resource(res, &bss_resource); 948 request_crashkernel(res); 949 } 950 } 951 952 #ifdef CONFIG_SMP 953 static void __init prefill_possible_map(void) 954 { 955 int i, possible = num_possible_cpus(); 956 957 if (possible > nr_cpu_ids) 958 possible = nr_cpu_ids; 959 960 for (i = 0; i < possible; i++) 961 set_cpu_possible(i, true); 962 for (; i < NR_CPUS; i++) 963 set_cpu_possible(i, false); 964 965 nr_cpu_ids = possible; 966 } 967 #else 968 static inline void prefill_possible_map(void) {} 969 #endif 970 971 void __init setup_arch(char **cmdline_p) 972 { 973 cpu_probe(); 974 mips_cm_probe(); 975 prom_init(); 976 977 setup_early_fdc_console(); 978 #ifdef CONFIG_EARLY_PRINTK 979 setup_early_printk(); 980 #endif 981 cpu_report(); 982 check_bugs_early(); 983 984 #if defined(CONFIG_VT) 985 #if defined(CONFIG_VGA_CONSOLE) 986 conswitchp = &vga_con; 987 #elif defined(CONFIG_DUMMY_CONSOLE) 988 conswitchp = &dummy_con; 989 #endif 990 #endif 991 992 arch_mem_init(cmdline_p); 993 994 resource_init(); 995 plat_smp_setup(); 996 prefill_possible_map(); 997 998 cpu_cache_init(); 999 paging_init(); 1000 } 1001 1002 unsigned long kernelsp[NR_CPUS]; 1003 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 1004 1005 #ifdef CONFIG_USE_OF 1006 unsigned long fw_passed_dtb; 1007 #endif 1008 1009 #ifdef CONFIG_DEBUG_FS 1010 struct dentry *mips_debugfs_dir; 1011 static int __init debugfs_mips(void) 1012 { 1013 struct dentry *d; 1014 1015 d = debugfs_create_dir("mips", NULL); 1016 if (!d) 1017 return -ENOMEM; 1018 mips_debugfs_dir = d; 1019 return 0; 1020 } 1021 arch_initcall(debugfs_mips); 1022 #endif 1023 1024 #ifdef CONFIG_DMA_MAYBE_COHERENT 1025 /* User defined DMA coherency from command line. */ 1026 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT; 1027 EXPORT_SYMBOL_GPL(coherentio); 1028 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */ 1029 1030 static int __init setcoherentio(char *str) 1031 { 1032 coherentio = IO_COHERENCE_ENABLED; 1033 pr_info("Hardware DMA cache coherency (command line)\n"); 1034 return 0; 1035 } 1036 early_param("coherentio", setcoherentio); 1037 1038 static int __init setnocoherentio(char *str) 1039 { 1040 coherentio = IO_COHERENCE_DISABLED; 1041 pr_info("Software DMA cache coherency (command line)\n"); 1042 return 0; 1043 } 1044 early_param("nocoherentio", setnocoherentio); 1045 #endif 1046