xref: /linux/arch/mips/kernel/setup.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 
27 #include <asm/addrspace.h>
28 #include <asm/bootinfo.h>
29 #include <asm/bugs.h>
30 #include <asm/cache.h>
31 #include <asm/cpu.h>
32 #include <asm/sections.h>
33 #include <asm/setup.h>
34 #include <asm/smp-ops.h>
35 #include <asm/prom.h>
36 
37 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
38 
39 EXPORT_SYMBOL(cpu_data);
40 
41 #ifdef CONFIG_VT
42 struct screen_info screen_info;
43 #endif
44 
45 /*
46  * Despite it's name this variable is even if we don't have PCI
47  */
48 unsigned int PCI_DMA_BUS_IS_PHYS;
49 
50 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
51 
52 /*
53  * Setup information
54  *
55  * These are initialized so they are in the .data section
56  */
57 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
58 
59 EXPORT_SYMBOL(mips_machtype);
60 
61 struct boot_mem_map boot_mem_map;
62 
63 static char __initdata command_line[COMMAND_LINE_SIZE];
64 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
65 
66 #ifdef CONFIG_CMDLINE_BOOL
67 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
68 #endif
69 
70 /*
71  * mips_io_port_base is the begin of the address space to which x86 style
72  * I/O ports are mapped.
73  */
74 const unsigned long mips_io_port_base = -1;
75 EXPORT_SYMBOL(mips_io_port_base);
76 
77 static struct resource code_resource = { .name = "Kernel code", };
78 static struct resource data_resource = { .name = "Kernel data", };
79 
80 void __init add_memory_region(phys_t start, phys_t size, long type)
81 {
82 	int x = boot_mem_map.nr_map;
83 	int i;
84 
85 	/* Sanity check */
86 	if (start + size < start) {
87 		pr_warning("Trying to add an invalid memory region, skipped\n");
88 		return;
89 	}
90 
91 	/*
92 	 * Try to merge with existing entry, if any.
93 	 */
94 	for (i = 0; i < boot_mem_map.nr_map; i++) {
95 		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
96 		unsigned long top;
97 
98 		if (entry->type != type)
99 			continue;
100 
101 		if (start + size < entry->addr)
102 			continue;			/* no overlap */
103 
104 		if (entry->addr + entry->size < start)
105 			continue;			/* no overlap */
106 
107 		top = max(entry->addr + entry->size, start + size);
108 		entry->addr = min(entry->addr, start);
109 		entry->size = top - entry->addr;
110 
111 		return;
112 	}
113 
114 	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
115 		pr_err("Ooops! Too many entries in the memory map!\n");
116 		return;
117 	}
118 
119 	boot_mem_map.map[x].addr = start;
120 	boot_mem_map.map[x].size = size;
121 	boot_mem_map.map[x].type = type;
122 	boot_mem_map.nr_map++;
123 }
124 
125 static void __init print_memory_map(void)
126 {
127 	int i;
128 	const int field = 2 * sizeof(unsigned long);
129 
130 	for (i = 0; i < boot_mem_map.nr_map; i++) {
131 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
132 		       field, (unsigned long long) boot_mem_map.map[i].size,
133 		       field, (unsigned long long) boot_mem_map.map[i].addr);
134 
135 		switch (boot_mem_map.map[i].type) {
136 		case BOOT_MEM_RAM:
137 			printk(KERN_CONT "(usable)\n");
138 			break;
139 		case BOOT_MEM_INIT_RAM:
140 			printk(KERN_CONT "(usable after init)\n");
141 			break;
142 		case BOOT_MEM_ROM_DATA:
143 			printk(KERN_CONT "(ROM data)\n");
144 			break;
145 		case BOOT_MEM_RESERVED:
146 			printk(KERN_CONT "(reserved)\n");
147 			break;
148 		default:
149 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
150 			break;
151 		}
152 	}
153 }
154 
155 /*
156  * Manage initrd
157  */
158 #ifdef CONFIG_BLK_DEV_INITRD
159 
160 static int __init rd_start_early(char *p)
161 {
162 	unsigned long start = memparse(p, &p);
163 
164 #ifdef CONFIG_64BIT
165 	/* Guess if the sign extension was forgotten by bootloader */
166 	if (start < XKPHYS)
167 		start = (int)start;
168 #endif
169 	initrd_start = start;
170 	initrd_end += start;
171 	return 0;
172 }
173 early_param("rd_start", rd_start_early);
174 
175 static int __init rd_size_early(char *p)
176 {
177 	initrd_end += memparse(p, &p);
178 	return 0;
179 }
180 early_param("rd_size", rd_size_early);
181 
182 /* it returns the next free pfn after initrd */
183 static unsigned long __init init_initrd(void)
184 {
185 	unsigned long end;
186 
187 	/*
188 	 * Board specific code or command line parser should have
189 	 * already set up initrd_start and initrd_end. In these cases
190 	 * perfom sanity checks and use them if all looks good.
191 	 */
192 	if (!initrd_start || initrd_end <= initrd_start)
193 		goto disable;
194 
195 	if (initrd_start & ~PAGE_MASK) {
196 		pr_err("initrd start must be page aligned\n");
197 		goto disable;
198 	}
199 	if (initrd_start < PAGE_OFFSET) {
200 		pr_err("initrd start < PAGE_OFFSET\n");
201 		goto disable;
202 	}
203 
204 	/*
205 	 * Sanitize initrd addresses. For example firmware
206 	 * can't guess if they need to pass them through
207 	 * 64-bits values if the kernel has been built in pure
208 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
209 	 * addresses now, so the code can now safely use __pa().
210 	 */
211 	end = __pa(initrd_end);
212 	initrd_end = (unsigned long)__va(end);
213 	initrd_start = (unsigned long)__va(__pa(initrd_start));
214 
215 	ROOT_DEV = Root_RAM0;
216 	return PFN_UP(end);
217 disable:
218 	initrd_start = 0;
219 	initrd_end = 0;
220 	return 0;
221 }
222 
223 static void __init finalize_initrd(void)
224 {
225 	unsigned long size = initrd_end - initrd_start;
226 
227 	if (size == 0) {
228 		printk(KERN_INFO "Initrd not found or empty");
229 		goto disable;
230 	}
231 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
232 		printk(KERN_ERR "Initrd extends beyond end of memory");
233 		goto disable;
234 	}
235 
236 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
237 	initrd_below_start_ok = 1;
238 
239 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
240 		initrd_start, size);
241 	return;
242 disable:
243 	printk(KERN_CONT " - disabling initrd\n");
244 	initrd_start = 0;
245 	initrd_end = 0;
246 }
247 
248 #else  /* !CONFIG_BLK_DEV_INITRD */
249 
250 static unsigned long __init init_initrd(void)
251 {
252 	return 0;
253 }
254 
255 #define finalize_initrd()	do {} while (0)
256 
257 #endif
258 
259 /*
260  * Initialize the bootmem allocator. It also setup initrd related data
261  * if needed.
262  */
263 #ifdef CONFIG_SGI_IP27
264 
265 static void __init bootmem_init(void)
266 {
267 	init_initrd();
268 	finalize_initrd();
269 }
270 
271 #else  /* !CONFIG_SGI_IP27 */
272 
273 static void __init bootmem_init(void)
274 {
275 	unsigned long reserved_end;
276 	unsigned long mapstart = ~0UL;
277 	unsigned long bootmap_size;
278 	int i;
279 
280 	/*
281 	 * Init any data related to initrd. It's a nop if INITRD is
282 	 * not selected. Once that done we can determine the low bound
283 	 * of usable memory.
284 	 */
285 	reserved_end = max(init_initrd(),
286 			   (unsigned long) PFN_UP(__pa_symbol(&_end)));
287 
288 	/*
289 	 * max_low_pfn is not a number of pages. The number of pages
290 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
291 	 */
292 	min_low_pfn = ~0UL;
293 	max_low_pfn = 0;
294 
295 	/*
296 	 * Find the highest page frame number we have available.
297 	 */
298 	for (i = 0; i < boot_mem_map.nr_map; i++) {
299 		unsigned long start, end;
300 
301 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
302 			continue;
303 
304 		start = PFN_UP(boot_mem_map.map[i].addr);
305 		end = PFN_DOWN(boot_mem_map.map[i].addr
306 				+ boot_mem_map.map[i].size);
307 
308 		if (end > max_low_pfn)
309 			max_low_pfn = end;
310 		if (start < min_low_pfn)
311 			min_low_pfn = start;
312 		if (end <= reserved_end)
313 			continue;
314 		if (start >= mapstart)
315 			continue;
316 		mapstart = max(reserved_end, start);
317 	}
318 
319 	if (min_low_pfn >= max_low_pfn)
320 		panic("Incorrect memory mapping !!!");
321 	if (min_low_pfn > ARCH_PFN_OFFSET) {
322 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
323 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
324 			min_low_pfn - ARCH_PFN_OFFSET);
325 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
326 		pr_info("%lu free pages won't be used\n",
327 			ARCH_PFN_OFFSET - min_low_pfn);
328 	}
329 	min_low_pfn = ARCH_PFN_OFFSET;
330 
331 	/*
332 	 * Determine low and high memory ranges
333 	 */
334 	max_pfn = max_low_pfn;
335 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
336 #ifdef CONFIG_HIGHMEM
337 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
338 		highend_pfn = max_low_pfn;
339 #endif
340 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
341 	}
342 
343 	/*
344 	 * Initialize the boot-time allocator with low memory only.
345 	 */
346 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
347 					 min_low_pfn, max_low_pfn);
348 
349 
350 	for (i = 0; i < boot_mem_map.nr_map; i++) {
351 		unsigned long start, end;
352 
353 		start = PFN_UP(boot_mem_map.map[i].addr);
354 		end = PFN_DOWN(boot_mem_map.map[i].addr
355 				+ boot_mem_map.map[i].size);
356 
357 		if (start <= min_low_pfn)
358 			start = min_low_pfn;
359 		if (start >= end)
360 			continue;
361 
362 #ifndef CONFIG_HIGHMEM
363 		if (end > max_low_pfn)
364 			end = max_low_pfn;
365 
366 		/*
367 		 * ... finally, is the area going away?
368 		 */
369 		if (end <= start)
370 			continue;
371 #endif
372 
373 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
374 	}
375 
376 	/*
377 	 * Register fully available low RAM pages with the bootmem allocator.
378 	 */
379 	for (i = 0; i < boot_mem_map.nr_map; i++) {
380 		unsigned long start, end, size;
381 
382 		start = PFN_UP(boot_mem_map.map[i].addr);
383 		end   = PFN_DOWN(boot_mem_map.map[i].addr
384 				    + boot_mem_map.map[i].size);
385 
386 		/*
387 		 * Reserve usable memory.
388 		 */
389 		switch (boot_mem_map.map[i].type) {
390 		case BOOT_MEM_RAM:
391 			break;
392 		case BOOT_MEM_INIT_RAM:
393 			memory_present(0, start, end);
394 			continue;
395 		default:
396 			/* Not usable memory */
397 			continue;
398 		}
399 
400 		/*
401 		 * We are rounding up the start address of usable memory
402 		 * and at the end of the usable range downwards.
403 		 */
404 		if (start >= max_low_pfn)
405 			continue;
406 		if (start < reserved_end)
407 			start = reserved_end;
408 		if (end > max_low_pfn)
409 			end = max_low_pfn;
410 
411 		/*
412 		 * ... finally, is the area going away?
413 		 */
414 		if (end <= start)
415 			continue;
416 		size = end - start;
417 
418 		/* Register lowmem ranges */
419 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
420 		memory_present(0, start, end);
421 	}
422 
423 	/*
424 	 * Reserve the bootmap memory.
425 	 */
426 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
427 
428 	/*
429 	 * Reserve initrd memory if needed.
430 	 */
431 	finalize_initrd();
432 }
433 
434 #endif	/* CONFIG_SGI_IP27 */
435 
436 /*
437  * arch_mem_init - initialize memory management subsystem
438  *
439  *  o plat_mem_setup() detects the memory configuration and will record detected
440  *    memory areas using add_memory_region.
441  *
442  * At this stage the memory configuration of the system is known to the
443  * kernel but generic memory management system is still entirely uninitialized.
444  *
445  *  o bootmem_init()
446  *  o sparse_init()
447  *  o paging_init()
448  *
449  * At this stage the bootmem allocator is ready to use.
450  *
451  * NOTE: historically plat_mem_setup did the entire platform initialization.
452  *       This was rather impractical because it meant plat_mem_setup had to
453  * get away without any kind of memory allocator.  To keep old code from
454  * breaking plat_setup was just renamed to plat_setup and a second platform
455  * initialization hook for anything else was introduced.
456  */
457 
458 static int usermem __initdata;
459 
460 static int __init early_parse_mem(char *p)
461 {
462 	unsigned long start, size;
463 
464 	/*
465 	 * If a user specifies memory size, we
466 	 * blow away any automatically generated
467 	 * size.
468 	 */
469 	if (usermem == 0) {
470 		boot_mem_map.nr_map = 0;
471 		usermem = 1;
472  	}
473 	start = 0;
474 	size = memparse(p, &p);
475 	if (*p == '@')
476 		start = memparse(p + 1, &p);
477 
478 	add_memory_region(start, size, BOOT_MEM_RAM);
479 	return 0;
480 }
481 early_param("mem", early_parse_mem);
482 
483 static void __init arch_mem_init(char **cmdline_p)
484 {
485 	phys_t init_mem, init_end, init_size;
486 
487 	extern void plat_mem_setup(void);
488 
489 	/* call board setup routine */
490 	plat_mem_setup();
491 
492 	init_mem = PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT;
493 	init_end = PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT;
494 	init_size = init_end - init_mem;
495 	if (init_size) {
496 		/* Make sure it is in the boot_mem_map */
497 		int i, found;
498 		found = 0;
499 		for (i = 0; i < boot_mem_map.nr_map; i++) {
500 			if (init_mem >= boot_mem_map.map[i].addr &&
501 			    init_mem < (boot_mem_map.map[i].addr +
502 					boot_mem_map.map[i].size)) {
503 				found = 1;
504 				break;
505 			}
506 		}
507 		if (!found)
508 			add_memory_region(init_mem, init_size,
509 					  BOOT_MEM_INIT_RAM);
510 	}
511 
512 	pr_info("Determined physical RAM map:\n");
513 	print_memory_map();
514 
515 #ifdef CONFIG_CMDLINE_BOOL
516 #ifdef CONFIG_CMDLINE_OVERRIDE
517 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
518 #else
519 	if (builtin_cmdline[0]) {
520 		strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
521 		strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
522 	}
523 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
524 #endif
525 #else
526 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
527 #endif
528 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
529 
530 	*cmdline_p = command_line;
531 
532 	parse_early_param();
533 
534 	if (usermem) {
535 		pr_info("User-defined physical RAM map:\n");
536 		print_memory_map();
537 	}
538 
539 	bootmem_init();
540 #ifdef CONFIG_KEXEC
541 	if (crashk_res.start != crashk_res.end)
542 		reserve_bootmem(crashk_res.start,
543 				crashk_res.end - crashk_res.start + 1,
544 				BOOTMEM_DEFAULT);
545 #endif
546 	device_tree_init();
547 	sparse_init();
548 	plat_swiotlb_setup();
549 	paging_init();
550 }
551 
552 #ifdef CONFIG_KEXEC
553 static inline unsigned long long get_total_mem(void)
554 {
555 	unsigned long long total;
556 
557 	total = max_pfn - min_low_pfn;
558 	return total << PAGE_SHIFT;
559 }
560 
561 static void __init mips_parse_crashkernel(void)
562 {
563 	unsigned long long total_mem;
564 	unsigned long long crash_size, crash_base;
565 	int ret;
566 
567 	total_mem = get_total_mem();
568 	ret = parse_crashkernel(boot_command_line, total_mem,
569 				&crash_size, &crash_base);
570 	if (ret != 0 || crash_size <= 0)
571 		return;
572 
573 	crashk_res.start = crash_base;
574 	crashk_res.end   = crash_base + crash_size - 1;
575 }
576 
577 static void __init request_crashkernel(struct resource *res)
578 {
579 	int ret;
580 
581 	ret = request_resource(res, &crashk_res);
582 	if (!ret)
583 		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
584 			(unsigned long)((crashk_res.end -
585 				crashk_res.start + 1) >> 20),
586 			(unsigned long)(crashk_res.start  >> 20));
587 }
588 #else /* !defined(CONFIG_KEXEC)  */
589 static void __init mips_parse_crashkernel(void)
590 {
591 }
592 
593 static void __init request_crashkernel(struct resource *res)
594 {
595 }
596 #endif /* !defined(CONFIG_KEXEC)  */
597 
598 static void __init resource_init(void)
599 {
600 	int i;
601 
602 	if (UNCAC_BASE != IO_BASE)
603 		return;
604 
605 	code_resource.start = __pa_symbol(&_text);
606 	code_resource.end = __pa_symbol(&_etext) - 1;
607 	data_resource.start = __pa_symbol(&_etext);
608 	data_resource.end = __pa_symbol(&_edata) - 1;
609 
610 	/*
611 	 * Request address space for all standard RAM.
612 	 */
613 	mips_parse_crashkernel();
614 
615 	for (i = 0; i < boot_mem_map.nr_map; i++) {
616 		struct resource *res;
617 		unsigned long start, end;
618 
619 		start = boot_mem_map.map[i].addr;
620 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
621 		if (start >= HIGHMEM_START)
622 			continue;
623 		if (end >= HIGHMEM_START)
624 			end = HIGHMEM_START - 1;
625 
626 		res = alloc_bootmem(sizeof(struct resource));
627 		switch (boot_mem_map.map[i].type) {
628 		case BOOT_MEM_RAM:
629 		case BOOT_MEM_INIT_RAM:
630 		case BOOT_MEM_ROM_DATA:
631 			res->name = "System RAM";
632 			break;
633 		case BOOT_MEM_RESERVED:
634 		default:
635 			res->name = "reserved";
636 		}
637 
638 		res->start = start;
639 		res->end = end;
640 
641 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
642 		request_resource(&iomem_resource, res);
643 
644 		/*
645 		 *  We don't know which RAM region contains kernel data,
646 		 *  so we try it repeatedly and let the resource manager
647 		 *  test it.
648 		 */
649 		request_resource(res, &code_resource);
650 		request_resource(res, &data_resource);
651 		request_crashkernel(res);
652 	}
653 }
654 
655 void __init setup_arch(char **cmdline_p)
656 {
657 	cpu_probe();
658 	prom_init();
659 
660 #ifdef CONFIG_EARLY_PRINTK
661 	setup_early_printk();
662 #endif
663 	cpu_report();
664 	check_bugs_early();
665 
666 #if defined(CONFIG_VT)
667 #if defined(CONFIG_VGA_CONSOLE)
668 	conswitchp = &vga_con;
669 #elif defined(CONFIG_DUMMY_CONSOLE)
670 	conswitchp = &dummy_con;
671 #endif
672 #endif
673 
674 	arch_mem_init(cmdline_p);
675 
676 	resource_init();
677 	plat_smp_setup();
678 
679 	cpu_cache_init();
680 }
681 
682 unsigned long kernelsp[NR_CPUS];
683 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
684 
685 #ifdef CONFIG_DEBUG_FS
686 struct dentry *mips_debugfs_dir;
687 static int __init debugfs_mips(void)
688 {
689 	struct dentry *d;
690 
691 	d = debugfs_create_dir("mips", NULL);
692 	if (!d)
693 		return -ENOMEM;
694 	mips_debugfs_dir = d;
695 	return 0;
696 }
697 arch_initcall(debugfs_mips);
698 #endif
699