1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 #include <linux/kexec.h> 26 #include <linux/sizes.h> 27 #include <linux/device.h> 28 #include <linux/dma-contiguous.h> 29 30 #include <asm/addrspace.h> 31 #include <asm/bootinfo.h> 32 #include <asm/bugs.h> 33 #include <asm/cache.h> 34 #include <asm/cdmm.h> 35 #include <asm/cpu.h> 36 #include <asm/sections.h> 37 #include <asm/setup.h> 38 #include <asm/smp-ops.h> 39 #include <asm/prom.h> 40 41 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 42 43 EXPORT_SYMBOL(cpu_data); 44 45 #ifdef CONFIG_VT 46 struct screen_info screen_info; 47 #endif 48 49 /* 50 * Despite it's name this variable is even if we don't have PCI 51 */ 52 unsigned int PCI_DMA_BUS_IS_PHYS; 53 54 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 55 56 /* 57 * Setup information 58 * 59 * These are initialized so they are in the .data section 60 */ 61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 62 63 EXPORT_SYMBOL(mips_machtype); 64 65 struct boot_mem_map boot_mem_map; 66 67 static char __initdata command_line[COMMAND_LINE_SIZE]; 68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 69 70 #ifdef CONFIG_CMDLINE_BOOL 71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 72 #endif 73 74 /* 75 * mips_io_port_base is the begin of the address space to which x86 style 76 * I/O ports are mapped. 77 */ 78 const unsigned long mips_io_port_base = -1; 79 EXPORT_SYMBOL(mips_io_port_base); 80 81 static struct resource code_resource = { .name = "Kernel code", }; 82 static struct resource data_resource = { .name = "Kernel data", }; 83 84 static void *detect_magic __initdata = detect_memory_region; 85 86 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) 87 { 88 int x = boot_mem_map.nr_map; 89 int i; 90 91 /* Sanity check */ 92 if (start + size < start) { 93 pr_warn("Trying to add an invalid memory region, skipped\n"); 94 return; 95 } 96 97 /* 98 * Try to merge with existing entry, if any. 99 */ 100 for (i = 0; i < boot_mem_map.nr_map; i++) { 101 struct boot_mem_map_entry *entry = boot_mem_map.map + i; 102 unsigned long top; 103 104 if (entry->type != type) 105 continue; 106 107 if (start + size < entry->addr) 108 continue; /* no overlap */ 109 110 if (entry->addr + entry->size < start) 111 continue; /* no overlap */ 112 113 top = max(entry->addr + entry->size, start + size); 114 entry->addr = min(entry->addr, start); 115 entry->size = top - entry->addr; 116 117 return; 118 } 119 120 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { 121 pr_err("Ooops! Too many entries in the memory map!\n"); 122 return; 123 } 124 125 boot_mem_map.map[x].addr = start; 126 boot_mem_map.map[x].size = size; 127 boot_mem_map.map[x].type = type; 128 boot_mem_map.nr_map++; 129 } 130 131 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) 132 { 133 void *dm = &detect_magic; 134 phys_addr_t size; 135 136 for (size = sz_min; size < sz_max; size <<= 1) { 137 if (!memcmp(dm, dm + size, sizeof(detect_magic))) 138 break; 139 } 140 141 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", 142 ((unsigned long long) size) / SZ_1M, 143 (unsigned long long) start, 144 ((unsigned long long) sz_min) / SZ_1M, 145 ((unsigned long long) sz_max) / SZ_1M); 146 147 add_memory_region(start, size, BOOT_MEM_RAM); 148 } 149 150 static void __init print_memory_map(void) 151 { 152 int i; 153 const int field = 2 * sizeof(unsigned long); 154 155 for (i = 0; i < boot_mem_map.nr_map; i++) { 156 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 157 field, (unsigned long long) boot_mem_map.map[i].size, 158 field, (unsigned long long) boot_mem_map.map[i].addr); 159 160 switch (boot_mem_map.map[i].type) { 161 case BOOT_MEM_RAM: 162 printk(KERN_CONT "(usable)\n"); 163 break; 164 case BOOT_MEM_INIT_RAM: 165 printk(KERN_CONT "(usable after init)\n"); 166 break; 167 case BOOT_MEM_ROM_DATA: 168 printk(KERN_CONT "(ROM data)\n"); 169 break; 170 case BOOT_MEM_RESERVED: 171 printk(KERN_CONT "(reserved)\n"); 172 break; 173 default: 174 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 175 break; 176 } 177 } 178 } 179 180 /* 181 * Manage initrd 182 */ 183 #ifdef CONFIG_BLK_DEV_INITRD 184 185 static int __init rd_start_early(char *p) 186 { 187 unsigned long start = memparse(p, &p); 188 189 #ifdef CONFIG_64BIT 190 /* Guess if the sign extension was forgotten by bootloader */ 191 if (start < XKPHYS) 192 start = (int)start; 193 #endif 194 initrd_start = start; 195 initrd_end += start; 196 return 0; 197 } 198 early_param("rd_start", rd_start_early); 199 200 static int __init rd_size_early(char *p) 201 { 202 initrd_end += memparse(p, &p); 203 return 0; 204 } 205 early_param("rd_size", rd_size_early); 206 207 /* it returns the next free pfn after initrd */ 208 static unsigned long __init init_initrd(void) 209 { 210 unsigned long end; 211 212 /* 213 * Board specific code or command line parser should have 214 * already set up initrd_start and initrd_end. In these cases 215 * perfom sanity checks and use them if all looks good. 216 */ 217 if (!initrd_start || initrd_end <= initrd_start) 218 goto disable; 219 220 if (initrd_start & ~PAGE_MASK) { 221 pr_err("initrd start must be page aligned\n"); 222 goto disable; 223 } 224 if (initrd_start < PAGE_OFFSET) { 225 pr_err("initrd start < PAGE_OFFSET\n"); 226 goto disable; 227 } 228 229 /* 230 * Sanitize initrd addresses. For example firmware 231 * can't guess if they need to pass them through 232 * 64-bits values if the kernel has been built in pure 233 * 32-bit. We need also to switch from KSEG0 to XKPHYS 234 * addresses now, so the code can now safely use __pa(). 235 */ 236 end = __pa(initrd_end); 237 initrd_end = (unsigned long)__va(end); 238 initrd_start = (unsigned long)__va(__pa(initrd_start)); 239 240 ROOT_DEV = Root_RAM0; 241 return PFN_UP(end); 242 disable: 243 initrd_start = 0; 244 initrd_end = 0; 245 return 0; 246 } 247 248 static void __init finalize_initrd(void) 249 { 250 unsigned long size = initrd_end - initrd_start; 251 252 if (size == 0) { 253 printk(KERN_INFO "Initrd not found or empty"); 254 goto disable; 255 } 256 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 257 printk(KERN_ERR "Initrd extends beyond end of memory"); 258 goto disable; 259 } 260 261 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 262 initrd_below_start_ok = 1; 263 264 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 265 initrd_start, size); 266 return; 267 disable: 268 printk(KERN_CONT " - disabling initrd\n"); 269 initrd_start = 0; 270 initrd_end = 0; 271 } 272 273 #else /* !CONFIG_BLK_DEV_INITRD */ 274 275 static unsigned long __init init_initrd(void) 276 { 277 return 0; 278 } 279 280 #define finalize_initrd() do {} while (0) 281 282 #endif 283 284 /* 285 * Initialize the bootmem allocator. It also setup initrd related data 286 * if needed. 287 */ 288 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA)) 289 290 static void __init bootmem_init(void) 291 { 292 init_initrd(); 293 finalize_initrd(); 294 } 295 296 #else /* !CONFIG_SGI_IP27 */ 297 298 static void __init bootmem_init(void) 299 { 300 unsigned long reserved_end; 301 unsigned long mapstart = ~0UL; 302 unsigned long bootmap_size; 303 int i; 304 305 /* 306 * Sanity check any INITRD first. We don't take it into account 307 * for bootmem setup initially, rely on the end-of-kernel-code 308 * as our memory range starting point. Once bootmem is inited we 309 * will reserve the area used for the initrd. 310 */ 311 init_initrd(); 312 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end)); 313 314 /* 315 * max_low_pfn is not a number of pages. The number of pages 316 * of the system is given by 'max_low_pfn - min_low_pfn'. 317 */ 318 min_low_pfn = ~0UL; 319 max_low_pfn = 0; 320 321 /* 322 * Find the highest page frame number we have available. 323 */ 324 for (i = 0; i < boot_mem_map.nr_map; i++) { 325 unsigned long start, end; 326 327 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 328 continue; 329 330 start = PFN_UP(boot_mem_map.map[i].addr); 331 end = PFN_DOWN(boot_mem_map.map[i].addr 332 + boot_mem_map.map[i].size); 333 334 if (end > max_low_pfn) 335 max_low_pfn = end; 336 if (start < min_low_pfn) 337 min_low_pfn = start; 338 if (end <= reserved_end) 339 continue; 340 #ifdef CONFIG_BLK_DEV_INITRD 341 /* Skip zones before initrd and initrd itself */ 342 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end))) 343 continue; 344 #endif 345 if (start >= mapstart) 346 continue; 347 mapstart = max(reserved_end, start); 348 } 349 350 if (min_low_pfn >= max_low_pfn) 351 panic("Incorrect memory mapping !!!"); 352 if (min_low_pfn > ARCH_PFN_OFFSET) { 353 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 354 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 355 min_low_pfn - ARCH_PFN_OFFSET); 356 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 357 pr_info("%lu free pages won't be used\n", 358 ARCH_PFN_OFFSET - min_low_pfn); 359 } 360 min_low_pfn = ARCH_PFN_OFFSET; 361 362 /* 363 * Determine low and high memory ranges 364 */ 365 max_pfn = max_low_pfn; 366 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 367 #ifdef CONFIG_HIGHMEM 368 highstart_pfn = PFN_DOWN(HIGHMEM_START); 369 highend_pfn = max_low_pfn; 370 #endif 371 max_low_pfn = PFN_DOWN(HIGHMEM_START); 372 } 373 374 #ifdef CONFIG_BLK_DEV_INITRD 375 /* 376 * mapstart should be after initrd_end 377 */ 378 if (initrd_end) 379 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end))); 380 #endif 381 382 /* 383 * Initialize the boot-time allocator with low memory only. 384 */ 385 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 386 min_low_pfn, max_low_pfn); 387 388 389 for (i = 0; i < boot_mem_map.nr_map; i++) { 390 unsigned long start, end; 391 392 start = PFN_UP(boot_mem_map.map[i].addr); 393 end = PFN_DOWN(boot_mem_map.map[i].addr 394 + boot_mem_map.map[i].size); 395 396 if (start <= min_low_pfn) 397 start = min_low_pfn; 398 if (start >= end) 399 continue; 400 401 #ifndef CONFIG_HIGHMEM 402 if (end > max_low_pfn) 403 end = max_low_pfn; 404 405 /* 406 * ... finally, is the area going away? 407 */ 408 if (end <= start) 409 continue; 410 #endif 411 412 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 413 } 414 415 /* 416 * Register fully available low RAM pages with the bootmem allocator. 417 */ 418 for (i = 0; i < boot_mem_map.nr_map; i++) { 419 unsigned long start, end, size; 420 421 start = PFN_UP(boot_mem_map.map[i].addr); 422 end = PFN_DOWN(boot_mem_map.map[i].addr 423 + boot_mem_map.map[i].size); 424 425 /* 426 * Reserve usable memory. 427 */ 428 switch (boot_mem_map.map[i].type) { 429 case BOOT_MEM_RAM: 430 break; 431 case BOOT_MEM_INIT_RAM: 432 memory_present(0, start, end); 433 continue; 434 default: 435 /* Not usable memory */ 436 continue; 437 } 438 439 /* 440 * We are rounding up the start address of usable memory 441 * and at the end of the usable range downwards. 442 */ 443 if (start >= max_low_pfn) 444 continue; 445 if (start < reserved_end) 446 start = reserved_end; 447 if (end > max_low_pfn) 448 end = max_low_pfn; 449 450 /* 451 * ... finally, is the area going away? 452 */ 453 if (end <= start) 454 continue; 455 size = end - start; 456 457 /* Register lowmem ranges */ 458 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 459 memory_present(0, start, end); 460 } 461 462 /* 463 * Reserve the bootmap memory. 464 */ 465 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 466 467 /* 468 * Reserve initrd memory if needed. 469 */ 470 finalize_initrd(); 471 } 472 473 #endif /* CONFIG_SGI_IP27 */ 474 475 /* 476 * arch_mem_init - initialize memory management subsystem 477 * 478 * o plat_mem_setup() detects the memory configuration and will record detected 479 * memory areas using add_memory_region. 480 * 481 * At this stage the memory configuration of the system is known to the 482 * kernel but generic memory management system is still entirely uninitialized. 483 * 484 * o bootmem_init() 485 * o sparse_init() 486 * o paging_init() 487 * o dma_contiguous_reserve() 488 * 489 * At this stage the bootmem allocator is ready to use. 490 * 491 * NOTE: historically plat_mem_setup did the entire platform initialization. 492 * This was rather impractical because it meant plat_mem_setup had to 493 * get away without any kind of memory allocator. To keep old code from 494 * breaking plat_setup was just renamed to plat_mem_setup and a second platform 495 * initialization hook for anything else was introduced. 496 */ 497 498 static int usermem __initdata; 499 500 static int __init early_parse_mem(char *p) 501 { 502 phys_addr_t start, size; 503 504 /* 505 * If a user specifies memory size, we 506 * blow away any automatically generated 507 * size. 508 */ 509 if (usermem == 0) { 510 boot_mem_map.nr_map = 0; 511 usermem = 1; 512 } 513 start = 0; 514 size = memparse(p, &p); 515 if (*p == '@') 516 start = memparse(p + 1, &p); 517 518 add_memory_region(start, size, BOOT_MEM_RAM); 519 return 0; 520 } 521 early_param("mem", early_parse_mem); 522 523 #ifdef CONFIG_PROC_VMCORE 524 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; 525 static int __init early_parse_elfcorehdr(char *p) 526 { 527 int i; 528 529 setup_elfcorehdr = memparse(p, &p); 530 531 for (i = 0; i < boot_mem_map.nr_map; i++) { 532 unsigned long start = boot_mem_map.map[i].addr; 533 unsigned long end = (boot_mem_map.map[i].addr + 534 boot_mem_map.map[i].size); 535 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { 536 /* 537 * Reserve from the elf core header to the end of 538 * the memory segment, that should all be kdump 539 * reserved memory. 540 */ 541 setup_elfcorehdr_size = end - setup_elfcorehdr; 542 break; 543 } 544 } 545 /* 546 * If we don't find it in the memory map, then we shouldn't 547 * have to worry about it, as the new kernel won't use it. 548 */ 549 return 0; 550 } 551 early_param("elfcorehdr", early_parse_elfcorehdr); 552 #endif 553 554 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type) 555 { 556 phys_addr_t size; 557 int i; 558 559 size = end - mem; 560 if (!size) 561 return; 562 563 /* Make sure it is in the boot_mem_map */ 564 for (i = 0; i < boot_mem_map.nr_map; i++) { 565 if (mem >= boot_mem_map.map[i].addr && 566 mem < (boot_mem_map.map[i].addr + 567 boot_mem_map.map[i].size)) 568 return; 569 } 570 add_memory_region(mem, size, type); 571 } 572 573 #ifdef CONFIG_KEXEC 574 static inline unsigned long long get_total_mem(void) 575 { 576 unsigned long long total; 577 578 total = max_pfn - min_low_pfn; 579 return total << PAGE_SHIFT; 580 } 581 582 static void __init mips_parse_crashkernel(void) 583 { 584 unsigned long long total_mem; 585 unsigned long long crash_size, crash_base; 586 int ret; 587 588 total_mem = get_total_mem(); 589 ret = parse_crashkernel(boot_command_line, total_mem, 590 &crash_size, &crash_base); 591 if (ret != 0 || crash_size <= 0) 592 return; 593 594 crashk_res.start = crash_base; 595 crashk_res.end = crash_base + crash_size - 1; 596 } 597 598 static void __init request_crashkernel(struct resource *res) 599 { 600 int ret; 601 602 ret = request_resource(res, &crashk_res); 603 if (!ret) 604 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 605 (unsigned long)((crashk_res.end - 606 crashk_res.start + 1) >> 20), 607 (unsigned long)(crashk_res.start >> 20)); 608 } 609 #else /* !defined(CONFIG_KEXEC) */ 610 static void __init mips_parse_crashkernel(void) 611 { 612 } 613 614 static void __init request_crashkernel(struct resource *res) 615 { 616 } 617 #endif /* !defined(CONFIG_KEXEC) */ 618 619 static void __init arch_mem_init(char **cmdline_p) 620 { 621 struct memblock_region *reg; 622 extern void plat_mem_setup(void); 623 624 /* call board setup routine */ 625 plat_mem_setup(); 626 627 /* 628 * Make sure all kernel memory is in the maps. The "UP" and 629 * "DOWN" are opposite for initdata since if it crosses over 630 * into another memory section you don't want that to be 631 * freed when the initdata is freed. 632 */ 633 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, 634 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, 635 BOOT_MEM_RAM); 636 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, 637 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, 638 BOOT_MEM_INIT_RAM); 639 640 pr_info("Determined physical RAM map:\n"); 641 print_memory_map(); 642 643 #ifdef CONFIG_CMDLINE_BOOL 644 #ifdef CONFIG_CMDLINE_OVERRIDE 645 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 646 #else 647 if (builtin_cmdline[0]) { 648 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE); 649 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE); 650 } 651 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 652 #endif 653 #else 654 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 655 #endif 656 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 657 658 *cmdline_p = command_line; 659 660 parse_early_param(); 661 662 if (usermem) { 663 pr_info("User-defined physical RAM map:\n"); 664 print_memory_map(); 665 } 666 667 bootmem_init(); 668 #ifdef CONFIG_PROC_VMCORE 669 if (setup_elfcorehdr && setup_elfcorehdr_size) { 670 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", 671 setup_elfcorehdr, setup_elfcorehdr_size); 672 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, 673 BOOTMEM_DEFAULT); 674 } 675 #endif 676 677 mips_parse_crashkernel(); 678 #ifdef CONFIG_KEXEC 679 if (crashk_res.start != crashk_res.end) 680 reserve_bootmem(crashk_res.start, 681 crashk_res.end - crashk_res.start + 1, 682 BOOTMEM_DEFAULT); 683 #endif 684 device_tree_init(); 685 sparse_init(); 686 plat_swiotlb_setup(); 687 paging_init(); 688 689 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); 690 /* Tell bootmem about cma reserved memblock section */ 691 for_each_memblock(reserved, reg) 692 if (reg->size != 0) 693 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); 694 } 695 696 static void __init resource_init(void) 697 { 698 int i; 699 700 if (UNCAC_BASE != IO_BASE) 701 return; 702 703 code_resource.start = __pa_symbol(&_text); 704 code_resource.end = __pa_symbol(&_etext) - 1; 705 data_resource.start = __pa_symbol(&_etext); 706 data_resource.end = __pa_symbol(&_edata) - 1; 707 708 for (i = 0; i < boot_mem_map.nr_map; i++) { 709 struct resource *res; 710 unsigned long start, end; 711 712 start = boot_mem_map.map[i].addr; 713 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 714 if (start >= HIGHMEM_START) 715 continue; 716 if (end >= HIGHMEM_START) 717 end = HIGHMEM_START - 1; 718 719 res = alloc_bootmem(sizeof(struct resource)); 720 switch (boot_mem_map.map[i].type) { 721 case BOOT_MEM_RAM: 722 case BOOT_MEM_INIT_RAM: 723 case BOOT_MEM_ROM_DATA: 724 res->name = "System RAM"; 725 break; 726 case BOOT_MEM_RESERVED: 727 default: 728 res->name = "reserved"; 729 } 730 731 res->start = start; 732 res->end = end; 733 734 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 735 request_resource(&iomem_resource, res); 736 737 /* 738 * We don't know which RAM region contains kernel data, 739 * so we try it repeatedly and let the resource manager 740 * test it. 741 */ 742 request_resource(res, &code_resource); 743 request_resource(res, &data_resource); 744 request_crashkernel(res); 745 } 746 } 747 748 #ifdef CONFIG_SMP 749 static void __init prefill_possible_map(void) 750 { 751 int i, possible = num_possible_cpus(); 752 753 if (possible > nr_cpu_ids) 754 possible = nr_cpu_ids; 755 756 for (i = 0; i < possible; i++) 757 set_cpu_possible(i, true); 758 for (; i < NR_CPUS; i++) 759 set_cpu_possible(i, false); 760 761 nr_cpu_ids = possible; 762 } 763 #else 764 static inline void prefill_possible_map(void) {} 765 #endif 766 767 void __init setup_arch(char **cmdline_p) 768 { 769 cpu_probe(); 770 prom_init(); 771 772 setup_early_fdc_console(); 773 #ifdef CONFIG_EARLY_PRINTK 774 setup_early_printk(); 775 #endif 776 cpu_report(); 777 check_bugs_early(); 778 779 #if defined(CONFIG_VT) 780 #if defined(CONFIG_VGA_CONSOLE) 781 conswitchp = &vga_con; 782 #elif defined(CONFIG_DUMMY_CONSOLE) 783 conswitchp = &dummy_con; 784 #endif 785 #endif 786 787 arch_mem_init(cmdline_p); 788 789 resource_init(); 790 plat_smp_setup(); 791 prefill_possible_map(); 792 793 cpu_cache_init(); 794 } 795 796 unsigned long kernelsp[NR_CPUS]; 797 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 798 799 #ifdef CONFIG_DEBUG_FS 800 struct dentry *mips_debugfs_dir; 801 static int __init debugfs_mips(void) 802 { 803 struct dentry *d; 804 805 d = debugfs_create_dir("mips", NULL); 806 if (!d) 807 return -ENOMEM; 808 mips_debugfs_dir = d; 809 return 0; 810 } 811 arch_initcall(debugfs_mips); 812 #endif 813