xref: /linux/arch/mips/kernel/setup.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000 2001, 2002  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 
24 #include <asm/addrspace.h>
25 #include <asm/bootinfo.h>
26 #include <asm/cache.h>
27 #include <asm/cpu.h>
28 #include <asm/sections.h>
29 #include <asm/setup.h>
30 #include <asm/system.h>
31 
32 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
33 
34 EXPORT_SYMBOL(cpu_data);
35 
36 #ifdef CONFIG_VT
37 struct screen_info screen_info;
38 #endif
39 
40 /*
41  * Despite it's name this variable is even if we don't have PCI
42  */
43 unsigned int PCI_DMA_BUS_IS_PHYS;
44 
45 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
46 
47 /*
48  * Setup information
49  *
50  * These are initialized so they are in the .data section
51  */
52 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
53 unsigned long mips_machgroup __read_mostly = MACH_GROUP_UNKNOWN;
54 
55 EXPORT_SYMBOL(mips_machtype);
56 EXPORT_SYMBOL(mips_machgroup);
57 
58 struct boot_mem_map boot_mem_map;
59 
60 static char command_line[CL_SIZE];
61        char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
62 
63 /*
64  * mips_io_port_base is the begin of the address space to which x86 style
65  * I/O ports are mapped.
66  */
67 const unsigned long mips_io_port_base __read_mostly = -1;
68 EXPORT_SYMBOL(mips_io_port_base);
69 
70 /*
71  * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
72  * for the processor.
73  */
74 unsigned long isa_slot_offset;
75 EXPORT_SYMBOL(isa_slot_offset);
76 
77 static struct resource code_resource = { .name = "Kernel code", };
78 static struct resource data_resource = { .name = "Kernel data", };
79 
80 void __init add_memory_region(phys_t start, phys_t size, long type)
81 {
82 	int x = boot_mem_map.nr_map;
83 	struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
84 
85 	/* Sanity check */
86 	if (start + size < start) {
87 		printk("Trying to add an invalid memory region, skipped\n");
88 		return;
89 	}
90 
91 	/*
92 	 * Try to merge with previous entry if any.  This is far less than
93 	 * perfect but is sufficient for most real world cases.
94 	 */
95 	if (x && prev->addr + prev->size == start && prev->type == type) {
96 		prev->size += size;
97 		return;
98 	}
99 
100 	if (x == BOOT_MEM_MAP_MAX) {
101 		printk("Ooops! Too many entries in the memory map!\n");
102 		return;
103 	}
104 
105 	boot_mem_map.map[x].addr = start;
106 	boot_mem_map.map[x].size = size;
107 	boot_mem_map.map[x].type = type;
108 	boot_mem_map.nr_map++;
109 }
110 
111 static void __init print_memory_map(void)
112 {
113 	int i;
114 	const int field = 2 * sizeof(unsigned long);
115 
116 	for (i = 0; i < boot_mem_map.nr_map; i++) {
117 		printk(" memory: %0*Lx @ %0*Lx ",
118 		       field, (unsigned long long) boot_mem_map.map[i].size,
119 		       field, (unsigned long long) boot_mem_map.map[i].addr);
120 
121 		switch (boot_mem_map.map[i].type) {
122 		case BOOT_MEM_RAM:
123 			printk("(usable)\n");
124 			break;
125 		case BOOT_MEM_ROM_DATA:
126 			printk("(ROM data)\n");
127 			break;
128 		case BOOT_MEM_RESERVED:
129 			printk("(reserved)\n");
130 			break;
131 		default:
132 			printk("type %lu\n", boot_mem_map.map[i].type);
133 			break;
134 		}
135 	}
136 }
137 
138 /*
139  * Manage initrd
140  */
141 #ifdef CONFIG_BLK_DEV_INITRD
142 
143 static int __init rd_start_early(char *p)
144 {
145 	unsigned long start = memparse(p, &p);
146 
147 #ifdef CONFIG_64BIT
148 	/* Guess if the sign extension was forgotten by bootloader */
149 	if (start < XKPHYS)
150 		start = (int)start;
151 #endif
152 	initrd_start = start;
153 	initrd_end += start;
154 	return 0;
155 }
156 early_param("rd_start", rd_start_early);
157 
158 static int __init rd_size_early(char *p)
159 {
160 	initrd_end += memparse(p, &p);
161 	return 0;
162 }
163 early_param("rd_size", rd_size_early);
164 
165 /* it returns the next free pfn after initrd */
166 static unsigned long __init init_initrd(void)
167 {
168 	unsigned long end;
169 	u32 *initrd_header;
170 
171 	/*
172 	 * Board specific code or command line parser should have
173 	 * already set up initrd_start and initrd_end. In these cases
174 	 * perfom sanity checks and use them if all looks good.
175 	 */
176 	if (initrd_start && initrd_end > initrd_start)
177 		goto sanitize;
178 
179 	/*
180 	 * See if initrd has been added to the kernel image by
181 	 * arch/mips/boot/addinitrd.c. In that case a header is
182 	 * prepended to initrd and is made up by 8 bytes. The fisrt
183 	 * word is a magic number and the second one is the size of
184 	 * initrd.  Initrd start must be page aligned in any cases.
185 	 */
186 	initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
187 	if (initrd_header[0] != 0x494E5244)
188 		goto disable;
189 	initrd_start = (unsigned long)(initrd_header + 2);
190 	initrd_end = initrd_start + initrd_header[1];
191 
192 sanitize:
193 	if (initrd_start & ~PAGE_MASK) {
194 		printk(KERN_ERR "initrd start must be page aligned\n");
195 		goto disable;
196 	}
197 	if (initrd_start < PAGE_OFFSET) {
198 		printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
199 		goto disable;
200 	}
201 
202 	/*
203 	 * Sanitize initrd addresses. For example firmware
204 	 * can't guess if they need to pass them through
205 	 * 64-bits values if the kernel has been built in pure
206 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
207 	 * addresses now, so the code can now safely use __pa().
208 	 */
209 	end = __pa(initrd_end);
210 	initrd_end = (unsigned long)__va(end);
211 	initrd_start = (unsigned long)__va(__pa(initrd_start));
212 
213 	ROOT_DEV = Root_RAM0;
214 	return PFN_UP(end);
215 disable:
216 	initrd_start = 0;
217 	initrd_end = 0;
218 	return 0;
219 }
220 
221 static void __init finalize_initrd(void)
222 {
223 	unsigned long size = initrd_end - initrd_start;
224 
225 	if (size == 0) {
226 		printk(KERN_INFO "Initrd not found or empty");
227 		goto disable;
228 	}
229 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
230 		printk("Initrd extends beyond end of memory");
231 		goto disable;
232 	}
233 
234 	reserve_bootmem(__pa(initrd_start), size);
235 	initrd_below_start_ok = 1;
236 
237 	printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
238 	       initrd_start, size);
239 	return;
240 disable:
241 	printk(" - disabling initrd\n");
242 	initrd_start = 0;
243 	initrd_end = 0;
244 }
245 
246 #else  /* !CONFIG_BLK_DEV_INITRD */
247 
248 static unsigned long __init init_initrd(void)
249 {
250 	return 0;
251 }
252 
253 #define finalize_initrd()	do {} while (0)
254 
255 #endif
256 
257 /*
258  * Initialize the bootmem allocator. It also setup initrd related data
259  * if needed.
260  */
261 #ifdef CONFIG_SGI_IP27
262 
263 static void __init bootmem_init(void)
264 {
265 	init_initrd();
266 	finalize_initrd();
267 }
268 
269 #else  /* !CONFIG_SGI_IP27 */
270 
271 static void __init bootmem_init(void)
272 {
273 	unsigned long reserved_end;
274 	unsigned long mapstart = ~0UL;
275 	unsigned long bootmap_size;
276 	int i;
277 
278 	/*
279 	 * Init any data related to initrd. It's a nop if INITRD is
280 	 * not selected. Once that done we can determine the low bound
281 	 * of usable memory.
282 	 */
283 	reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
284 
285 	/*
286 	 * max_low_pfn is not a number of pages. The number of pages
287 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
288 	 */
289 	min_low_pfn = ~0UL;
290 	max_low_pfn = 0;
291 
292 	/*
293 	 * Find the highest page frame number we have available.
294 	 */
295 	for (i = 0; i < boot_mem_map.nr_map; i++) {
296 		unsigned long start, end;
297 
298 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
299 			continue;
300 
301 		start = PFN_UP(boot_mem_map.map[i].addr);
302 		end = PFN_DOWN(boot_mem_map.map[i].addr
303 				+ boot_mem_map.map[i].size);
304 
305 		if (end > max_low_pfn)
306 			max_low_pfn = end;
307 		if (start < min_low_pfn)
308 			min_low_pfn = start;
309 		if (end <= reserved_end)
310 			continue;
311 		if (start >= mapstart)
312 			continue;
313 		mapstart = max(reserved_end, start);
314 	}
315 
316 	if (min_low_pfn >= max_low_pfn)
317 		panic("Incorrect memory mapping !!!");
318 	if (min_low_pfn > ARCH_PFN_OFFSET) {
319 		printk(KERN_INFO
320 		       "Wasting %lu bytes for tracking %lu unused pages\n",
321 		       (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
322 		       min_low_pfn - ARCH_PFN_OFFSET);
323 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
324 		printk(KERN_INFO
325 		       "%lu free pages won't be used\n",
326 		       ARCH_PFN_OFFSET - min_low_pfn);
327 	}
328 	min_low_pfn = ARCH_PFN_OFFSET;
329 
330 	/*
331 	 * Determine low and high memory ranges
332 	 */
333 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
334 #ifdef CONFIG_HIGHMEM
335 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
336 		highend_pfn = max_low_pfn;
337 #endif
338 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
339 	}
340 
341 	/*
342 	 * Initialize the boot-time allocator with low memory only.
343 	 */
344 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
345 					 min_low_pfn, max_low_pfn);
346 	/*
347 	 * Register fully available low RAM pages with the bootmem allocator.
348 	 */
349 	for (i = 0; i < boot_mem_map.nr_map; i++) {
350 		unsigned long start, end, size;
351 
352 		/*
353 		 * Reserve usable memory.
354 		 */
355 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
356 			continue;
357 
358 		start = PFN_UP(boot_mem_map.map[i].addr);
359 		end   = PFN_DOWN(boot_mem_map.map[i].addr
360 				    + boot_mem_map.map[i].size);
361 		/*
362 		 * We are rounding up the start address of usable memory
363 		 * and at the end of the usable range downwards.
364 		 */
365 		if (start >= max_low_pfn)
366 			continue;
367 		if (start < reserved_end)
368 			start = reserved_end;
369 		if (end > max_low_pfn)
370 			end = max_low_pfn;
371 
372 		/*
373 		 * ... finally, is the area going away?
374 		 */
375 		if (end <= start)
376 			continue;
377 		size = end - start;
378 
379 		/* Register lowmem ranges */
380 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
381 		memory_present(0, start, end);
382 	}
383 
384 	/*
385 	 * Reserve the bootmap memory.
386 	 */
387 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
388 
389 	/*
390 	 * Reserve initrd memory if needed.
391 	 */
392 	finalize_initrd();
393 }
394 
395 #endif	/* CONFIG_SGI_IP27 */
396 
397 /*
398  * arch_mem_init - initialize memory managment subsystem
399  *
400  *  o plat_mem_setup() detects the memory configuration and will record detected
401  *    memory areas using add_memory_region.
402  *
403  * At this stage the memory configuration of the system is known to the
404  * kernel but generic memory managment system is still entirely uninitialized.
405  *
406  *  o bootmem_init()
407  *  o sparse_init()
408  *  o paging_init()
409  *
410  * At this stage the bootmem allocator is ready to use.
411  *
412  * NOTE: historically plat_mem_setup did the entire platform initialization.
413  *       This was rather impractical because it meant plat_mem_setup had to
414  * get away without any kind of memory allocator.  To keep old code from
415  * breaking plat_setup was just renamed to plat_setup and a second platform
416  * initialization hook for anything else was introduced.
417  */
418 
419 static int usermem __initdata = 0;
420 
421 static int __init early_parse_mem(char *p)
422 {
423 	unsigned long start, size;
424 
425 	/*
426 	 * If a user specifies memory size, we
427 	 * blow away any automatically generated
428 	 * size.
429 	 */
430 	if (usermem == 0) {
431 		boot_mem_map.nr_map = 0;
432 		usermem = 1;
433  	}
434 	start = 0;
435 	size = memparse(p, &p);
436 	if (*p == '@')
437 		start = memparse(p + 1, &p);
438 
439 	add_memory_region(start, size, BOOT_MEM_RAM);
440 	return 0;
441 }
442 early_param("mem", early_parse_mem);
443 
444 static void __init arch_mem_init(char **cmdline_p)
445 {
446 	extern void plat_mem_setup(void);
447 
448 	/* call board setup routine */
449 	plat_mem_setup();
450 
451 	printk("Determined physical RAM map:\n");
452 	print_memory_map();
453 
454 	strlcpy(command_line, arcs_cmdline, sizeof(command_line));
455 	strlcpy(saved_command_line, command_line, COMMAND_LINE_SIZE);
456 
457 	*cmdline_p = command_line;
458 
459 	parse_early_param();
460 
461 	if (usermem) {
462 		printk("User-defined physical RAM map:\n");
463 		print_memory_map();
464 	}
465 
466 	bootmem_init();
467 	sparse_init();
468 	paging_init();
469 }
470 
471 static void __init resource_init(void)
472 {
473 	int i;
474 
475 	if (UNCAC_BASE != IO_BASE)
476 		return;
477 
478 	code_resource.start = __pa_symbol(&_text);
479 	code_resource.end = __pa_symbol(&_etext) - 1;
480 	data_resource.start = __pa_symbol(&_etext);
481 	data_resource.end = __pa_symbol(&_edata) - 1;
482 
483 	/*
484 	 * Request address space for all standard RAM.
485 	 */
486 	for (i = 0; i < boot_mem_map.nr_map; i++) {
487 		struct resource *res;
488 		unsigned long start, end;
489 
490 		start = boot_mem_map.map[i].addr;
491 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
492 		if (start >= HIGHMEM_START)
493 			continue;
494 		if (end >= HIGHMEM_START)
495 			end = HIGHMEM_START - 1;
496 
497 		res = alloc_bootmem(sizeof(struct resource));
498 		switch (boot_mem_map.map[i].type) {
499 		case BOOT_MEM_RAM:
500 		case BOOT_MEM_ROM_DATA:
501 			res->name = "System RAM";
502 			break;
503 		case BOOT_MEM_RESERVED:
504 		default:
505 			res->name = "reserved";
506 		}
507 
508 		res->start = start;
509 		res->end = end;
510 
511 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
512 		request_resource(&iomem_resource, res);
513 
514 		/*
515 		 *  We don't know which RAM region contains kernel data,
516 		 *  so we try it repeatedly and let the resource manager
517 		 *  test it.
518 		 */
519 		request_resource(res, &code_resource);
520 		request_resource(res, &data_resource);
521 	}
522 }
523 
524 void __init setup_arch(char **cmdline_p)
525 {
526 	cpu_probe();
527 	prom_init();
528 	cpu_report();
529 
530 #if defined(CONFIG_VT)
531 #if defined(CONFIG_VGA_CONSOLE)
532 	conswitchp = &vga_con;
533 #elif defined(CONFIG_DUMMY_CONSOLE)
534 	conswitchp = &dummy_con;
535 #endif
536 #endif
537 
538 	arch_mem_init(cmdline_p);
539 
540 	resource_init();
541 #ifdef CONFIG_SMP
542 	plat_smp_setup();
543 #endif
544 }
545 
546 int __init fpu_disable(char *s)
547 {
548 	int i;
549 
550 	for (i = 0; i < NR_CPUS; i++)
551 		cpu_data[i].options &= ~MIPS_CPU_FPU;
552 
553 	return 1;
554 }
555 
556 __setup("nofpu", fpu_disable);
557 
558 int __init dsp_disable(char *s)
559 {
560 	cpu_data[0].ases &= ~MIPS_ASE_DSP;
561 
562 	return 1;
563 }
564 
565 __setup("nodsp", dsp_disable);
566 
567 unsigned long kernelsp[NR_CPUS];
568 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
569