1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 26 #include <asm/addrspace.h> 27 #include <asm/bootinfo.h> 28 #include <asm/bugs.h> 29 #include <asm/cache.h> 30 #include <asm/cpu.h> 31 #include <asm/sections.h> 32 #include <asm/setup.h> 33 #include <asm/smp-ops.h> 34 #include <asm/system.h> 35 #include <asm/prom.h> 36 37 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 38 39 EXPORT_SYMBOL(cpu_data); 40 41 #ifdef CONFIG_VT 42 struct screen_info screen_info; 43 #endif 44 45 /* 46 * Despite it's name this variable is even if we don't have PCI 47 */ 48 unsigned int PCI_DMA_BUS_IS_PHYS; 49 50 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 51 52 /* 53 * Setup information 54 * 55 * These are initialized so they are in the .data section 56 */ 57 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 58 59 EXPORT_SYMBOL(mips_machtype); 60 61 struct boot_mem_map boot_mem_map; 62 63 static char __initdata command_line[COMMAND_LINE_SIZE]; 64 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 65 66 #ifdef CONFIG_CMDLINE_BOOL 67 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 68 #endif 69 70 /* 71 * mips_io_port_base is the begin of the address space to which x86 style 72 * I/O ports are mapped. 73 */ 74 const unsigned long mips_io_port_base = -1; 75 EXPORT_SYMBOL(mips_io_port_base); 76 77 static struct resource code_resource = { .name = "Kernel code", }; 78 static struct resource data_resource = { .name = "Kernel data", }; 79 80 void __init add_memory_region(phys_t start, phys_t size, long type) 81 { 82 int x = boot_mem_map.nr_map; 83 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1; 84 85 /* Sanity check */ 86 if (start + size < start) { 87 pr_warning("Trying to add an invalid memory region, skipped\n"); 88 return; 89 } 90 91 /* 92 * Try to merge with previous entry if any. This is far less than 93 * perfect but is sufficient for most real world cases. 94 */ 95 if (x && prev->addr + prev->size == start && prev->type == type) { 96 prev->size += size; 97 return; 98 } 99 100 if (x == BOOT_MEM_MAP_MAX) { 101 pr_err("Ooops! Too many entries in the memory map!\n"); 102 return; 103 } 104 105 boot_mem_map.map[x].addr = start; 106 boot_mem_map.map[x].size = size; 107 boot_mem_map.map[x].type = type; 108 boot_mem_map.nr_map++; 109 } 110 111 static void __init print_memory_map(void) 112 { 113 int i; 114 const int field = 2 * sizeof(unsigned long); 115 116 for (i = 0; i < boot_mem_map.nr_map; i++) { 117 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 118 field, (unsigned long long) boot_mem_map.map[i].size, 119 field, (unsigned long long) boot_mem_map.map[i].addr); 120 121 switch (boot_mem_map.map[i].type) { 122 case BOOT_MEM_RAM: 123 printk(KERN_CONT "(usable)\n"); 124 break; 125 case BOOT_MEM_ROM_DATA: 126 printk(KERN_CONT "(ROM data)\n"); 127 break; 128 case BOOT_MEM_RESERVED: 129 printk(KERN_CONT "(reserved)\n"); 130 break; 131 default: 132 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 133 break; 134 } 135 } 136 } 137 138 /* 139 * Manage initrd 140 */ 141 #ifdef CONFIG_BLK_DEV_INITRD 142 143 static int __init rd_start_early(char *p) 144 { 145 unsigned long start = memparse(p, &p); 146 147 #ifdef CONFIG_64BIT 148 /* Guess if the sign extension was forgotten by bootloader */ 149 if (start < XKPHYS) 150 start = (int)start; 151 #endif 152 initrd_start = start; 153 initrd_end += start; 154 return 0; 155 } 156 early_param("rd_start", rd_start_early); 157 158 static int __init rd_size_early(char *p) 159 { 160 initrd_end += memparse(p, &p); 161 return 0; 162 } 163 early_param("rd_size", rd_size_early); 164 165 /* it returns the next free pfn after initrd */ 166 static unsigned long __init init_initrd(void) 167 { 168 unsigned long end; 169 170 /* 171 * Board specific code or command line parser should have 172 * already set up initrd_start and initrd_end. In these cases 173 * perfom sanity checks and use them if all looks good. 174 */ 175 if (!initrd_start || initrd_end <= initrd_start) 176 goto disable; 177 178 if (initrd_start & ~PAGE_MASK) { 179 pr_err("initrd start must be page aligned\n"); 180 goto disable; 181 } 182 if (initrd_start < PAGE_OFFSET) { 183 pr_err("initrd start < PAGE_OFFSET\n"); 184 goto disable; 185 } 186 187 /* 188 * Sanitize initrd addresses. For example firmware 189 * can't guess if they need to pass them through 190 * 64-bits values if the kernel has been built in pure 191 * 32-bit. We need also to switch from KSEG0 to XKPHYS 192 * addresses now, so the code can now safely use __pa(). 193 */ 194 end = __pa(initrd_end); 195 initrd_end = (unsigned long)__va(end); 196 initrd_start = (unsigned long)__va(__pa(initrd_start)); 197 198 ROOT_DEV = Root_RAM0; 199 return PFN_UP(end); 200 disable: 201 initrd_start = 0; 202 initrd_end = 0; 203 return 0; 204 } 205 206 static void __init finalize_initrd(void) 207 { 208 unsigned long size = initrd_end - initrd_start; 209 210 if (size == 0) { 211 printk(KERN_INFO "Initrd not found or empty"); 212 goto disable; 213 } 214 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 215 printk(KERN_ERR "Initrd extends beyond end of memory"); 216 goto disable; 217 } 218 219 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 220 initrd_below_start_ok = 1; 221 222 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 223 initrd_start, size); 224 return; 225 disable: 226 printk(KERN_CONT " - disabling initrd\n"); 227 initrd_start = 0; 228 initrd_end = 0; 229 } 230 231 #else /* !CONFIG_BLK_DEV_INITRD */ 232 233 static unsigned long __init init_initrd(void) 234 { 235 return 0; 236 } 237 238 #define finalize_initrd() do {} while (0) 239 240 #endif 241 242 /* 243 * Initialize the bootmem allocator. It also setup initrd related data 244 * if needed. 245 */ 246 #ifdef CONFIG_SGI_IP27 247 248 static void __init bootmem_init(void) 249 { 250 init_initrd(); 251 finalize_initrd(); 252 } 253 254 #else /* !CONFIG_SGI_IP27 */ 255 256 static void __init bootmem_init(void) 257 { 258 unsigned long reserved_end; 259 unsigned long mapstart = ~0UL; 260 unsigned long bootmap_size; 261 int i; 262 263 /* 264 * Init any data related to initrd. It's a nop if INITRD is 265 * not selected. Once that done we can determine the low bound 266 * of usable memory. 267 */ 268 reserved_end = max(init_initrd(), 269 (unsigned long) PFN_UP(__pa_symbol(&_end))); 270 271 /* 272 * max_low_pfn is not a number of pages. The number of pages 273 * of the system is given by 'max_low_pfn - min_low_pfn'. 274 */ 275 min_low_pfn = ~0UL; 276 max_low_pfn = 0; 277 278 /* 279 * Find the highest page frame number we have available. 280 */ 281 for (i = 0; i < boot_mem_map.nr_map; i++) { 282 unsigned long start, end; 283 284 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 285 continue; 286 287 start = PFN_UP(boot_mem_map.map[i].addr); 288 end = PFN_DOWN(boot_mem_map.map[i].addr 289 + boot_mem_map.map[i].size); 290 291 if (end > max_low_pfn) 292 max_low_pfn = end; 293 if (start < min_low_pfn) 294 min_low_pfn = start; 295 if (end <= reserved_end) 296 continue; 297 if (start >= mapstart) 298 continue; 299 mapstart = max(reserved_end, start); 300 } 301 302 if (min_low_pfn >= max_low_pfn) 303 panic("Incorrect memory mapping !!!"); 304 if (min_low_pfn > ARCH_PFN_OFFSET) { 305 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 306 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 307 min_low_pfn - ARCH_PFN_OFFSET); 308 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 309 pr_info("%lu free pages won't be used\n", 310 ARCH_PFN_OFFSET - min_low_pfn); 311 } 312 min_low_pfn = ARCH_PFN_OFFSET; 313 314 /* 315 * Determine low and high memory ranges 316 */ 317 max_pfn = max_low_pfn; 318 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 319 #ifdef CONFIG_HIGHMEM 320 highstart_pfn = PFN_DOWN(HIGHMEM_START); 321 highend_pfn = max_low_pfn; 322 #endif 323 max_low_pfn = PFN_DOWN(HIGHMEM_START); 324 } 325 326 /* 327 * Initialize the boot-time allocator with low memory only. 328 */ 329 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 330 min_low_pfn, max_low_pfn); 331 332 333 for (i = 0; i < boot_mem_map.nr_map; i++) { 334 unsigned long start, end; 335 336 start = PFN_UP(boot_mem_map.map[i].addr); 337 end = PFN_DOWN(boot_mem_map.map[i].addr 338 + boot_mem_map.map[i].size); 339 340 if (start <= min_low_pfn) 341 start = min_low_pfn; 342 if (start >= end) 343 continue; 344 345 #ifndef CONFIG_HIGHMEM 346 if (end > max_low_pfn) 347 end = max_low_pfn; 348 349 /* 350 * ... finally, is the area going away? 351 */ 352 if (end <= start) 353 continue; 354 #endif 355 356 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 357 } 358 359 /* 360 * Register fully available low RAM pages with the bootmem allocator. 361 */ 362 for (i = 0; i < boot_mem_map.nr_map; i++) { 363 unsigned long start, end, size; 364 365 /* 366 * Reserve usable memory. 367 */ 368 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 369 continue; 370 371 start = PFN_UP(boot_mem_map.map[i].addr); 372 end = PFN_DOWN(boot_mem_map.map[i].addr 373 + boot_mem_map.map[i].size); 374 /* 375 * We are rounding up the start address of usable memory 376 * and at the end of the usable range downwards. 377 */ 378 if (start >= max_low_pfn) 379 continue; 380 if (start < reserved_end) 381 start = reserved_end; 382 if (end > max_low_pfn) 383 end = max_low_pfn; 384 385 /* 386 * ... finally, is the area going away? 387 */ 388 if (end <= start) 389 continue; 390 size = end - start; 391 392 /* Register lowmem ranges */ 393 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 394 memory_present(0, start, end); 395 } 396 397 /* 398 * Reserve the bootmap memory. 399 */ 400 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 401 402 /* 403 * Reserve initrd memory if needed. 404 */ 405 finalize_initrd(); 406 } 407 408 #endif /* CONFIG_SGI_IP27 */ 409 410 /* 411 * arch_mem_init - initialize memory management subsystem 412 * 413 * o plat_mem_setup() detects the memory configuration and will record detected 414 * memory areas using add_memory_region. 415 * 416 * At this stage the memory configuration of the system is known to the 417 * kernel but generic memory management system is still entirely uninitialized. 418 * 419 * o bootmem_init() 420 * o sparse_init() 421 * o paging_init() 422 * 423 * At this stage the bootmem allocator is ready to use. 424 * 425 * NOTE: historically plat_mem_setup did the entire platform initialization. 426 * This was rather impractical because it meant plat_mem_setup had to 427 * get away without any kind of memory allocator. To keep old code from 428 * breaking plat_setup was just renamed to plat_setup and a second platform 429 * initialization hook for anything else was introduced. 430 */ 431 432 static int usermem __initdata; 433 434 static int __init early_parse_mem(char *p) 435 { 436 unsigned long start, size; 437 438 /* 439 * If a user specifies memory size, we 440 * blow away any automatically generated 441 * size. 442 */ 443 if (usermem == 0) { 444 boot_mem_map.nr_map = 0; 445 usermem = 1; 446 } 447 start = 0; 448 size = memparse(p, &p); 449 if (*p == '@') 450 start = memparse(p + 1, &p); 451 452 add_memory_region(start, size, BOOT_MEM_RAM); 453 return 0; 454 } 455 early_param("mem", early_parse_mem); 456 457 static void __init arch_mem_init(char **cmdline_p) 458 { 459 extern void plat_mem_setup(void); 460 461 /* call board setup routine */ 462 plat_mem_setup(); 463 464 pr_info("Determined physical RAM map:\n"); 465 print_memory_map(); 466 467 #ifdef CONFIG_CMDLINE_BOOL 468 #ifdef CONFIG_CMDLINE_OVERRIDE 469 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 470 #else 471 if (builtin_cmdline[0]) { 472 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE); 473 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE); 474 } 475 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 476 #endif 477 #else 478 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 479 #endif 480 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 481 482 *cmdline_p = command_line; 483 484 parse_early_param(); 485 486 if (usermem) { 487 pr_info("User-defined physical RAM map:\n"); 488 print_memory_map(); 489 } 490 491 bootmem_init(); 492 device_tree_init(); 493 sparse_init(); 494 plat_swiotlb_setup(); 495 paging_init(); 496 } 497 498 static void __init resource_init(void) 499 { 500 int i; 501 502 if (UNCAC_BASE != IO_BASE) 503 return; 504 505 code_resource.start = __pa_symbol(&_text); 506 code_resource.end = __pa_symbol(&_etext) - 1; 507 data_resource.start = __pa_symbol(&_etext); 508 data_resource.end = __pa_symbol(&_edata) - 1; 509 510 /* 511 * Request address space for all standard RAM. 512 */ 513 for (i = 0; i < boot_mem_map.nr_map; i++) { 514 struct resource *res; 515 unsigned long start, end; 516 517 start = boot_mem_map.map[i].addr; 518 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 519 if (start >= HIGHMEM_START) 520 continue; 521 if (end >= HIGHMEM_START) 522 end = HIGHMEM_START - 1; 523 524 res = alloc_bootmem(sizeof(struct resource)); 525 switch (boot_mem_map.map[i].type) { 526 case BOOT_MEM_RAM: 527 case BOOT_MEM_ROM_DATA: 528 res->name = "System RAM"; 529 break; 530 case BOOT_MEM_RESERVED: 531 default: 532 res->name = "reserved"; 533 } 534 535 res->start = start; 536 res->end = end; 537 538 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 539 request_resource(&iomem_resource, res); 540 541 /* 542 * We don't know which RAM region contains kernel data, 543 * so we try it repeatedly and let the resource manager 544 * test it. 545 */ 546 request_resource(res, &code_resource); 547 request_resource(res, &data_resource); 548 } 549 } 550 551 void __init setup_arch(char **cmdline_p) 552 { 553 cpu_probe(); 554 prom_init(); 555 556 #ifdef CONFIG_EARLY_PRINTK 557 setup_early_printk(); 558 #endif 559 cpu_report(); 560 check_bugs_early(); 561 562 #if defined(CONFIG_VT) 563 #if defined(CONFIG_VGA_CONSOLE) 564 conswitchp = &vga_con; 565 #elif defined(CONFIG_DUMMY_CONSOLE) 566 conswitchp = &dummy_con; 567 #endif 568 #endif 569 570 arch_mem_init(cmdline_p); 571 572 resource_init(); 573 plat_smp_setup(); 574 } 575 576 unsigned long kernelsp[NR_CPUS]; 577 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 578 579 #ifdef CONFIG_DEBUG_FS 580 struct dentry *mips_debugfs_dir; 581 static int __init debugfs_mips(void) 582 { 583 struct dentry *d; 584 585 d = debugfs_create_dir("mips", NULL); 586 if (!d) 587 return -ENOMEM; 588 mips_debugfs_dir = d; 589 return 0; 590 } 591 arch_initcall(debugfs_mips); 592 #endif 593