xref: /linux/arch/mips/kernel/setup.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 
26 #include <asm/addrspace.h>
27 #include <asm/bootinfo.h>
28 #include <asm/bugs.h>
29 #include <asm/cache.h>
30 #include <asm/cpu.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <asm/smp-ops.h>
34 #include <asm/system.h>
35 #include <asm/prom.h>
36 
37 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
38 
39 EXPORT_SYMBOL(cpu_data);
40 
41 #ifdef CONFIG_VT
42 struct screen_info screen_info;
43 #endif
44 
45 /*
46  * Despite it's name this variable is even if we don't have PCI
47  */
48 unsigned int PCI_DMA_BUS_IS_PHYS;
49 
50 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
51 
52 /*
53  * Setup information
54  *
55  * These are initialized so they are in the .data section
56  */
57 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
58 
59 EXPORT_SYMBOL(mips_machtype);
60 
61 struct boot_mem_map boot_mem_map;
62 
63 static char __initdata command_line[COMMAND_LINE_SIZE];
64 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
65 
66 #ifdef CONFIG_CMDLINE_BOOL
67 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
68 #endif
69 
70 /*
71  * mips_io_port_base is the begin of the address space to which x86 style
72  * I/O ports are mapped.
73  */
74 const unsigned long mips_io_port_base = -1;
75 EXPORT_SYMBOL(mips_io_port_base);
76 
77 static struct resource code_resource = { .name = "Kernel code", };
78 static struct resource data_resource = { .name = "Kernel data", };
79 
80 void __init add_memory_region(phys_t start, phys_t size, long type)
81 {
82 	int x = boot_mem_map.nr_map;
83 	struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
84 
85 	/* Sanity check */
86 	if (start + size < start) {
87 		pr_warning("Trying to add an invalid memory region, skipped\n");
88 		return;
89 	}
90 
91 	/*
92 	 * Try to merge with previous entry if any.  This is far less than
93 	 * perfect but is sufficient for most real world cases.
94 	 */
95 	if (x && prev->addr + prev->size == start && prev->type == type) {
96 		prev->size += size;
97 		return;
98 	}
99 
100 	if (x == BOOT_MEM_MAP_MAX) {
101 		pr_err("Ooops! Too many entries in the memory map!\n");
102 		return;
103 	}
104 
105 	boot_mem_map.map[x].addr = start;
106 	boot_mem_map.map[x].size = size;
107 	boot_mem_map.map[x].type = type;
108 	boot_mem_map.nr_map++;
109 }
110 
111 static void __init print_memory_map(void)
112 {
113 	int i;
114 	const int field = 2 * sizeof(unsigned long);
115 
116 	for (i = 0; i < boot_mem_map.nr_map; i++) {
117 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
118 		       field, (unsigned long long) boot_mem_map.map[i].size,
119 		       field, (unsigned long long) boot_mem_map.map[i].addr);
120 
121 		switch (boot_mem_map.map[i].type) {
122 		case BOOT_MEM_RAM:
123 			printk(KERN_CONT "(usable)\n");
124 			break;
125 		case BOOT_MEM_ROM_DATA:
126 			printk(KERN_CONT "(ROM data)\n");
127 			break;
128 		case BOOT_MEM_RESERVED:
129 			printk(KERN_CONT "(reserved)\n");
130 			break;
131 		default:
132 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
133 			break;
134 		}
135 	}
136 }
137 
138 /*
139  * Manage initrd
140  */
141 #ifdef CONFIG_BLK_DEV_INITRD
142 
143 static int __init rd_start_early(char *p)
144 {
145 	unsigned long start = memparse(p, &p);
146 
147 #ifdef CONFIG_64BIT
148 	/* Guess if the sign extension was forgotten by bootloader */
149 	if (start < XKPHYS)
150 		start = (int)start;
151 #endif
152 	initrd_start = start;
153 	initrd_end += start;
154 	return 0;
155 }
156 early_param("rd_start", rd_start_early);
157 
158 static int __init rd_size_early(char *p)
159 {
160 	initrd_end += memparse(p, &p);
161 	return 0;
162 }
163 early_param("rd_size", rd_size_early);
164 
165 /* it returns the next free pfn after initrd */
166 static unsigned long __init init_initrd(void)
167 {
168 	unsigned long end;
169 
170 	/*
171 	 * Board specific code or command line parser should have
172 	 * already set up initrd_start and initrd_end. In these cases
173 	 * perfom sanity checks and use them if all looks good.
174 	 */
175 	if (!initrd_start || initrd_end <= initrd_start)
176 		goto disable;
177 
178 	if (initrd_start & ~PAGE_MASK) {
179 		pr_err("initrd start must be page aligned\n");
180 		goto disable;
181 	}
182 	if (initrd_start < PAGE_OFFSET) {
183 		pr_err("initrd start < PAGE_OFFSET\n");
184 		goto disable;
185 	}
186 
187 	/*
188 	 * Sanitize initrd addresses. For example firmware
189 	 * can't guess if they need to pass them through
190 	 * 64-bits values if the kernel has been built in pure
191 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
192 	 * addresses now, so the code can now safely use __pa().
193 	 */
194 	end = __pa(initrd_end);
195 	initrd_end = (unsigned long)__va(end);
196 	initrd_start = (unsigned long)__va(__pa(initrd_start));
197 
198 	ROOT_DEV = Root_RAM0;
199 	return PFN_UP(end);
200 disable:
201 	initrd_start = 0;
202 	initrd_end = 0;
203 	return 0;
204 }
205 
206 static void __init finalize_initrd(void)
207 {
208 	unsigned long size = initrd_end - initrd_start;
209 
210 	if (size == 0) {
211 		printk(KERN_INFO "Initrd not found or empty");
212 		goto disable;
213 	}
214 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
215 		printk(KERN_ERR "Initrd extends beyond end of memory");
216 		goto disable;
217 	}
218 
219 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
220 	initrd_below_start_ok = 1;
221 
222 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
223 		initrd_start, size);
224 	return;
225 disable:
226 	printk(KERN_CONT " - disabling initrd\n");
227 	initrd_start = 0;
228 	initrd_end = 0;
229 }
230 
231 #else  /* !CONFIG_BLK_DEV_INITRD */
232 
233 static unsigned long __init init_initrd(void)
234 {
235 	return 0;
236 }
237 
238 #define finalize_initrd()	do {} while (0)
239 
240 #endif
241 
242 /*
243  * Initialize the bootmem allocator. It also setup initrd related data
244  * if needed.
245  */
246 #ifdef CONFIG_SGI_IP27
247 
248 static void __init bootmem_init(void)
249 {
250 	init_initrd();
251 	finalize_initrd();
252 }
253 
254 #else  /* !CONFIG_SGI_IP27 */
255 
256 static void __init bootmem_init(void)
257 {
258 	unsigned long reserved_end;
259 	unsigned long mapstart = ~0UL;
260 	unsigned long bootmap_size;
261 	int i;
262 
263 	/*
264 	 * Init any data related to initrd. It's a nop if INITRD is
265 	 * not selected. Once that done we can determine the low bound
266 	 * of usable memory.
267 	 */
268 	reserved_end = max(init_initrd(),
269 			   (unsigned long) PFN_UP(__pa_symbol(&_end)));
270 
271 	/*
272 	 * max_low_pfn is not a number of pages. The number of pages
273 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
274 	 */
275 	min_low_pfn = ~0UL;
276 	max_low_pfn = 0;
277 
278 	/*
279 	 * Find the highest page frame number we have available.
280 	 */
281 	for (i = 0; i < boot_mem_map.nr_map; i++) {
282 		unsigned long start, end;
283 
284 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
285 			continue;
286 
287 		start = PFN_UP(boot_mem_map.map[i].addr);
288 		end = PFN_DOWN(boot_mem_map.map[i].addr
289 				+ boot_mem_map.map[i].size);
290 
291 		if (end > max_low_pfn)
292 			max_low_pfn = end;
293 		if (start < min_low_pfn)
294 			min_low_pfn = start;
295 		if (end <= reserved_end)
296 			continue;
297 		if (start >= mapstart)
298 			continue;
299 		mapstart = max(reserved_end, start);
300 	}
301 
302 	if (min_low_pfn >= max_low_pfn)
303 		panic("Incorrect memory mapping !!!");
304 	if (min_low_pfn > ARCH_PFN_OFFSET) {
305 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
306 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
307 			min_low_pfn - ARCH_PFN_OFFSET);
308 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
309 		pr_info("%lu free pages won't be used\n",
310 			ARCH_PFN_OFFSET - min_low_pfn);
311 	}
312 	min_low_pfn = ARCH_PFN_OFFSET;
313 
314 	/*
315 	 * Determine low and high memory ranges
316 	 */
317 	max_pfn = max_low_pfn;
318 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
319 #ifdef CONFIG_HIGHMEM
320 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
321 		highend_pfn = max_low_pfn;
322 #endif
323 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
324 	}
325 
326 	/*
327 	 * Initialize the boot-time allocator with low memory only.
328 	 */
329 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
330 					 min_low_pfn, max_low_pfn);
331 
332 
333 	for (i = 0; i < boot_mem_map.nr_map; i++) {
334 		unsigned long start, end;
335 
336 		start = PFN_UP(boot_mem_map.map[i].addr);
337 		end = PFN_DOWN(boot_mem_map.map[i].addr
338 				+ boot_mem_map.map[i].size);
339 
340 		if (start <= min_low_pfn)
341 			start = min_low_pfn;
342 		if (start >= end)
343 			continue;
344 
345 #ifndef CONFIG_HIGHMEM
346 		if (end > max_low_pfn)
347 			end = max_low_pfn;
348 
349 		/*
350 		 * ... finally, is the area going away?
351 		 */
352 		if (end <= start)
353 			continue;
354 #endif
355 
356 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
357 	}
358 
359 	/*
360 	 * Register fully available low RAM pages with the bootmem allocator.
361 	 */
362 	for (i = 0; i < boot_mem_map.nr_map; i++) {
363 		unsigned long start, end, size;
364 
365 		/*
366 		 * Reserve usable memory.
367 		 */
368 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
369 			continue;
370 
371 		start = PFN_UP(boot_mem_map.map[i].addr);
372 		end   = PFN_DOWN(boot_mem_map.map[i].addr
373 				    + boot_mem_map.map[i].size);
374 		/*
375 		 * We are rounding up the start address of usable memory
376 		 * and at the end of the usable range downwards.
377 		 */
378 		if (start >= max_low_pfn)
379 			continue;
380 		if (start < reserved_end)
381 			start = reserved_end;
382 		if (end > max_low_pfn)
383 			end = max_low_pfn;
384 
385 		/*
386 		 * ... finally, is the area going away?
387 		 */
388 		if (end <= start)
389 			continue;
390 		size = end - start;
391 
392 		/* Register lowmem ranges */
393 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
394 		memory_present(0, start, end);
395 	}
396 
397 	/*
398 	 * Reserve the bootmap memory.
399 	 */
400 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
401 
402 	/*
403 	 * Reserve initrd memory if needed.
404 	 */
405 	finalize_initrd();
406 }
407 
408 #endif	/* CONFIG_SGI_IP27 */
409 
410 /*
411  * arch_mem_init - initialize memory management subsystem
412  *
413  *  o plat_mem_setup() detects the memory configuration and will record detected
414  *    memory areas using add_memory_region.
415  *
416  * At this stage the memory configuration of the system is known to the
417  * kernel but generic memory management system is still entirely uninitialized.
418  *
419  *  o bootmem_init()
420  *  o sparse_init()
421  *  o paging_init()
422  *
423  * At this stage the bootmem allocator is ready to use.
424  *
425  * NOTE: historically plat_mem_setup did the entire platform initialization.
426  *       This was rather impractical because it meant plat_mem_setup had to
427  * get away without any kind of memory allocator.  To keep old code from
428  * breaking plat_setup was just renamed to plat_setup and a second platform
429  * initialization hook for anything else was introduced.
430  */
431 
432 static int usermem __initdata;
433 
434 static int __init early_parse_mem(char *p)
435 {
436 	unsigned long start, size;
437 
438 	/*
439 	 * If a user specifies memory size, we
440 	 * blow away any automatically generated
441 	 * size.
442 	 */
443 	if (usermem == 0) {
444 		boot_mem_map.nr_map = 0;
445 		usermem = 1;
446  	}
447 	start = 0;
448 	size = memparse(p, &p);
449 	if (*p == '@')
450 		start = memparse(p + 1, &p);
451 
452 	add_memory_region(start, size, BOOT_MEM_RAM);
453 	return 0;
454 }
455 early_param("mem", early_parse_mem);
456 
457 static void __init arch_mem_init(char **cmdline_p)
458 {
459 	extern void plat_mem_setup(void);
460 
461 	/* call board setup routine */
462 	plat_mem_setup();
463 
464 	pr_info("Determined physical RAM map:\n");
465 	print_memory_map();
466 
467 #ifdef CONFIG_CMDLINE_BOOL
468 #ifdef CONFIG_CMDLINE_OVERRIDE
469 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
470 #else
471 	if (builtin_cmdline[0]) {
472 		strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
473 		strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
474 	}
475 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
476 #endif
477 #else
478 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
479 #endif
480 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
481 
482 	*cmdline_p = command_line;
483 
484 	parse_early_param();
485 
486 	if (usermem) {
487 		pr_info("User-defined physical RAM map:\n");
488 		print_memory_map();
489 	}
490 
491 	bootmem_init();
492 	device_tree_init();
493 	sparse_init();
494 	plat_swiotlb_setup();
495 	paging_init();
496 }
497 
498 static void __init resource_init(void)
499 {
500 	int i;
501 
502 	if (UNCAC_BASE != IO_BASE)
503 		return;
504 
505 	code_resource.start = __pa_symbol(&_text);
506 	code_resource.end = __pa_symbol(&_etext) - 1;
507 	data_resource.start = __pa_symbol(&_etext);
508 	data_resource.end = __pa_symbol(&_edata) - 1;
509 
510 	/*
511 	 * Request address space for all standard RAM.
512 	 */
513 	for (i = 0; i < boot_mem_map.nr_map; i++) {
514 		struct resource *res;
515 		unsigned long start, end;
516 
517 		start = boot_mem_map.map[i].addr;
518 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
519 		if (start >= HIGHMEM_START)
520 			continue;
521 		if (end >= HIGHMEM_START)
522 			end = HIGHMEM_START - 1;
523 
524 		res = alloc_bootmem(sizeof(struct resource));
525 		switch (boot_mem_map.map[i].type) {
526 		case BOOT_MEM_RAM:
527 		case BOOT_MEM_ROM_DATA:
528 			res->name = "System RAM";
529 			break;
530 		case BOOT_MEM_RESERVED:
531 		default:
532 			res->name = "reserved";
533 		}
534 
535 		res->start = start;
536 		res->end = end;
537 
538 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
539 		request_resource(&iomem_resource, res);
540 
541 		/*
542 		 *  We don't know which RAM region contains kernel data,
543 		 *  so we try it repeatedly and let the resource manager
544 		 *  test it.
545 		 */
546 		request_resource(res, &code_resource);
547 		request_resource(res, &data_resource);
548 	}
549 }
550 
551 void __init setup_arch(char **cmdline_p)
552 {
553 	cpu_probe();
554 	prom_init();
555 
556 #ifdef CONFIG_EARLY_PRINTK
557 	setup_early_printk();
558 #endif
559 	cpu_report();
560 	check_bugs_early();
561 
562 #if defined(CONFIG_VT)
563 #if defined(CONFIG_VGA_CONSOLE)
564 	conswitchp = &vga_con;
565 #elif defined(CONFIG_DUMMY_CONSOLE)
566 	conswitchp = &dummy_con;
567 #endif
568 #endif
569 
570 	arch_mem_init(cmdline_p);
571 
572 	resource_init();
573 	plat_smp_setup();
574 }
575 
576 unsigned long kernelsp[NR_CPUS];
577 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
578 
579 #ifdef CONFIG_DEBUG_FS
580 struct dentry *mips_debugfs_dir;
581 static int __init debugfs_mips(void)
582 {
583 	struct dentry *d;
584 
585 	d = debugfs_create_dir("mips", NULL);
586 	if (!d)
587 		return -ENOMEM;
588 	mips_debugfs_dir = d;
589 	return 0;
590 }
591 arch_initcall(debugfs_mips);
592 #endif
593