1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 #include <linux/kexec.h> 26 #include <linux/sizes.h> 27 #include <linux/device.h> 28 #include <linux/dma-contiguous.h> 29 30 #include <asm/addrspace.h> 31 #include <asm/bootinfo.h> 32 #include <asm/bugs.h> 33 #include <asm/cache.h> 34 #include <asm/cdmm.h> 35 #include <asm/cpu.h> 36 #include <asm/sections.h> 37 #include <asm/setup.h> 38 #include <asm/smp-ops.h> 39 #include <asm/prom.h> 40 41 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 42 43 EXPORT_SYMBOL(cpu_data); 44 45 #ifdef CONFIG_VT 46 struct screen_info screen_info; 47 #endif 48 49 /* 50 * Despite it's name this variable is even if we don't have PCI 51 */ 52 unsigned int PCI_DMA_BUS_IS_PHYS; 53 54 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 55 56 /* 57 * Setup information 58 * 59 * These are initialized so they are in the .data section 60 */ 61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 62 63 EXPORT_SYMBOL(mips_machtype); 64 65 struct boot_mem_map boot_mem_map; 66 67 static char __initdata command_line[COMMAND_LINE_SIZE]; 68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 69 70 #ifdef CONFIG_CMDLINE_BOOL 71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 72 #endif 73 74 /* 75 * mips_io_port_base is the begin of the address space to which x86 style 76 * I/O ports are mapped. 77 */ 78 const unsigned long mips_io_port_base = -1; 79 EXPORT_SYMBOL(mips_io_port_base); 80 81 static struct resource code_resource = { .name = "Kernel code", }; 82 static struct resource data_resource = { .name = "Kernel data", }; 83 84 static void *detect_magic __initdata = detect_memory_region; 85 86 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) 87 { 88 int x = boot_mem_map.nr_map; 89 int i; 90 91 /* Sanity check */ 92 if (start + size < start) { 93 pr_warn("Trying to add an invalid memory region, skipped\n"); 94 return; 95 } 96 97 /* 98 * Try to merge with existing entry, if any. 99 */ 100 for (i = 0; i < boot_mem_map.nr_map; i++) { 101 struct boot_mem_map_entry *entry = boot_mem_map.map + i; 102 unsigned long top; 103 104 if (entry->type != type) 105 continue; 106 107 if (start + size < entry->addr) 108 continue; /* no overlap */ 109 110 if (entry->addr + entry->size < start) 111 continue; /* no overlap */ 112 113 top = max(entry->addr + entry->size, start + size); 114 entry->addr = min(entry->addr, start); 115 entry->size = top - entry->addr; 116 117 return; 118 } 119 120 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { 121 pr_err("Ooops! Too many entries in the memory map!\n"); 122 return; 123 } 124 125 boot_mem_map.map[x].addr = start; 126 boot_mem_map.map[x].size = size; 127 boot_mem_map.map[x].type = type; 128 boot_mem_map.nr_map++; 129 } 130 131 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) 132 { 133 void *dm = &detect_magic; 134 phys_addr_t size; 135 136 for (size = sz_min; size < sz_max; size <<= 1) { 137 if (!memcmp(dm, dm + size, sizeof(detect_magic))) 138 break; 139 } 140 141 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", 142 ((unsigned long long) size) / SZ_1M, 143 (unsigned long long) start, 144 ((unsigned long long) sz_min) / SZ_1M, 145 ((unsigned long long) sz_max) / SZ_1M); 146 147 add_memory_region(start, size, BOOT_MEM_RAM); 148 } 149 150 static void __init print_memory_map(void) 151 { 152 int i; 153 const int field = 2 * sizeof(unsigned long); 154 155 for (i = 0; i < boot_mem_map.nr_map; i++) { 156 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 157 field, (unsigned long long) boot_mem_map.map[i].size, 158 field, (unsigned long long) boot_mem_map.map[i].addr); 159 160 switch (boot_mem_map.map[i].type) { 161 case BOOT_MEM_RAM: 162 printk(KERN_CONT "(usable)\n"); 163 break; 164 case BOOT_MEM_INIT_RAM: 165 printk(KERN_CONT "(usable after init)\n"); 166 break; 167 case BOOT_MEM_ROM_DATA: 168 printk(KERN_CONT "(ROM data)\n"); 169 break; 170 case BOOT_MEM_RESERVED: 171 printk(KERN_CONT "(reserved)\n"); 172 break; 173 default: 174 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 175 break; 176 } 177 } 178 } 179 180 /* 181 * Manage initrd 182 */ 183 #ifdef CONFIG_BLK_DEV_INITRD 184 185 static int __init rd_start_early(char *p) 186 { 187 unsigned long start = memparse(p, &p); 188 189 #ifdef CONFIG_64BIT 190 /* Guess if the sign extension was forgotten by bootloader */ 191 if (start < XKPHYS) 192 start = (int)start; 193 #endif 194 initrd_start = start; 195 initrd_end += start; 196 return 0; 197 } 198 early_param("rd_start", rd_start_early); 199 200 static int __init rd_size_early(char *p) 201 { 202 initrd_end += memparse(p, &p); 203 return 0; 204 } 205 early_param("rd_size", rd_size_early); 206 207 /* it returns the next free pfn after initrd */ 208 static unsigned long __init init_initrd(void) 209 { 210 unsigned long end; 211 212 /* 213 * Board specific code or command line parser should have 214 * already set up initrd_start and initrd_end. In these cases 215 * perfom sanity checks and use them if all looks good. 216 */ 217 if (!initrd_start || initrd_end <= initrd_start) 218 goto disable; 219 220 if (initrd_start & ~PAGE_MASK) { 221 pr_err("initrd start must be page aligned\n"); 222 goto disable; 223 } 224 if (initrd_start < PAGE_OFFSET) { 225 pr_err("initrd start < PAGE_OFFSET\n"); 226 goto disable; 227 } 228 229 /* 230 * Sanitize initrd addresses. For example firmware 231 * can't guess if they need to pass them through 232 * 64-bits values if the kernel has been built in pure 233 * 32-bit. We need also to switch from KSEG0 to XKPHYS 234 * addresses now, so the code can now safely use __pa(). 235 */ 236 end = __pa(initrd_end); 237 initrd_end = (unsigned long)__va(end); 238 initrd_start = (unsigned long)__va(__pa(initrd_start)); 239 240 ROOT_DEV = Root_RAM0; 241 return PFN_UP(end); 242 disable: 243 initrd_start = 0; 244 initrd_end = 0; 245 return 0; 246 } 247 248 static void __init finalize_initrd(void) 249 { 250 unsigned long size = initrd_end - initrd_start; 251 252 if (size == 0) { 253 printk(KERN_INFO "Initrd not found or empty"); 254 goto disable; 255 } 256 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 257 printk(KERN_ERR "Initrd extends beyond end of memory"); 258 goto disable; 259 } 260 261 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 262 initrd_below_start_ok = 1; 263 264 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 265 initrd_start, size); 266 return; 267 disable: 268 printk(KERN_CONT " - disabling initrd\n"); 269 initrd_start = 0; 270 initrd_end = 0; 271 } 272 273 #else /* !CONFIG_BLK_DEV_INITRD */ 274 275 static unsigned long __init init_initrd(void) 276 { 277 return 0; 278 } 279 280 #define finalize_initrd() do {} while (0) 281 282 #endif 283 284 /* 285 * Initialize the bootmem allocator. It also setup initrd related data 286 * if needed. 287 */ 288 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA)) 289 290 static void __init bootmem_init(void) 291 { 292 init_initrd(); 293 finalize_initrd(); 294 } 295 296 #else /* !CONFIG_SGI_IP27 */ 297 298 static void __init bootmem_init(void) 299 { 300 unsigned long reserved_end; 301 unsigned long mapstart = ~0UL; 302 unsigned long bootmap_size; 303 int i; 304 305 /* 306 * Sanity check any INITRD first. We don't take it into account 307 * for bootmem setup initially, rely on the end-of-kernel-code 308 * as our memory range starting point. Once bootmem is inited we 309 * will reserve the area used for the initrd. 310 */ 311 init_initrd(); 312 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end)); 313 314 /* 315 * max_low_pfn is not a number of pages. The number of pages 316 * of the system is given by 'max_low_pfn - min_low_pfn'. 317 */ 318 min_low_pfn = ~0UL; 319 max_low_pfn = 0; 320 321 /* 322 * Find the highest page frame number we have available. 323 */ 324 for (i = 0; i < boot_mem_map.nr_map; i++) { 325 unsigned long start, end; 326 327 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 328 continue; 329 330 start = PFN_UP(boot_mem_map.map[i].addr); 331 end = PFN_DOWN(boot_mem_map.map[i].addr 332 + boot_mem_map.map[i].size); 333 334 if (end > max_low_pfn) 335 max_low_pfn = end; 336 if (start < min_low_pfn) 337 min_low_pfn = start; 338 if (end <= reserved_end) 339 continue; 340 if (start >= mapstart) 341 continue; 342 mapstart = max(reserved_end, start); 343 } 344 345 if (min_low_pfn >= max_low_pfn) 346 panic("Incorrect memory mapping !!!"); 347 if (min_low_pfn > ARCH_PFN_OFFSET) { 348 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 349 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 350 min_low_pfn - ARCH_PFN_OFFSET); 351 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 352 pr_info("%lu free pages won't be used\n", 353 ARCH_PFN_OFFSET - min_low_pfn); 354 } 355 min_low_pfn = ARCH_PFN_OFFSET; 356 357 /* 358 * Determine low and high memory ranges 359 */ 360 max_pfn = max_low_pfn; 361 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 362 #ifdef CONFIG_HIGHMEM 363 highstart_pfn = PFN_DOWN(HIGHMEM_START); 364 highend_pfn = max_low_pfn; 365 #endif 366 max_low_pfn = PFN_DOWN(HIGHMEM_START); 367 } 368 369 #ifdef CONFIG_BLK_DEV_INITRD 370 /* 371 * mapstart should be after initrd_end 372 */ 373 if (initrd_end) 374 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end))); 375 #endif 376 377 /* 378 * Initialize the boot-time allocator with low memory only. 379 */ 380 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 381 min_low_pfn, max_low_pfn); 382 383 384 for (i = 0; i < boot_mem_map.nr_map; i++) { 385 unsigned long start, end; 386 387 start = PFN_UP(boot_mem_map.map[i].addr); 388 end = PFN_DOWN(boot_mem_map.map[i].addr 389 + boot_mem_map.map[i].size); 390 391 if (start <= min_low_pfn) 392 start = min_low_pfn; 393 if (start >= end) 394 continue; 395 396 #ifndef CONFIG_HIGHMEM 397 if (end > max_low_pfn) 398 end = max_low_pfn; 399 400 /* 401 * ... finally, is the area going away? 402 */ 403 if (end <= start) 404 continue; 405 #endif 406 407 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 408 } 409 410 /* 411 * Register fully available low RAM pages with the bootmem allocator. 412 */ 413 for (i = 0; i < boot_mem_map.nr_map; i++) { 414 unsigned long start, end, size; 415 416 start = PFN_UP(boot_mem_map.map[i].addr); 417 end = PFN_DOWN(boot_mem_map.map[i].addr 418 + boot_mem_map.map[i].size); 419 420 /* 421 * Reserve usable memory. 422 */ 423 switch (boot_mem_map.map[i].type) { 424 case BOOT_MEM_RAM: 425 break; 426 case BOOT_MEM_INIT_RAM: 427 memory_present(0, start, end); 428 continue; 429 default: 430 /* Not usable memory */ 431 continue; 432 } 433 434 /* 435 * We are rounding up the start address of usable memory 436 * and at the end of the usable range downwards. 437 */ 438 if (start >= max_low_pfn) 439 continue; 440 if (start < reserved_end) 441 start = reserved_end; 442 if (end > max_low_pfn) 443 end = max_low_pfn; 444 445 /* 446 * ... finally, is the area going away? 447 */ 448 if (end <= start) 449 continue; 450 size = end - start; 451 452 /* Register lowmem ranges */ 453 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 454 memory_present(0, start, end); 455 } 456 457 /* 458 * Reserve the bootmap memory. 459 */ 460 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 461 462 /* 463 * Reserve initrd memory if needed. 464 */ 465 finalize_initrd(); 466 } 467 468 #endif /* CONFIG_SGI_IP27 */ 469 470 /* 471 * arch_mem_init - initialize memory management subsystem 472 * 473 * o plat_mem_setup() detects the memory configuration and will record detected 474 * memory areas using add_memory_region. 475 * 476 * At this stage the memory configuration of the system is known to the 477 * kernel but generic memory management system is still entirely uninitialized. 478 * 479 * o bootmem_init() 480 * o sparse_init() 481 * o paging_init() 482 * o dma_continguous_reserve() 483 * 484 * At this stage the bootmem allocator is ready to use. 485 * 486 * NOTE: historically plat_mem_setup did the entire platform initialization. 487 * This was rather impractical because it meant plat_mem_setup had to 488 * get away without any kind of memory allocator. To keep old code from 489 * breaking plat_setup was just renamed to plat_mem_setup and a second platform 490 * initialization hook for anything else was introduced. 491 */ 492 493 static int usermem __initdata; 494 495 static int __init early_parse_mem(char *p) 496 { 497 phys_addr_t start, size; 498 499 /* 500 * If a user specifies memory size, we 501 * blow away any automatically generated 502 * size. 503 */ 504 if (usermem == 0) { 505 boot_mem_map.nr_map = 0; 506 usermem = 1; 507 } 508 start = 0; 509 size = memparse(p, &p); 510 if (*p == '@') 511 start = memparse(p + 1, &p); 512 513 add_memory_region(start, size, BOOT_MEM_RAM); 514 return 0; 515 } 516 early_param("mem", early_parse_mem); 517 518 #ifdef CONFIG_PROC_VMCORE 519 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; 520 static int __init early_parse_elfcorehdr(char *p) 521 { 522 int i; 523 524 setup_elfcorehdr = memparse(p, &p); 525 526 for (i = 0; i < boot_mem_map.nr_map; i++) { 527 unsigned long start = boot_mem_map.map[i].addr; 528 unsigned long end = (boot_mem_map.map[i].addr + 529 boot_mem_map.map[i].size); 530 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { 531 /* 532 * Reserve from the elf core header to the end of 533 * the memory segment, that should all be kdump 534 * reserved memory. 535 */ 536 setup_elfcorehdr_size = end - setup_elfcorehdr; 537 break; 538 } 539 } 540 /* 541 * If we don't find it in the memory map, then we shouldn't 542 * have to worry about it, as the new kernel won't use it. 543 */ 544 return 0; 545 } 546 early_param("elfcorehdr", early_parse_elfcorehdr); 547 #endif 548 549 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type) 550 { 551 phys_addr_t size; 552 int i; 553 554 size = end - mem; 555 if (!size) 556 return; 557 558 /* Make sure it is in the boot_mem_map */ 559 for (i = 0; i < boot_mem_map.nr_map; i++) { 560 if (mem >= boot_mem_map.map[i].addr && 561 mem < (boot_mem_map.map[i].addr + 562 boot_mem_map.map[i].size)) 563 return; 564 } 565 add_memory_region(mem, size, type); 566 } 567 568 #ifdef CONFIG_KEXEC 569 static inline unsigned long long get_total_mem(void) 570 { 571 unsigned long long total; 572 573 total = max_pfn - min_low_pfn; 574 return total << PAGE_SHIFT; 575 } 576 577 static void __init mips_parse_crashkernel(void) 578 { 579 unsigned long long total_mem; 580 unsigned long long crash_size, crash_base; 581 int ret; 582 583 total_mem = get_total_mem(); 584 ret = parse_crashkernel(boot_command_line, total_mem, 585 &crash_size, &crash_base); 586 if (ret != 0 || crash_size <= 0) 587 return; 588 589 crashk_res.start = crash_base; 590 crashk_res.end = crash_base + crash_size - 1; 591 } 592 593 static void __init request_crashkernel(struct resource *res) 594 { 595 int ret; 596 597 ret = request_resource(res, &crashk_res); 598 if (!ret) 599 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 600 (unsigned long)((crashk_res.end - 601 crashk_res.start + 1) >> 20), 602 (unsigned long)(crashk_res.start >> 20)); 603 } 604 #else /* !defined(CONFIG_KEXEC) */ 605 static void __init mips_parse_crashkernel(void) 606 { 607 } 608 609 static void __init request_crashkernel(struct resource *res) 610 { 611 } 612 #endif /* !defined(CONFIG_KEXEC) */ 613 614 static void __init arch_mem_init(char **cmdline_p) 615 { 616 struct memblock_region *reg; 617 extern void plat_mem_setup(void); 618 619 /* call board setup routine */ 620 plat_mem_setup(); 621 622 /* 623 * Make sure all kernel memory is in the maps. The "UP" and 624 * "DOWN" are opposite for initdata since if it crosses over 625 * into another memory section you don't want that to be 626 * freed when the initdata is freed. 627 */ 628 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, 629 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, 630 BOOT_MEM_RAM); 631 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, 632 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, 633 BOOT_MEM_INIT_RAM); 634 635 pr_info("Determined physical RAM map:\n"); 636 print_memory_map(); 637 638 #ifdef CONFIG_CMDLINE_BOOL 639 #ifdef CONFIG_CMDLINE_OVERRIDE 640 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 641 #else 642 if (builtin_cmdline[0]) { 643 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE); 644 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE); 645 } 646 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 647 #endif 648 #else 649 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 650 #endif 651 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 652 653 *cmdline_p = command_line; 654 655 parse_early_param(); 656 657 if (usermem) { 658 pr_info("User-defined physical RAM map:\n"); 659 print_memory_map(); 660 } 661 662 bootmem_init(); 663 #ifdef CONFIG_PROC_VMCORE 664 if (setup_elfcorehdr && setup_elfcorehdr_size) { 665 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", 666 setup_elfcorehdr, setup_elfcorehdr_size); 667 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, 668 BOOTMEM_DEFAULT); 669 } 670 #endif 671 672 mips_parse_crashkernel(); 673 #ifdef CONFIG_KEXEC 674 if (crashk_res.start != crashk_res.end) 675 reserve_bootmem(crashk_res.start, 676 crashk_res.end - crashk_res.start + 1, 677 BOOTMEM_DEFAULT); 678 #endif 679 device_tree_init(); 680 sparse_init(); 681 plat_swiotlb_setup(); 682 paging_init(); 683 684 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); 685 /* Tell bootmem about cma reserved memblock section */ 686 for_each_memblock(reserved, reg) 687 if (reg->size != 0) 688 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); 689 } 690 691 static void __init resource_init(void) 692 { 693 int i; 694 695 if (UNCAC_BASE != IO_BASE) 696 return; 697 698 code_resource.start = __pa_symbol(&_text); 699 code_resource.end = __pa_symbol(&_etext) - 1; 700 data_resource.start = __pa_symbol(&_etext); 701 data_resource.end = __pa_symbol(&_edata) - 1; 702 703 for (i = 0; i < boot_mem_map.nr_map; i++) { 704 struct resource *res; 705 unsigned long start, end; 706 707 start = boot_mem_map.map[i].addr; 708 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 709 if (start >= HIGHMEM_START) 710 continue; 711 if (end >= HIGHMEM_START) 712 end = HIGHMEM_START - 1; 713 714 res = alloc_bootmem(sizeof(struct resource)); 715 switch (boot_mem_map.map[i].type) { 716 case BOOT_MEM_RAM: 717 case BOOT_MEM_INIT_RAM: 718 case BOOT_MEM_ROM_DATA: 719 res->name = "System RAM"; 720 break; 721 case BOOT_MEM_RESERVED: 722 default: 723 res->name = "reserved"; 724 } 725 726 res->start = start; 727 res->end = end; 728 729 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 730 request_resource(&iomem_resource, res); 731 732 /* 733 * We don't know which RAM region contains kernel data, 734 * so we try it repeatedly and let the resource manager 735 * test it. 736 */ 737 request_resource(res, &code_resource); 738 request_resource(res, &data_resource); 739 request_crashkernel(res); 740 } 741 } 742 743 #ifdef CONFIG_SMP 744 static void __init prefill_possible_map(void) 745 { 746 int i, possible = num_possible_cpus(); 747 748 if (possible > nr_cpu_ids) 749 possible = nr_cpu_ids; 750 751 for (i = 0; i < possible; i++) 752 set_cpu_possible(i, true); 753 for (; i < NR_CPUS; i++) 754 set_cpu_possible(i, false); 755 756 nr_cpu_ids = possible; 757 } 758 #else 759 static inline void prefill_possible_map(void) {} 760 #endif 761 762 void __init setup_arch(char **cmdline_p) 763 { 764 cpu_probe(); 765 prom_init(); 766 767 setup_early_fdc_console(); 768 #ifdef CONFIG_EARLY_PRINTK 769 setup_early_printk(); 770 #endif 771 cpu_report(); 772 check_bugs_early(); 773 774 #if defined(CONFIG_VT) 775 #if defined(CONFIG_VGA_CONSOLE) 776 conswitchp = &vga_con; 777 #elif defined(CONFIG_DUMMY_CONSOLE) 778 conswitchp = &dummy_con; 779 #endif 780 #endif 781 782 arch_mem_init(cmdline_p); 783 784 resource_init(); 785 plat_smp_setup(); 786 prefill_possible_map(); 787 788 cpu_cache_init(); 789 } 790 791 unsigned long kernelsp[NR_CPUS]; 792 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 793 794 #ifdef CONFIG_DEBUG_FS 795 struct dentry *mips_debugfs_dir; 796 static int __init debugfs_mips(void) 797 { 798 struct dentry *d; 799 800 d = debugfs_create_dir("mips", NULL); 801 if (!d) 802 return -ENOMEM; 803 mips_debugfs_dir = d; 804 return 0; 805 } 806 arch_initcall(debugfs_mips); 807 #endif 808