xref: /linux/arch/mips/kernel/setup.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000 2001, 2002  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 
24 #include <asm/addrspace.h>
25 #include <asm/bootinfo.h>
26 #include <asm/cache.h>
27 #include <asm/cpu.h>
28 #include <asm/sections.h>
29 #include <asm/setup.h>
30 #include <asm/system.h>
31 
32 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
33 
34 EXPORT_SYMBOL(cpu_data);
35 
36 #ifdef CONFIG_VT
37 struct screen_info screen_info;
38 #endif
39 
40 /*
41  * Despite it's name this variable is even if we don't have PCI
42  */
43 unsigned int PCI_DMA_BUS_IS_PHYS;
44 
45 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
46 
47 /*
48  * Setup information
49  *
50  * These are initialized so they are in the .data section
51  */
52 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
53 unsigned long mips_machgroup __read_mostly = MACH_GROUP_UNKNOWN;
54 
55 EXPORT_SYMBOL(mips_machtype);
56 EXPORT_SYMBOL(mips_machgroup);
57 
58 struct boot_mem_map boot_mem_map;
59 
60 static char command_line[CL_SIZE];
61        char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
62 
63 /*
64  * mips_io_port_base is the begin of the address space to which x86 style
65  * I/O ports are mapped.
66  */
67 const unsigned long mips_io_port_base __read_mostly = -1;
68 EXPORT_SYMBOL(mips_io_port_base);
69 
70 /*
71  * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
72  * for the processor.
73  */
74 unsigned long isa_slot_offset;
75 EXPORT_SYMBOL(isa_slot_offset);
76 
77 static struct resource code_resource = { .name = "Kernel code", };
78 static struct resource data_resource = { .name = "Kernel data", };
79 
80 void __init add_memory_region(phys_t start, phys_t size, long type)
81 {
82 	int x = boot_mem_map.nr_map;
83 	struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
84 
85 	/* Sanity check */
86 	if (start + size < start) {
87 		printk("Trying to add an invalid memory region, skipped\n");
88 		return;
89 	}
90 
91 	/*
92 	 * Try to merge with previous entry if any.  This is far less than
93 	 * perfect but is sufficient for most real world cases.
94 	 */
95 	if (x && prev->addr + prev->size == start && prev->type == type) {
96 		prev->size += size;
97 		return;
98 	}
99 
100 	if (x == BOOT_MEM_MAP_MAX) {
101 		printk("Ooops! Too many entries in the memory map!\n");
102 		return;
103 	}
104 
105 	boot_mem_map.map[x].addr = start;
106 	boot_mem_map.map[x].size = size;
107 	boot_mem_map.map[x].type = type;
108 	boot_mem_map.nr_map++;
109 }
110 
111 static void __init print_memory_map(void)
112 {
113 	int i;
114 	const int field = 2 * sizeof(unsigned long);
115 
116 	for (i = 0; i < boot_mem_map.nr_map; i++) {
117 		printk(" memory: %0*Lx @ %0*Lx ",
118 		       field, (unsigned long long) boot_mem_map.map[i].size,
119 		       field, (unsigned long long) boot_mem_map.map[i].addr);
120 
121 		switch (boot_mem_map.map[i].type) {
122 		case BOOT_MEM_RAM:
123 			printk("(usable)\n");
124 			break;
125 		case BOOT_MEM_ROM_DATA:
126 			printk("(ROM data)\n");
127 			break;
128 		case BOOT_MEM_RESERVED:
129 			printk("(reserved)\n");
130 			break;
131 		default:
132 			printk("type %lu\n", boot_mem_map.map[i].type);
133 			break;
134 		}
135 	}
136 }
137 
138 /*
139  * Manage initrd
140  */
141 #ifdef CONFIG_BLK_DEV_INITRD
142 
143 static int __init rd_start_early(char *p)
144 {
145 	unsigned long start = memparse(p, &p);
146 
147 #ifdef CONFIG_64BIT
148 	/* Guess if the sign extension was forgotten by bootloader */
149 	if (start < XKPHYS)
150 		start = (int)start;
151 #endif
152 	initrd_start = start;
153 	initrd_end += start;
154 	return 0;
155 }
156 early_param("rd_start", rd_start_early);
157 
158 static int __init rd_size_early(char *p)
159 {
160 	initrd_end += memparse(p, &p);
161 	return 0;
162 }
163 early_param("rd_size", rd_size_early);
164 
165 /* it returns the next free pfn after initrd */
166 static unsigned long __init init_initrd(void)
167 {
168 	unsigned long end;
169 	u32 *initrd_header;
170 
171 	/*
172 	 * Board specific code or command line parser should have
173 	 * already set up initrd_start and initrd_end. In these cases
174 	 * perfom sanity checks and use them if all looks good.
175 	 */
176 	if (initrd_start && initrd_end > initrd_start)
177 		goto sanitize;
178 
179 	/*
180 	 * See if initrd has been added to the kernel image by
181 	 * arch/mips/boot/addinitrd.c. In that case a header is
182 	 * prepended to initrd and is made up by 8 bytes. The fisrt
183 	 * word is a magic number and the second one is the size of
184 	 * initrd.  Initrd start must be page aligned in any cases.
185 	 */
186 	initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
187 	if (initrd_header[0] != 0x494E5244)
188 		goto disable;
189 	initrd_start = (unsigned long)(initrd_header + 2);
190 	initrd_end = initrd_start + initrd_header[1];
191 
192 sanitize:
193 	if (initrd_start & ~PAGE_MASK) {
194 		printk(KERN_ERR "initrd start must be page aligned\n");
195 		goto disable;
196 	}
197 	if (initrd_start < PAGE_OFFSET) {
198 		printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
199 		goto disable;
200 	}
201 
202 	/*
203 	 * Sanitize initrd addresses. For example firmware
204 	 * can't guess if they need to pass them through
205 	 * 64-bits values if the kernel has been built in pure
206 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
207 	 * addresses now, so the code can now safely use __pa().
208 	 */
209 	end = __pa(initrd_end);
210 	initrd_end = (unsigned long)__va(end);
211 	initrd_start = (unsigned long)__va(__pa(initrd_start));
212 
213 	ROOT_DEV = Root_RAM0;
214 	return PFN_UP(end);
215 disable:
216 	initrd_start = 0;
217 	initrd_end = 0;
218 	return 0;
219 }
220 
221 static void __init finalize_initrd(void)
222 {
223 	unsigned long size = initrd_end - initrd_start;
224 
225 	if (size == 0) {
226 		printk(KERN_INFO "Initrd not found or empty");
227 		goto disable;
228 	}
229 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
230 		printk("Initrd extends beyond end of memory");
231 		goto disable;
232 	}
233 
234 	reserve_bootmem(__pa(initrd_start), size);
235 	initrd_below_start_ok = 1;
236 
237 	printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
238 	       initrd_start, size);
239 	return;
240 disable:
241 	printk(" - disabling initrd\n");
242 	initrd_start = 0;
243 	initrd_end = 0;
244 }
245 
246 #else  /* !CONFIG_BLK_DEV_INITRD */
247 
248 static unsigned long __init init_initrd(void)
249 {
250 	return 0;
251 }
252 
253 #define finalize_initrd()	do {} while (0)
254 
255 #endif
256 
257 /*
258  * Initialize the bootmem allocator. It also setup initrd related data
259  * if needed.
260  */
261 #ifdef CONFIG_SGI_IP27
262 
263 static void __init bootmem_init(void)
264 {
265 	init_initrd();
266 	finalize_initrd();
267 }
268 
269 #else  /* !CONFIG_SGI_IP27 */
270 
271 static void __init bootmem_init(void)
272 {
273 	unsigned long reserved_end;
274 	unsigned long highest = 0;
275 	unsigned long mapstart = -1UL;
276 	unsigned long bootmap_size;
277 	int i;
278 
279 	/*
280 	 * Init any data related to initrd. It's a nop if INITRD is
281 	 * not selected. Once that done we can determine the low bound
282 	 * of usable memory.
283 	 */
284 	reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
285 
286 	/*
287 	 * Find the highest page frame number we have available.
288 	 */
289 	for (i = 0; i < boot_mem_map.nr_map; i++) {
290 		unsigned long start, end;
291 
292 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
293 			continue;
294 
295 		start = PFN_UP(boot_mem_map.map[i].addr);
296 		end = PFN_DOWN(boot_mem_map.map[i].addr
297 				+ boot_mem_map.map[i].size);
298 
299 		if (end > highest)
300 			highest = end;
301 		if (end <= reserved_end)
302 			continue;
303 		if (start >= mapstart)
304 			continue;
305 		mapstart = max(reserved_end, start);
306 	}
307 
308 	/*
309 	 * Determine low and high memory ranges
310 	 */
311 	if (highest > PFN_DOWN(HIGHMEM_START)) {
312 #ifdef CONFIG_HIGHMEM
313 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
314 		highend_pfn = highest;
315 #endif
316 		highest = PFN_DOWN(HIGHMEM_START);
317 	}
318 
319 	/*
320 	 * Initialize the boot-time allocator with low memory only.
321 	 */
322 	bootmap_size = init_bootmem(mapstart, highest);
323 
324 	/*
325 	 * Register fully available low RAM pages with the bootmem allocator.
326 	 */
327 	for (i = 0; i < boot_mem_map.nr_map; i++) {
328 		unsigned long start, end, size;
329 
330 		/*
331 		 * Reserve usable memory.
332 		 */
333 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
334 			continue;
335 
336 		start = PFN_UP(boot_mem_map.map[i].addr);
337 		end   = PFN_DOWN(boot_mem_map.map[i].addr
338 				    + boot_mem_map.map[i].size);
339 		/*
340 		 * We are rounding up the start address of usable memory
341 		 * and at the end of the usable range downwards.
342 		 */
343 		if (start >= max_low_pfn)
344 			continue;
345 		if (start < reserved_end)
346 			start = reserved_end;
347 		if (end > max_low_pfn)
348 			end = max_low_pfn;
349 
350 		/*
351 		 * ... finally, is the area going away?
352 		 */
353 		if (end <= start)
354 			continue;
355 		size = end - start;
356 
357 		/* Register lowmem ranges */
358 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
359 		memory_present(0, start, end);
360 	}
361 
362 	/*
363 	 * Reserve the bootmap memory.
364 	 */
365 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
366 
367 	/*
368 	 * Reserve initrd memory if needed.
369 	 */
370 	finalize_initrd();
371 }
372 
373 #endif	/* CONFIG_SGI_IP27 */
374 
375 /*
376  * arch_mem_init - initialize memory managment subsystem
377  *
378  *  o plat_mem_setup() detects the memory configuration and will record detected
379  *    memory areas using add_memory_region.
380  *
381  * At this stage the memory configuration of the system is known to the
382  * kernel but generic memory managment system is still entirely uninitialized.
383  *
384  *  o bootmem_init()
385  *  o sparse_init()
386  *  o paging_init()
387  *
388  * At this stage the bootmem allocator is ready to use.
389  *
390  * NOTE: historically plat_mem_setup did the entire platform initialization.
391  *       This was rather impractical because it meant plat_mem_setup had to
392  * get away without any kind of memory allocator.  To keep old code from
393  * breaking plat_setup was just renamed to plat_setup and a second platform
394  * initialization hook for anything else was introduced.
395  */
396 
397 static int usermem __initdata = 0;
398 
399 static int __init early_parse_mem(char *p)
400 {
401 	unsigned long start, size;
402 
403 	/*
404 	 * If a user specifies memory size, we
405 	 * blow away any automatically generated
406 	 * size.
407 	 */
408 	if (usermem == 0) {
409 		boot_mem_map.nr_map = 0;
410 		usermem = 1;
411  	}
412 	start = 0;
413 	size = memparse(p, &p);
414 	if (*p == '@')
415 		start = memparse(p + 1, &p);
416 
417 	add_memory_region(start, size, BOOT_MEM_RAM);
418 	return 0;
419 }
420 early_param("mem", early_parse_mem);
421 
422 static void __init arch_mem_init(char **cmdline_p)
423 {
424 	extern void plat_mem_setup(void);
425 
426 	/* call board setup routine */
427 	plat_mem_setup();
428 
429 	printk("Determined physical RAM map:\n");
430 	print_memory_map();
431 
432 	strlcpy(command_line, arcs_cmdline, sizeof(command_line));
433 	strlcpy(saved_command_line, command_line, COMMAND_LINE_SIZE);
434 
435 	*cmdline_p = command_line;
436 
437 	parse_early_param();
438 
439 	if (usermem) {
440 		printk("User-defined physical RAM map:\n");
441 		print_memory_map();
442 	}
443 
444 	bootmem_init();
445 	sparse_init();
446 	paging_init();
447 }
448 
449 static void __init resource_init(void)
450 {
451 	int i;
452 
453 	if (UNCAC_BASE != IO_BASE)
454 		return;
455 
456 	code_resource.start = __pa_symbol(&_text);
457 	code_resource.end = __pa_symbol(&_etext) - 1;
458 	data_resource.start = __pa_symbol(&_etext);
459 	data_resource.end = __pa_symbol(&_edata) - 1;
460 
461 	/*
462 	 * Request address space for all standard RAM.
463 	 */
464 	for (i = 0; i < boot_mem_map.nr_map; i++) {
465 		struct resource *res;
466 		unsigned long start, end;
467 
468 		start = boot_mem_map.map[i].addr;
469 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
470 		if (start >= HIGHMEM_START)
471 			continue;
472 		if (end >= HIGHMEM_START)
473 			end = HIGHMEM_START - 1;
474 
475 		res = alloc_bootmem(sizeof(struct resource));
476 		switch (boot_mem_map.map[i].type) {
477 		case BOOT_MEM_RAM:
478 		case BOOT_MEM_ROM_DATA:
479 			res->name = "System RAM";
480 			break;
481 		case BOOT_MEM_RESERVED:
482 		default:
483 			res->name = "reserved";
484 		}
485 
486 		res->start = start;
487 		res->end = end;
488 
489 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
490 		request_resource(&iomem_resource, res);
491 
492 		/*
493 		 *  We don't know which RAM region contains kernel data,
494 		 *  so we try it repeatedly and let the resource manager
495 		 *  test it.
496 		 */
497 		request_resource(res, &code_resource);
498 		request_resource(res, &data_resource);
499 	}
500 }
501 
502 void __init setup_arch(char **cmdline_p)
503 {
504 	cpu_probe();
505 	prom_init();
506 	cpu_report();
507 
508 #if defined(CONFIG_VT)
509 #if defined(CONFIG_VGA_CONSOLE)
510         conswitchp = &vga_con;
511 #elif defined(CONFIG_DUMMY_CONSOLE)
512         conswitchp = &dummy_con;
513 #endif
514 #endif
515 
516 	arch_mem_init(cmdline_p);
517 
518 	resource_init();
519 #ifdef CONFIG_SMP
520 	plat_smp_setup();
521 #endif
522 }
523 
524 int __init fpu_disable(char *s)
525 {
526 	int i;
527 
528 	for (i = 0; i < NR_CPUS; i++)
529 		cpu_data[i].options &= ~MIPS_CPU_FPU;
530 
531 	return 1;
532 }
533 
534 __setup("nofpu", fpu_disable);
535 
536 int __init dsp_disable(char *s)
537 {
538 	cpu_data[0].ases &= ~MIPS_ASE_DSP;
539 
540 	return 1;
541 }
542 
543 __setup("nodsp", dsp_disable);
544