xref: /linux/arch/mips/kernel/setup.c (revision 5d2d4a9f603a47403395408f64b1261ca61f6d50)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/cpu.h>
15 #include <linux/delay.h>
16 #include <linux/ioport.h>
17 #include <linux/export.h>
18 #include <linux/memblock.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31 #include <linux/dmi.h>
32 #include <linux/crash_dump.h>
33 
34 #include <asm/addrspace.h>
35 #include <asm/bootinfo.h>
36 #include <asm/bugs.h>
37 #include <asm/cache.h>
38 #include <asm/cdmm.h>
39 #include <asm/cpu.h>
40 #include <asm/debug.h>
41 #include <asm/mmzone.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <asm/smp-ops.h>
45 #include <asm/prom.h>
46 #include <asm/fw/fw.h>
47 
48 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
49 char __section(".appended_dtb") __appended_dtb[0x100000];
50 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
51 
52 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
53 
54 EXPORT_SYMBOL(cpu_data);
55 
56 /*
57  * Setup information
58  *
59  * These are initialized so they are in the .data section
60  */
61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
62 
63 EXPORT_SYMBOL(mips_machtype);
64 
65 static char __initdata command_line[COMMAND_LINE_SIZE];
66 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
67 
68 #ifdef CONFIG_CMDLINE_BOOL
69 static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE;
70 #else
71 static const char builtin_cmdline[] __initconst = "";
72 #endif
73 
74 /*
75  * mips_io_port_base is the begin of the address space to which x86 style
76  * I/O ports are mapped.
77  */
78 unsigned long mips_io_port_base = -1;
79 EXPORT_SYMBOL(mips_io_port_base);
80 
81 static struct resource code_resource = { .name = "Kernel code", };
82 static struct resource data_resource = { .name = "Kernel data", };
83 static struct resource bss_resource = { .name = "Kernel bss", };
84 
85 unsigned long __kaslr_offset __ro_after_init;
86 EXPORT_SYMBOL(__kaslr_offset);
87 
88 static void *detect_magic __initdata = detect_memory_region;
89 
90 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
91 unsigned long ARCH_PFN_OFFSET;
92 EXPORT_SYMBOL(ARCH_PFN_OFFSET);
93 #endif
94 
95 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
96 {
97 	void *dm = &detect_magic;
98 	phys_addr_t size;
99 
100 	for (size = sz_min; size < sz_max; size <<= 1) {
101 		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
102 			break;
103 	}
104 
105 	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
106 		((unsigned long long) size) / SZ_1M,
107 		(unsigned long long) start,
108 		((unsigned long long) sz_min) / SZ_1M,
109 		((unsigned long long) sz_max) / SZ_1M);
110 
111 	memblock_add(start, size);
112 }
113 
114 /*
115  * Manage initrd
116  */
117 #ifdef CONFIG_BLK_DEV_INITRD
118 
119 static int __init rd_start_early(char *p)
120 {
121 	unsigned long start = memparse(p, &p);
122 
123 #ifdef CONFIG_64BIT
124 	/* Guess if the sign extension was forgotten by bootloader */
125 	if (start < XKPHYS)
126 		start = (int)start;
127 #endif
128 	initrd_start = start;
129 	initrd_end += start;
130 	return 0;
131 }
132 early_param("rd_start", rd_start_early);
133 
134 static int __init rd_size_early(char *p)
135 {
136 	initrd_end += memparse(p, &p);
137 	return 0;
138 }
139 early_param("rd_size", rd_size_early);
140 
141 /* it returns the next free pfn after initrd */
142 static unsigned long __init init_initrd(void)
143 {
144 	unsigned long end;
145 
146 	/*
147 	 * Board specific code or command line parser should have
148 	 * already set up initrd_start and initrd_end. In these cases
149 	 * perfom sanity checks and use them if all looks good.
150 	 */
151 	if (!initrd_start || initrd_end <= initrd_start)
152 		goto disable;
153 
154 	if (initrd_start & ~PAGE_MASK) {
155 		pr_err("initrd start must be page aligned\n");
156 		goto disable;
157 	}
158 
159 	/*
160 	 * Sanitize initrd addresses. For example firmware
161 	 * can't guess if they need to pass them through
162 	 * 64-bits values if the kernel has been built in pure
163 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
164 	 * addresses now, so the code can now safely use __pa().
165 	 */
166 	end = __pa(initrd_end);
167 	initrd_end = (unsigned long)__va(end);
168 	initrd_start = (unsigned long)__va(__pa(initrd_start));
169 
170 	if (initrd_start < PAGE_OFFSET) {
171 		pr_err("initrd start < PAGE_OFFSET\n");
172 		goto disable;
173 	}
174 
175 	ROOT_DEV = Root_RAM0;
176 	return PFN_UP(end);
177 disable:
178 	initrd_start = 0;
179 	initrd_end = 0;
180 	return 0;
181 }
182 
183 /* In some conditions (e.g. big endian bootloader with a little endian
184    kernel), the initrd might appear byte swapped.  Try to detect this and
185    byte swap it if needed.  */
186 static void __init maybe_bswap_initrd(void)
187 {
188 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
189 	u64 buf;
190 
191 	/* Check for CPIO signature */
192 	if (!memcmp((void *)initrd_start, "070701", 6))
193 		return;
194 
195 	/* Check for compressed initrd */
196 	if (decompress_method((unsigned char *)initrd_start, 8, NULL))
197 		return;
198 
199 	/* Try again with a byte swapped header */
200 	buf = swab64p((u64 *)initrd_start);
201 	if (!memcmp(&buf, "070701", 6) ||
202 	    decompress_method((unsigned char *)(&buf), 8, NULL)) {
203 		unsigned long i;
204 
205 		pr_info("Byteswapped initrd detected\n");
206 		for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
207 			swab64s((u64 *)i);
208 	}
209 #endif
210 }
211 
212 static void __init finalize_initrd(void)
213 {
214 	unsigned long size = initrd_end - initrd_start;
215 
216 	if (size == 0) {
217 		printk(KERN_INFO "Initrd not found or empty");
218 		goto disable;
219 	}
220 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
221 		printk(KERN_ERR "Initrd extends beyond end of memory");
222 		goto disable;
223 	}
224 
225 	maybe_bswap_initrd();
226 
227 	memblock_reserve(__pa(initrd_start), size);
228 	initrd_below_start_ok = 1;
229 
230 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
231 		initrd_start, size);
232 	return;
233 disable:
234 	printk(KERN_CONT " - disabling initrd\n");
235 	initrd_start = 0;
236 	initrd_end = 0;
237 }
238 
239 #else  /* !CONFIG_BLK_DEV_INITRD */
240 
241 static unsigned long __init init_initrd(void)
242 {
243 	return 0;
244 }
245 
246 #define finalize_initrd()	do {} while (0)
247 
248 #endif
249 
250 /*
251  * Initialize the bootmem allocator. It also setup initrd related data
252  * if needed.
253  */
254 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA))
255 
256 static void __init bootmem_init(void)
257 {
258 	init_initrd();
259 	finalize_initrd();
260 }
261 
262 #else  /* !CONFIG_SGI_IP27 */
263 
264 static void __init bootmem_init(void)
265 {
266 	phys_addr_t ramstart, ramend;
267 	unsigned long start, end;
268 	int i;
269 
270 	ramstart = memblock_start_of_DRAM();
271 	ramend = memblock_end_of_DRAM();
272 
273 	/*
274 	 * Sanity check any INITRD first. We don't take it into account
275 	 * for bootmem setup initially, rely on the end-of-kernel-code
276 	 * as our memory range starting point. Once bootmem is inited we
277 	 * will reserve the area used for the initrd.
278 	 */
279 	init_initrd();
280 
281 	/* Reserve memory occupied by kernel. */
282 	memblock_reserve(__pa_symbol(&_text),
283 			__pa_symbol(&_end) - __pa_symbol(&_text));
284 
285 	/* max_low_pfn is not a number of pages but the end pfn of low mem */
286 
287 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
288 	ARCH_PFN_OFFSET = PFN_UP(ramstart);
289 #else
290 	/*
291 	 * Reserve any memory between the start of RAM and PHYS_OFFSET
292 	 */
293 	if (ramstart > PHYS_OFFSET)
294 		memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET);
295 
296 	if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) {
297 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
298 			(unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)),
299 			(unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET));
300 	}
301 #endif
302 
303 	min_low_pfn = ARCH_PFN_OFFSET;
304 	max_pfn = PFN_DOWN(ramend);
305 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
306 		/*
307 		 * Skip highmem here so we get an accurate max_low_pfn if low
308 		 * memory stops short of high memory.
309 		 * If the region overlaps HIGHMEM_START, end is clipped so
310 		 * max_pfn excludes the highmem portion.
311 		 */
312 		if (start >= PFN_DOWN(HIGHMEM_START))
313 			continue;
314 		if (end > PFN_DOWN(HIGHMEM_START))
315 			end = PFN_DOWN(HIGHMEM_START);
316 		if (end > max_low_pfn)
317 			max_low_pfn = end;
318 	}
319 
320 	if (min_low_pfn >= max_low_pfn)
321 		panic("Incorrect memory mapping !!!");
322 
323 	if (max_pfn > PFN_DOWN(HIGHMEM_START)) {
324 #ifdef CONFIG_HIGHMEM
325 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
326 		highend_pfn = max_pfn;
327 #else
328 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
329 		max_pfn = max_low_pfn;
330 #endif
331 	}
332 
333 	/*
334 	 * Reserve initrd memory if needed.
335 	 */
336 	finalize_initrd();
337 }
338 
339 #endif	/* CONFIG_SGI_IP27 */
340 
341 static int usermem __initdata;
342 
343 static int __init early_parse_mem(char *p)
344 {
345 	phys_addr_t start, size;
346 
347 	if (!p) {
348 		pr_err("mem parameter is empty, do nothing\n");
349 		return -EINVAL;
350 	}
351 
352 	/*
353 	 * If a user specifies memory size, we
354 	 * blow away any automatically generated
355 	 * size.
356 	 */
357 	if (usermem == 0) {
358 		usermem = 1;
359 		memblock_remove(memblock_start_of_DRAM(),
360 			memblock_end_of_DRAM() - memblock_start_of_DRAM());
361 	}
362 	start = 0;
363 	size = memparse(p, &p);
364 	if (*p == '@')
365 		start = memparse(p + 1, &p);
366 
367 	if (IS_ENABLED(CONFIG_NUMA))
368 		memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE);
369 	else
370 		memblock_add(start, size);
371 
372 	return 0;
373 }
374 early_param("mem", early_parse_mem);
375 
376 static int __init early_parse_memmap(char *p)
377 {
378 	char *oldp;
379 	u64 start_at, mem_size;
380 
381 	if (!p)
382 		return -EINVAL;
383 
384 	if (!strncmp(p, "exactmap", 8)) {
385 		pr_err("\"memmap=exactmap\" invalid on MIPS\n");
386 		return 0;
387 	}
388 
389 	oldp = p;
390 	mem_size = memparse(p, &p);
391 	if (p == oldp)
392 		return -EINVAL;
393 
394 	if (*p == '@') {
395 		start_at = memparse(p+1, &p);
396 		memblock_add(start_at, mem_size);
397 	} else if (*p == '#') {
398 		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
399 		return -EINVAL;
400 	} else if (*p == '$') {
401 		start_at = memparse(p+1, &p);
402 		memblock_add(start_at, mem_size);
403 		memblock_reserve(start_at, mem_size);
404 	} else {
405 		pr_err("\"memmap\" invalid format!\n");
406 		return -EINVAL;
407 	}
408 
409 	if (*p == '\0') {
410 		usermem = 1;
411 		return 0;
412 	} else
413 		return -EINVAL;
414 }
415 early_param("memmap", early_parse_memmap);
416 
417 static void __init mips_reserve_vmcore(void)
418 {
419 #ifdef CONFIG_PROC_VMCORE
420 	phys_addr_t start, end;
421 	u64 i;
422 
423 	if (!elfcorehdr_size) {
424 		for_each_mem_range(i, &start, &end) {
425 			if (elfcorehdr_addr >= start && elfcorehdr_addr < end) {
426 				/*
427 				 * Reserve from the elf core header to the end of
428 				 * the memory segment, that should all be kdump
429 				 * reserved memory.
430 				 */
431 				elfcorehdr_size = end - elfcorehdr_addr;
432 				break;
433 			}
434 		}
435 	}
436 
437 	pr_info("Reserving %ldKB of memory at %ldKB for kdump\n",
438 		(unsigned long)elfcorehdr_size >> 10, (unsigned long)elfcorehdr_addr >> 10);
439 
440 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
441 #endif
442 }
443 
444 #ifdef CONFIG_KEXEC
445 
446 /* 64M alignment for crash kernel regions */
447 #define CRASH_ALIGN	SZ_64M
448 #define CRASH_ADDR_MAX	SZ_512M
449 
450 static void __init mips_parse_crashkernel(void)
451 {
452 	unsigned long long total_mem;
453 	unsigned long long crash_size, crash_base;
454 	int ret;
455 
456 	total_mem = memblock_phys_mem_size();
457 	ret = parse_crashkernel(boot_command_line, total_mem,
458 				&crash_size, &crash_base,
459 				NULL, NULL);
460 	if (ret != 0 || crash_size <= 0)
461 		return;
462 
463 	if (crash_base <= 0) {
464 		crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
465 						       CRASH_ALIGN,
466 						       CRASH_ADDR_MAX);
467 		if (!crash_base) {
468 			pr_warn("crashkernel reservation failed - No suitable area found.\n");
469 			return;
470 		}
471 	} else {
472 		unsigned long long start;
473 
474 		start = memblock_phys_alloc_range(crash_size, 1,
475 						  crash_base,
476 						  crash_base + crash_size);
477 		if (start != crash_base) {
478 			pr_warn("Invalid memory region reserved for crash kernel\n");
479 			return;
480 		}
481 	}
482 
483 	crashk_res.start = crash_base;
484 	crashk_res.end	 = crash_base + crash_size - 1;
485 }
486 
487 static void __init request_crashkernel(struct resource *res)
488 {
489 	int ret;
490 
491 	if (crashk_res.start == crashk_res.end)
492 		return;
493 
494 	ret = request_resource(res, &crashk_res);
495 	if (!ret)
496 		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
497 			(unsigned long)(resource_size(&crashk_res) >> 20),
498 			(unsigned long)(crashk_res.start  >> 20));
499 }
500 #else /* !defined(CONFIG_KEXEC)		*/
501 static void __init mips_parse_crashkernel(void)
502 {
503 }
504 
505 static void __init request_crashkernel(struct resource *res)
506 {
507 }
508 #endif /* !defined(CONFIG_KEXEC)  */
509 
510 static void __init check_kernel_sections_mem(void)
511 {
512 	phys_addr_t start = __pa_symbol(&_text);
513 	phys_addr_t size = __pa_symbol(&_end) - start;
514 
515 	if (!memblock_is_region_memory(start, size)) {
516 		pr_info("Kernel sections are not in the memory maps\n");
517 		memblock_add(start, size);
518 	}
519 }
520 
521 static void __init bootcmdline_append(const char *s, size_t max)
522 {
523 	if (!s[0] || !max)
524 		return;
525 
526 	if (boot_command_line[0])
527 		strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
528 
529 	strlcat(boot_command_line, s, max);
530 }
531 
532 #ifdef CONFIG_OF_EARLY_FLATTREE
533 
534 static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname,
535 					  int depth, void *data)
536 {
537 	bool *dt_bootargs = data;
538 	const char *p;
539 	int l;
540 
541 	if (depth != 1 || !data ||
542 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
543 		return 0;
544 
545 	p = of_get_flat_dt_prop(node, "bootargs", &l);
546 	if (p != NULL && l > 0) {
547 		bootcmdline_append(p, min(l, COMMAND_LINE_SIZE));
548 		*dt_bootargs = true;
549 	}
550 
551 	return 1;
552 }
553 
554 #endif /* CONFIG_OF_EARLY_FLATTREE */
555 
556 static void __init bootcmdline_init(void)
557 {
558 	bool dt_bootargs = false;
559 
560 	/*
561 	 * If CMDLINE_OVERRIDE is enabled then initializing the command line is
562 	 * trivial - we simply use the built-in command line unconditionally &
563 	 * unmodified.
564 	 */
565 	if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
566 		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
567 		return;
568 	}
569 
570 	/*
571 	 * If the user specified a built-in command line &
572 	 * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is
573 	 * prepended to arguments from the bootloader or DT so we'll copy them
574 	 * to the start of boot_command_line here. Otherwise, empty
575 	 * boot_command_line to undo anything early_init_dt_scan_chosen() did.
576 	 */
577 	if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
578 		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
579 	else
580 		boot_command_line[0] = 0;
581 
582 #ifdef CONFIG_OF_EARLY_FLATTREE
583 	/*
584 	 * If we're configured to take boot arguments from DT, look for those
585 	 * now.
586 	 */
587 	if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) ||
588 	    IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND))
589 		of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs);
590 #endif
591 
592 	/*
593 	 * If we didn't get any arguments from DT (regardless of whether that's
594 	 * because we weren't configured to look for them, or because we looked
595 	 * & found none) then we'll take arguments from the bootloader.
596 	 * plat_mem_setup() should have filled arcs_cmdline with arguments from
597 	 * the bootloader.
598 	 */
599 	if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs)
600 		bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE);
601 
602 	/*
603 	 * If the user specified a built-in command line & we didn't already
604 	 * prepend it, we append it to boot_command_line here.
605 	 */
606 	if (IS_ENABLED(CONFIG_CMDLINE_BOOL) &&
607 	    !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
608 		bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE);
609 }
610 
611 /*
612  * arch_mem_init - initialize memory management subsystem
613  *
614  *  o plat_mem_setup() detects the memory configuration and will record detected
615  *    memory areas using memblock_add.
616  *
617  * At this stage the memory configuration of the system is known to the
618  * kernel but generic memory management system is still entirely uninitialized.
619  *
620  *  o bootmem_init()
621  *  o sparse_init()
622  *  o paging_init()
623  *  o dma_contiguous_reserve()
624  *
625  * At this stage the bootmem allocator is ready to use.
626  *
627  * NOTE: historically plat_mem_setup did the entire platform initialization.
628  *	 This was rather impractical because it meant plat_mem_setup had to
629  * get away without any kind of memory allocator.  To keep old code from
630  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
631  * initialization hook for anything else was introduced.
632  */
633 static void __init arch_mem_init(char **cmdline_p)
634 {
635 	/* call board setup routine */
636 	plat_mem_setup();
637 	memblock_set_bottom_up(true);
638 
639 	bootcmdline_init();
640 	strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
641 	*cmdline_p = command_line;
642 
643 	parse_early_param();
644 
645 	if (usermem)
646 		pr_info("User-defined physical RAM map overwrite\n");
647 
648 	check_kernel_sections_mem();
649 
650 	early_init_fdt_reserve_self();
651 	early_init_fdt_scan_reserved_mem();
652 
653 #ifndef CONFIG_NUMA
654 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
655 #endif
656 	bootmem_init();
657 
658 	/*
659 	 * Prevent memblock from allocating high memory.
660 	 * This cannot be done before max_low_pfn is detected, so up
661 	 * to this point is possible to only reserve physical memory
662 	 * with memblock_reserve; memblock_alloc* can be used
663 	 * only after this point
664 	 */
665 	memblock_set_current_limit(PFN_PHYS(max_low_pfn));
666 
667 	mips_reserve_vmcore();
668 
669 	mips_parse_crashkernel();
670 	device_tree_init();
671 
672 	/*
673 	 * In order to reduce the possibility of kernel panic when failed to
674 	 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
675 	 * low memory as small as possible before plat_swiotlb_setup(), so
676 	 * make sparse_init() using top-down allocation.
677 	 */
678 	memblock_set_bottom_up(false);
679 	sparse_init();
680 	memblock_set_bottom_up(true);
681 
682 	plat_swiotlb_setup();
683 
684 	dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
685 
686 	/* Reserve for hibernation. */
687 	memblock_reserve(__pa_symbol(&__nosave_begin),
688 		__pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin));
689 
690 	early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
691 }
692 
693 static void __init resource_init(void)
694 {
695 	phys_addr_t start, end;
696 	u64 i;
697 
698 	if (UNCAC_BASE != IO_BASE)
699 		return;
700 
701 	code_resource.start = __pa_symbol(&_text);
702 	code_resource.end = __pa_symbol(&_etext) - 1;
703 	data_resource.start = __pa_symbol(&_etext);
704 	data_resource.end = __pa_symbol(&_edata) - 1;
705 	bss_resource.start = __pa_symbol(&__bss_start);
706 	bss_resource.end = __pa_symbol(&__bss_stop) - 1;
707 
708 	for_each_mem_range(i, &start, &end) {
709 		struct resource *res;
710 
711 		res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
712 		if (!res)
713 			panic("%s: Failed to allocate %zu bytes\n", __func__,
714 			      sizeof(struct resource));
715 
716 		res->start = start;
717 		/*
718 		 * In memblock, end points to the first byte after the
719 		 * range while in resourses, end points to the last byte in
720 		 * the range.
721 		 */
722 		res->end = end - 1;
723 		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
724 		res->name = "System RAM";
725 
726 		request_resource(&iomem_resource, res);
727 
728 		/*
729 		 *  We don't know which RAM region contains kernel data,
730 		 *  so we try it repeatedly and let the resource manager
731 		 *  test it.
732 		 */
733 		request_resource(res, &code_resource);
734 		request_resource(res, &data_resource);
735 		request_resource(res, &bss_resource);
736 		request_crashkernel(res);
737 	}
738 }
739 
740 #ifdef CONFIG_SMP
741 static void __init prefill_possible_map(void)
742 {
743 	int i, possible = num_possible_cpus();
744 
745 	if (possible > nr_cpu_ids)
746 		possible = nr_cpu_ids;
747 
748 	for (i = 0; i < possible; i++)
749 		set_cpu_possible(i, true);
750 	for (; i < NR_CPUS; i++)
751 		set_cpu_possible(i, false);
752 
753 	set_nr_cpu_ids(possible);
754 }
755 #else
756 static inline void prefill_possible_map(void) {}
757 #endif
758 
759 static void __init setup_rng_seed(void)
760 {
761 	char *rng_seed_hex = fw_getenv("rngseed");
762 	u8 rng_seed[512];
763 	size_t len;
764 
765 	if (!rng_seed_hex)
766 		return;
767 
768 	len = min(sizeof(rng_seed), strlen(rng_seed_hex) / 2);
769 	if (hex2bin(rng_seed, rng_seed_hex, len))
770 		return;
771 
772 	add_bootloader_randomness(rng_seed, len);
773 	memzero_explicit(rng_seed, len);
774 	memzero_explicit(rng_seed_hex, len * 2);
775 }
776 
777 void __init setup_arch(char **cmdline_p)
778 {
779 	cpu_probe();
780 	mips_cm_probe();
781 	prom_init();
782 
783 	setup_early_fdc_console();
784 #ifdef CONFIG_EARLY_PRINTK
785 	setup_early_printk();
786 #endif
787 	cpu_report();
788 	if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64))
789 		check_bugs64_early();
790 
791 	arch_mem_init(cmdline_p);
792 	dmi_setup();
793 
794 	resource_init();
795 	plat_smp_setup();
796 	prefill_possible_map();
797 
798 	cpu_cache_init();
799 	paging_init();
800 
801 	memblock_dump_all();
802 
803 	setup_rng_seed();
804 }
805 
806 unsigned long kernelsp[NR_CPUS];
807 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
808 
809 #ifdef CONFIG_DEBUG_FS
810 struct dentry *mips_debugfs_dir;
811 static int __init debugfs_mips(void)
812 {
813 	mips_debugfs_dir = debugfs_create_dir("mips", NULL);
814 	return 0;
815 }
816 arch_initcall(debugfs_mips);
817 #endif
818 
819 #ifdef CONFIG_DMA_NONCOHERENT
820 static int __init setcoherentio(char *str)
821 {
822 	dma_default_coherent = true;
823 	pr_info("Hardware DMA cache coherency (command line)\n");
824 	return 0;
825 }
826 early_param("coherentio", setcoherentio);
827 
828 static int __init setnocoherentio(char *str)
829 {
830 	dma_default_coherent = false;
831 	pr_info("Software DMA cache coherency (command line)\n");
832 	return 0;
833 }
834 early_param("nocoherentio", setnocoherentio);
835 #endif
836 
837 void __init arch_cpu_finalize_init(void)
838 {
839 	unsigned int cpu = smp_processor_id();
840 
841 	cpu_data[cpu].udelay_val = loops_per_jiffy;
842 	check_bugs32();
843 
844 	if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64))
845 		check_bugs64();
846 }
847