1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 #include <linux/kexec.h> 26 #include <linux/sizes.h> 27 #include <linux/device.h> 28 #include <linux/dma-contiguous.h> 29 #include <linux/decompress/generic.h> 30 #include <linux/of_fdt.h> 31 32 #include <asm/addrspace.h> 33 #include <asm/bootinfo.h> 34 #include <asm/bugs.h> 35 #include <asm/cache.h> 36 #include <asm/cdmm.h> 37 #include <asm/cpu.h> 38 #include <asm/debug.h> 39 #include <asm/dma-coherence.h> 40 #include <asm/sections.h> 41 #include <asm/setup.h> 42 #include <asm/smp-ops.h> 43 #include <asm/prom.h> 44 45 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 46 const char __section(.appended_dtb) __appended_dtb[0x100000]; 47 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ 48 49 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 50 51 EXPORT_SYMBOL(cpu_data); 52 53 #ifdef CONFIG_VT 54 struct screen_info screen_info; 55 #endif 56 57 /* 58 * Setup information 59 * 60 * These are initialized so they are in the .data section 61 */ 62 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 63 64 EXPORT_SYMBOL(mips_machtype); 65 66 struct boot_mem_map boot_mem_map; 67 68 static char __initdata command_line[COMMAND_LINE_SIZE]; 69 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 70 71 #ifdef CONFIG_CMDLINE_BOOL 72 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 73 #endif 74 75 /* 76 * mips_io_port_base is the begin of the address space to which x86 style 77 * I/O ports are mapped. 78 */ 79 const unsigned long mips_io_port_base = -1; 80 EXPORT_SYMBOL(mips_io_port_base); 81 82 static struct resource code_resource = { .name = "Kernel code", }; 83 static struct resource data_resource = { .name = "Kernel data", }; 84 static struct resource bss_resource = { .name = "Kernel bss", }; 85 86 static void *detect_magic __initdata = detect_memory_region; 87 88 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) 89 { 90 int x = boot_mem_map.nr_map; 91 int i; 92 93 /* 94 * If the region reaches the top of the physical address space, adjust 95 * the size slightly so that (start + size) doesn't overflow 96 */ 97 if (start + size - 1 == PHYS_ADDR_MAX) 98 --size; 99 100 /* Sanity check */ 101 if (start + size < start) { 102 pr_warn("Trying to add an invalid memory region, skipped\n"); 103 return; 104 } 105 106 /* 107 * Try to merge with existing entry, if any. 108 */ 109 for (i = 0; i < boot_mem_map.nr_map; i++) { 110 struct boot_mem_map_entry *entry = boot_mem_map.map + i; 111 unsigned long top; 112 113 if (entry->type != type) 114 continue; 115 116 if (start + size < entry->addr) 117 continue; /* no overlap */ 118 119 if (entry->addr + entry->size < start) 120 continue; /* no overlap */ 121 122 top = max(entry->addr + entry->size, start + size); 123 entry->addr = min(entry->addr, start); 124 entry->size = top - entry->addr; 125 126 return; 127 } 128 129 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { 130 pr_err("Ooops! Too many entries in the memory map!\n"); 131 return; 132 } 133 134 boot_mem_map.map[x].addr = start; 135 boot_mem_map.map[x].size = size; 136 boot_mem_map.map[x].type = type; 137 boot_mem_map.nr_map++; 138 } 139 140 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) 141 { 142 void *dm = &detect_magic; 143 phys_addr_t size; 144 145 for (size = sz_min; size < sz_max; size <<= 1) { 146 if (!memcmp(dm, dm + size, sizeof(detect_magic))) 147 break; 148 } 149 150 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", 151 ((unsigned long long) size) / SZ_1M, 152 (unsigned long long) start, 153 ((unsigned long long) sz_min) / SZ_1M, 154 ((unsigned long long) sz_max) / SZ_1M); 155 156 add_memory_region(start, size, BOOT_MEM_RAM); 157 } 158 159 static bool __init __maybe_unused memory_region_available(phys_addr_t start, 160 phys_addr_t size) 161 { 162 int i; 163 bool in_ram = false, free = true; 164 165 for (i = 0; i < boot_mem_map.nr_map; i++) { 166 phys_addr_t start_, end_; 167 168 start_ = boot_mem_map.map[i].addr; 169 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size; 170 171 switch (boot_mem_map.map[i].type) { 172 case BOOT_MEM_RAM: 173 if (start >= start_ && start + size <= end_) 174 in_ram = true; 175 break; 176 case BOOT_MEM_RESERVED: 177 if ((start >= start_ && start < end_) || 178 (start < start_ && start + size >= start_)) 179 free = false; 180 break; 181 default: 182 continue; 183 } 184 } 185 186 return in_ram && free; 187 } 188 189 static void __init print_memory_map(void) 190 { 191 int i; 192 const int field = 2 * sizeof(unsigned long); 193 194 for (i = 0; i < boot_mem_map.nr_map; i++) { 195 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 196 field, (unsigned long long) boot_mem_map.map[i].size, 197 field, (unsigned long long) boot_mem_map.map[i].addr); 198 199 switch (boot_mem_map.map[i].type) { 200 case BOOT_MEM_RAM: 201 printk(KERN_CONT "(usable)\n"); 202 break; 203 case BOOT_MEM_INIT_RAM: 204 printk(KERN_CONT "(usable after init)\n"); 205 break; 206 case BOOT_MEM_ROM_DATA: 207 printk(KERN_CONT "(ROM data)\n"); 208 break; 209 case BOOT_MEM_RESERVED: 210 printk(KERN_CONT "(reserved)\n"); 211 break; 212 default: 213 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 214 break; 215 } 216 } 217 } 218 219 /* 220 * Manage initrd 221 */ 222 #ifdef CONFIG_BLK_DEV_INITRD 223 224 static int __init rd_start_early(char *p) 225 { 226 unsigned long start = memparse(p, &p); 227 228 #ifdef CONFIG_64BIT 229 /* Guess if the sign extension was forgotten by bootloader */ 230 if (start < XKPHYS) 231 start = (int)start; 232 #endif 233 initrd_start = start; 234 initrd_end += start; 235 return 0; 236 } 237 early_param("rd_start", rd_start_early); 238 239 static int __init rd_size_early(char *p) 240 { 241 initrd_end += memparse(p, &p); 242 return 0; 243 } 244 early_param("rd_size", rd_size_early); 245 246 /* it returns the next free pfn after initrd */ 247 static unsigned long __init init_initrd(void) 248 { 249 unsigned long end; 250 251 /* 252 * Board specific code or command line parser should have 253 * already set up initrd_start and initrd_end. In these cases 254 * perfom sanity checks and use them if all looks good. 255 */ 256 if (!initrd_start || initrd_end <= initrd_start) 257 goto disable; 258 259 if (initrd_start & ~PAGE_MASK) { 260 pr_err("initrd start must be page aligned\n"); 261 goto disable; 262 } 263 if (initrd_start < PAGE_OFFSET) { 264 pr_err("initrd start < PAGE_OFFSET\n"); 265 goto disable; 266 } 267 268 /* 269 * Sanitize initrd addresses. For example firmware 270 * can't guess if they need to pass them through 271 * 64-bits values if the kernel has been built in pure 272 * 32-bit. We need also to switch from KSEG0 to XKPHYS 273 * addresses now, so the code can now safely use __pa(). 274 */ 275 end = __pa(initrd_end); 276 initrd_end = (unsigned long)__va(end); 277 initrd_start = (unsigned long)__va(__pa(initrd_start)); 278 279 ROOT_DEV = Root_RAM0; 280 return PFN_UP(end); 281 disable: 282 initrd_start = 0; 283 initrd_end = 0; 284 return 0; 285 } 286 287 /* In some conditions (e.g. big endian bootloader with a little endian 288 kernel), the initrd might appear byte swapped. Try to detect this and 289 byte swap it if needed. */ 290 static void __init maybe_bswap_initrd(void) 291 { 292 #if defined(CONFIG_CPU_CAVIUM_OCTEON) 293 u64 buf; 294 295 /* Check for CPIO signature */ 296 if (!memcmp((void *)initrd_start, "070701", 6)) 297 return; 298 299 /* Check for compressed initrd */ 300 if (decompress_method((unsigned char *)initrd_start, 8, NULL)) 301 return; 302 303 /* Try again with a byte swapped header */ 304 buf = swab64p((u64 *)initrd_start); 305 if (!memcmp(&buf, "070701", 6) || 306 decompress_method((unsigned char *)(&buf), 8, NULL)) { 307 unsigned long i; 308 309 pr_info("Byteswapped initrd detected\n"); 310 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) 311 swab64s((u64 *)i); 312 } 313 #endif 314 } 315 316 static void __init finalize_initrd(void) 317 { 318 unsigned long size = initrd_end - initrd_start; 319 320 if (size == 0) { 321 printk(KERN_INFO "Initrd not found or empty"); 322 goto disable; 323 } 324 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 325 printk(KERN_ERR "Initrd extends beyond end of memory"); 326 goto disable; 327 } 328 329 maybe_bswap_initrd(); 330 331 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 332 initrd_below_start_ok = 1; 333 334 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 335 initrd_start, size); 336 return; 337 disable: 338 printk(KERN_CONT " - disabling initrd\n"); 339 initrd_start = 0; 340 initrd_end = 0; 341 } 342 343 #else /* !CONFIG_BLK_DEV_INITRD */ 344 345 static unsigned long __init init_initrd(void) 346 { 347 return 0; 348 } 349 350 #define finalize_initrd() do {} while (0) 351 352 #endif 353 354 /* 355 * Initialize the bootmem allocator. It also setup initrd related data 356 * if needed. 357 */ 358 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA)) 359 360 static void __init bootmem_init(void) 361 { 362 init_initrd(); 363 finalize_initrd(); 364 } 365 366 #else /* !CONFIG_SGI_IP27 */ 367 368 static unsigned long __init bootmap_bytes(unsigned long pages) 369 { 370 unsigned long bytes = DIV_ROUND_UP(pages, 8); 371 372 return ALIGN(bytes, sizeof(long)); 373 } 374 375 static void __init bootmem_init(void) 376 { 377 unsigned long reserved_end; 378 unsigned long mapstart = ~0UL; 379 unsigned long bootmap_size; 380 phys_addr_t ramstart = PHYS_ADDR_MAX; 381 bool bootmap_valid = false; 382 int i; 383 384 /* 385 * Sanity check any INITRD first. We don't take it into account 386 * for bootmem setup initially, rely on the end-of-kernel-code 387 * as our memory range starting point. Once bootmem is inited we 388 * will reserve the area used for the initrd. 389 */ 390 init_initrd(); 391 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end)); 392 393 /* 394 * max_low_pfn is not a number of pages. The number of pages 395 * of the system is given by 'max_low_pfn - min_low_pfn'. 396 */ 397 min_low_pfn = ~0UL; 398 max_low_pfn = 0; 399 400 /* 401 * Find the highest page frame number we have available 402 * and the lowest used RAM address 403 */ 404 for (i = 0; i < boot_mem_map.nr_map; i++) { 405 unsigned long start, end; 406 407 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 408 continue; 409 410 start = PFN_UP(boot_mem_map.map[i].addr); 411 end = PFN_DOWN(boot_mem_map.map[i].addr 412 + boot_mem_map.map[i].size); 413 414 ramstart = min(ramstart, boot_mem_map.map[i].addr); 415 416 #ifndef CONFIG_HIGHMEM 417 /* 418 * Skip highmem here so we get an accurate max_low_pfn if low 419 * memory stops short of high memory. 420 * If the region overlaps HIGHMEM_START, end is clipped so 421 * max_pfn excludes the highmem portion. 422 */ 423 if (start >= PFN_DOWN(HIGHMEM_START)) 424 continue; 425 if (end > PFN_DOWN(HIGHMEM_START)) 426 end = PFN_DOWN(HIGHMEM_START); 427 #endif 428 429 if (end > max_low_pfn) 430 max_low_pfn = end; 431 if (start < min_low_pfn) 432 min_low_pfn = start; 433 if (end <= reserved_end) 434 continue; 435 #ifdef CONFIG_BLK_DEV_INITRD 436 /* Skip zones before initrd and initrd itself */ 437 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end))) 438 continue; 439 #endif 440 if (start >= mapstart) 441 continue; 442 mapstart = max(reserved_end, start); 443 } 444 445 /* 446 * Reserve any memory between the start of RAM and PHYS_OFFSET 447 */ 448 if (ramstart > PHYS_OFFSET) 449 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET, 450 BOOT_MEM_RESERVED); 451 452 if (min_low_pfn >= max_low_pfn) 453 panic("Incorrect memory mapping !!!"); 454 if (min_low_pfn > ARCH_PFN_OFFSET) { 455 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 456 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 457 min_low_pfn - ARCH_PFN_OFFSET); 458 } else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) { 459 pr_info("%lu free pages won't be used\n", 460 ARCH_PFN_OFFSET - min_low_pfn); 461 } 462 min_low_pfn = ARCH_PFN_OFFSET; 463 464 /* 465 * Determine low and high memory ranges 466 */ 467 max_pfn = max_low_pfn; 468 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 469 #ifdef CONFIG_HIGHMEM 470 highstart_pfn = PFN_DOWN(HIGHMEM_START); 471 highend_pfn = max_low_pfn; 472 #endif 473 max_low_pfn = PFN_DOWN(HIGHMEM_START); 474 } 475 476 #ifdef CONFIG_BLK_DEV_INITRD 477 /* 478 * mapstart should be after initrd_end 479 */ 480 if (initrd_end) 481 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end))); 482 #endif 483 484 /* 485 * check that mapstart doesn't overlap with any of 486 * memory regions that have been reserved through eg. DTB 487 */ 488 bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn); 489 490 bootmap_valid = memory_region_available(PFN_PHYS(mapstart), 491 bootmap_size); 492 for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) { 493 unsigned long mapstart_addr; 494 495 switch (boot_mem_map.map[i].type) { 496 case BOOT_MEM_RESERVED: 497 mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr + 498 boot_mem_map.map[i].size); 499 if (PHYS_PFN(mapstart_addr) < mapstart) 500 break; 501 502 bootmap_valid = memory_region_available(mapstart_addr, 503 bootmap_size); 504 if (bootmap_valid) 505 mapstart = PHYS_PFN(mapstart_addr); 506 break; 507 default: 508 break; 509 } 510 } 511 512 if (!bootmap_valid) 513 panic("No memory area to place a bootmap bitmap"); 514 515 /* 516 * Initialize the boot-time allocator with low memory only. 517 */ 518 if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart, 519 min_low_pfn, max_low_pfn)) 520 panic("Unexpected memory size required for bootmap"); 521 522 for (i = 0; i < boot_mem_map.nr_map; i++) { 523 unsigned long start, end; 524 525 start = PFN_UP(boot_mem_map.map[i].addr); 526 end = PFN_DOWN(boot_mem_map.map[i].addr 527 + boot_mem_map.map[i].size); 528 529 if (start <= min_low_pfn) 530 start = min_low_pfn; 531 if (start >= end) 532 continue; 533 534 #ifndef CONFIG_HIGHMEM 535 if (end > max_low_pfn) 536 end = max_low_pfn; 537 538 /* 539 * ... finally, is the area going away? 540 */ 541 if (end <= start) 542 continue; 543 #endif 544 545 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 546 } 547 548 /* 549 * Register fully available low RAM pages with the bootmem allocator. 550 */ 551 for (i = 0; i < boot_mem_map.nr_map; i++) { 552 unsigned long start, end, size; 553 554 start = PFN_UP(boot_mem_map.map[i].addr); 555 end = PFN_DOWN(boot_mem_map.map[i].addr 556 + boot_mem_map.map[i].size); 557 558 /* 559 * Reserve usable memory. 560 */ 561 switch (boot_mem_map.map[i].type) { 562 case BOOT_MEM_RAM: 563 break; 564 case BOOT_MEM_INIT_RAM: 565 memory_present(0, start, end); 566 continue; 567 default: 568 /* Not usable memory */ 569 if (start > min_low_pfn && end < max_low_pfn) 570 reserve_bootmem(boot_mem_map.map[i].addr, 571 boot_mem_map.map[i].size, 572 BOOTMEM_DEFAULT); 573 continue; 574 } 575 576 /* 577 * We are rounding up the start address of usable memory 578 * and at the end of the usable range downwards. 579 */ 580 if (start >= max_low_pfn) 581 continue; 582 if (start < reserved_end) 583 start = reserved_end; 584 if (end > max_low_pfn) 585 end = max_low_pfn; 586 587 /* 588 * ... finally, is the area going away? 589 */ 590 if (end <= start) 591 continue; 592 size = end - start; 593 594 /* Register lowmem ranges */ 595 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 596 memory_present(0, start, end); 597 } 598 599 /* 600 * Reserve the bootmap memory. 601 */ 602 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 603 604 #ifdef CONFIG_RELOCATABLE 605 /* 606 * The kernel reserves all memory below its _end symbol as bootmem, 607 * but the kernel may now be at a much higher address. The memory 608 * between the original and new locations may be returned to the system. 609 */ 610 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) { 611 unsigned long offset; 612 extern void show_kernel_relocation(const char *level); 613 614 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS); 615 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset); 616 617 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO) 618 /* 619 * This information is necessary when debugging the kernel 620 * But is a security vulnerability otherwise! 621 */ 622 show_kernel_relocation(KERN_INFO); 623 #endif 624 } 625 #endif 626 627 /* 628 * Reserve initrd memory if needed. 629 */ 630 finalize_initrd(); 631 } 632 633 #endif /* CONFIG_SGI_IP27 */ 634 635 /* 636 * arch_mem_init - initialize memory management subsystem 637 * 638 * o plat_mem_setup() detects the memory configuration and will record detected 639 * memory areas using add_memory_region. 640 * 641 * At this stage the memory configuration of the system is known to the 642 * kernel but generic memory management system is still entirely uninitialized. 643 * 644 * o bootmem_init() 645 * o sparse_init() 646 * o paging_init() 647 * o dma_contiguous_reserve() 648 * 649 * At this stage the bootmem allocator is ready to use. 650 * 651 * NOTE: historically plat_mem_setup did the entire platform initialization. 652 * This was rather impractical because it meant plat_mem_setup had to 653 * get away without any kind of memory allocator. To keep old code from 654 * breaking plat_setup was just renamed to plat_mem_setup and a second platform 655 * initialization hook for anything else was introduced. 656 */ 657 658 static int usermem __initdata; 659 660 static int __init early_parse_mem(char *p) 661 { 662 phys_addr_t start, size; 663 664 /* 665 * If a user specifies memory size, we 666 * blow away any automatically generated 667 * size. 668 */ 669 if (usermem == 0) { 670 boot_mem_map.nr_map = 0; 671 usermem = 1; 672 } 673 start = 0; 674 size = memparse(p, &p); 675 if (*p == '@') 676 start = memparse(p + 1, &p); 677 678 add_memory_region(start, size, BOOT_MEM_RAM); 679 680 return 0; 681 } 682 early_param("mem", early_parse_mem); 683 684 static int __init early_parse_memmap(char *p) 685 { 686 char *oldp; 687 u64 start_at, mem_size; 688 689 if (!p) 690 return -EINVAL; 691 692 if (!strncmp(p, "exactmap", 8)) { 693 pr_err("\"memmap=exactmap\" invalid on MIPS\n"); 694 return 0; 695 } 696 697 oldp = p; 698 mem_size = memparse(p, &p); 699 if (p == oldp) 700 return -EINVAL; 701 702 if (*p == '@') { 703 start_at = memparse(p+1, &p); 704 add_memory_region(start_at, mem_size, BOOT_MEM_RAM); 705 } else if (*p == '#') { 706 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n"); 707 return -EINVAL; 708 } else if (*p == '$') { 709 start_at = memparse(p+1, &p); 710 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED); 711 } else { 712 pr_err("\"memmap\" invalid format!\n"); 713 return -EINVAL; 714 } 715 716 if (*p == '\0') { 717 usermem = 1; 718 return 0; 719 } else 720 return -EINVAL; 721 } 722 early_param("memmap", early_parse_memmap); 723 724 #ifdef CONFIG_PROC_VMCORE 725 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; 726 static int __init early_parse_elfcorehdr(char *p) 727 { 728 int i; 729 730 setup_elfcorehdr = memparse(p, &p); 731 732 for (i = 0; i < boot_mem_map.nr_map; i++) { 733 unsigned long start = boot_mem_map.map[i].addr; 734 unsigned long end = (boot_mem_map.map[i].addr + 735 boot_mem_map.map[i].size); 736 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { 737 /* 738 * Reserve from the elf core header to the end of 739 * the memory segment, that should all be kdump 740 * reserved memory. 741 */ 742 setup_elfcorehdr_size = end - setup_elfcorehdr; 743 break; 744 } 745 } 746 /* 747 * If we don't find it in the memory map, then we shouldn't 748 * have to worry about it, as the new kernel won't use it. 749 */ 750 return 0; 751 } 752 early_param("elfcorehdr", early_parse_elfcorehdr); 753 #endif 754 755 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type) 756 { 757 phys_addr_t size; 758 int i; 759 760 size = end - mem; 761 if (!size) 762 return; 763 764 /* Make sure it is in the boot_mem_map */ 765 for (i = 0; i < boot_mem_map.nr_map; i++) { 766 if (mem >= boot_mem_map.map[i].addr && 767 mem < (boot_mem_map.map[i].addr + 768 boot_mem_map.map[i].size)) 769 return; 770 } 771 add_memory_region(mem, size, type); 772 } 773 774 #ifdef CONFIG_KEXEC 775 static inline unsigned long long get_total_mem(void) 776 { 777 unsigned long long total; 778 779 total = max_pfn - min_low_pfn; 780 return total << PAGE_SHIFT; 781 } 782 783 static void __init mips_parse_crashkernel(void) 784 { 785 unsigned long long total_mem; 786 unsigned long long crash_size, crash_base; 787 int ret; 788 789 total_mem = get_total_mem(); 790 ret = parse_crashkernel(boot_command_line, total_mem, 791 &crash_size, &crash_base); 792 if (ret != 0 || crash_size <= 0) 793 return; 794 795 if (!memory_region_available(crash_base, crash_size)) { 796 pr_warn("Invalid memory region reserved for crash kernel\n"); 797 return; 798 } 799 800 crashk_res.start = crash_base; 801 crashk_res.end = crash_base + crash_size - 1; 802 } 803 804 static void __init request_crashkernel(struct resource *res) 805 { 806 int ret; 807 808 if (crashk_res.start == crashk_res.end) 809 return; 810 811 ret = request_resource(res, &crashk_res); 812 if (!ret) 813 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 814 (unsigned long)((crashk_res.end - 815 crashk_res.start + 1) >> 20), 816 (unsigned long)(crashk_res.start >> 20)); 817 } 818 #else /* !defined(CONFIG_KEXEC) */ 819 static void __init mips_parse_crashkernel(void) 820 { 821 } 822 823 static void __init request_crashkernel(struct resource *res) 824 { 825 } 826 #endif /* !defined(CONFIG_KEXEC) */ 827 828 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER) 829 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) 830 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) 831 #define BUILTIN_EXTEND_WITH_PROM \ 832 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND) 833 834 static void __init arch_mem_init(char **cmdline_p) 835 { 836 struct memblock_region *reg; 837 extern void plat_mem_setup(void); 838 839 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) 840 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 841 #else 842 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) || 843 (USE_DTB_CMDLINE && !boot_command_line[0])) 844 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 845 846 if (EXTEND_WITH_PROM && arcs_cmdline[0]) { 847 if (boot_command_line[0]) 848 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 849 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 850 } 851 852 #if defined(CONFIG_CMDLINE_BOOL) 853 if (builtin_cmdline[0]) { 854 if (boot_command_line[0]) 855 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 856 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 857 } 858 859 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) { 860 if (boot_command_line[0]) 861 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 862 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 863 } 864 #endif 865 #endif 866 867 /* call board setup routine */ 868 plat_mem_setup(); 869 870 /* 871 * Make sure all kernel memory is in the maps. The "UP" and 872 * "DOWN" are opposite for initdata since if it crosses over 873 * into another memory section you don't want that to be 874 * freed when the initdata is freed. 875 */ 876 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, 877 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, 878 BOOT_MEM_RAM); 879 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, 880 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, 881 BOOT_MEM_INIT_RAM); 882 883 pr_info("Determined physical RAM map:\n"); 884 print_memory_map(); 885 886 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 887 888 *cmdline_p = command_line; 889 890 parse_early_param(); 891 892 if (usermem) { 893 pr_info("User-defined physical RAM map:\n"); 894 print_memory_map(); 895 } 896 897 early_init_fdt_reserve_self(); 898 early_init_fdt_scan_reserved_mem(); 899 900 bootmem_init(); 901 #ifdef CONFIG_PROC_VMCORE 902 if (setup_elfcorehdr && setup_elfcorehdr_size) { 903 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", 904 setup_elfcorehdr, setup_elfcorehdr_size); 905 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, 906 BOOTMEM_DEFAULT); 907 } 908 #endif 909 910 mips_parse_crashkernel(); 911 #ifdef CONFIG_KEXEC 912 if (crashk_res.start != crashk_res.end) 913 reserve_bootmem(crashk_res.start, 914 crashk_res.end - crashk_res.start + 1, 915 BOOTMEM_DEFAULT); 916 #endif 917 device_tree_init(); 918 sparse_init(); 919 plat_swiotlb_setup(); 920 921 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); 922 /* Tell bootmem about cma reserved memblock section */ 923 for_each_memblock(reserved, reg) 924 if (reg->size != 0) 925 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); 926 927 reserve_bootmem_region(__pa_symbol(&__nosave_begin), 928 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */ 929 } 930 931 static void __init resource_init(void) 932 { 933 int i; 934 935 if (UNCAC_BASE != IO_BASE) 936 return; 937 938 code_resource.start = __pa_symbol(&_text); 939 code_resource.end = __pa_symbol(&_etext) - 1; 940 data_resource.start = __pa_symbol(&_etext); 941 data_resource.end = __pa_symbol(&_edata) - 1; 942 bss_resource.start = __pa_symbol(&__bss_start); 943 bss_resource.end = __pa_symbol(&__bss_stop) - 1; 944 945 for (i = 0; i < boot_mem_map.nr_map; i++) { 946 struct resource *res; 947 unsigned long start, end; 948 949 start = boot_mem_map.map[i].addr; 950 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 951 if (start >= HIGHMEM_START) 952 continue; 953 if (end >= HIGHMEM_START) 954 end = HIGHMEM_START - 1; 955 956 res = alloc_bootmem(sizeof(struct resource)); 957 958 res->start = start; 959 res->end = end; 960 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 961 962 switch (boot_mem_map.map[i].type) { 963 case BOOT_MEM_RAM: 964 case BOOT_MEM_INIT_RAM: 965 case BOOT_MEM_ROM_DATA: 966 res->name = "System RAM"; 967 res->flags |= IORESOURCE_SYSRAM; 968 break; 969 case BOOT_MEM_RESERVED: 970 default: 971 res->name = "reserved"; 972 } 973 974 request_resource(&iomem_resource, res); 975 976 /* 977 * We don't know which RAM region contains kernel data, 978 * so we try it repeatedly and let the resource manager 979 * test it. 980 */ 981 request_resource(res, &code_resource); 982 request_resource(res, &data_resource); 983 request_resource(res, &bss_resource); 984 request_crashkernel(res); 985 } 986 } 987 988 #ifdef CONFIG_SMP 989 static void __init prefill_possible_map(void) 990 { 991 int i, possible = num_possible_cpus(); 992 993 if (possible > nr_cpu_ids) 994 possible = nr_cpu_ids; 995 996 for (i = 0; i < possible; i++) 997 set_cpu_possible(i, true); 998 for (; i < NR_CPUS; i++) 999 set_cpu_possible(i, false); 1000 1001 nr_cpu_ids = possible; 1002 } 1003 #else 1004 static inline void prefill_possible_map(void) {} 1005 #endif 1006 1007 void __init setup_arch(char **cmdline_p) 1008 { 1009 cpu_probe(); 1010 mips_cm_probe(); 1011 prom_init(); 1012 1013 setup_early_fdc_console(); 1014 #ifdef CONFIG_EARLY_PRINTK 1015 setup_early_printk(); 1016 #endif 1017 cpu_report(); 1018 check_bugs_early(); 1019 1020 #if defined(CONFIG_VT) 1021 #if defined(CONFIG_VGA_CONSOLE) 1022 conswitchp = &vga_con; 1023 #elif defined(CONFIG_DUMMY_CONSOLE) 1024 conswitchp = &dummy_con; 1025 #endif 1026 #endif 1027 1028 arch_mem_init(cmdline_p); 1029 1030 resource_init(); 1031 plat_smp_setup(); 1032 prefill_possible_map(); 1033 1034 cpu_cache_init(); 1035 paging_init(); 1036 } 1037 1038 unsigned long kernelsp[NR_CPUS]; 1039 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 1040 1041 #ifdef CONFIG_USE_OF 1042 unsigned long fw_passed_dtb; 1043 #endif 1044 1045 #ifdef CONFIG_DEBUG_FS 1046 struct dentry *mips_debugfs_dir; 1047 static int __init debugfs_mips(void) 1048 { 1049 struct dentry *d; 1050 1051 d = debugfs_create_dir("mips", NULL); 1052 if (!d) 1053 return -ENOMEM; 1054 mips_debugfs_dir = d; 1055 return 0; 1056 } 1057 arch_initcall(debugfs_mips); 1058 #endif 1059 1060 #if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT) 1061 /* User defined DMA coherency from command line. */ 1062 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT; 1063 EXPORT_SYMBOL_GPL(coherentio); 1064 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */ 1065 1066 static int __init setcoherentio(char *str) 1067 { 1068 coherentio = IO_COHERENCE_ENABLED; 1069 pr_info("Hardware DMA cache coherency (command line)\n"); 1070 return 0; 1071 } 1072 early_param("coherentio", setcoherentio); 1073 1074 static int __init setnocoherentio(char *str) 1075 { 1076 coherentio = IO_COHERENCE_DISABLED; 1077 pr_info("Software DMA cache coherency (command line)\n"); 1078 return 0; 1079 } 1080 early_param("nocoherentio", setnocoherentio); 1081 #endif 1082